security: Fix setting of PF_SUPERPRIV by __capable()
Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags
the target process if that is not the current process and it is trying to
change its own flags in a different way at the same time.
__capable() is using neither atomic ops nor locking to protect t->flags. This
patch removes __capable() and introduces has_capability() that doesn't set
PF_SUPERPRIV on the process being queried.
This patch further splits security_ptrace() in two:
(1) security_ptrace_may_access(). This passes judgement on whether one
process may access another only (PTRACE_MODE_ATTACH for ptrace() and
PTRACE_MODE_READ for /proc), and takes a pointer to the child process.
current is the parent.
(2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only,
and takes only a pointer to the parent process. current is the child.
In Smack and commoncap, this uses has_capability() to determine whether
the parent will be permitted to use PTRACE_ATTACH if normal checks fail.
This does not set PF_SUPERPRIV.
Two of the instances of __capable() actually only act on current, and so have
been changed to calls to capable().
Of the places that were using __capable():
(1) The OOM killer calls __capable() thrice when weighing the killability of a
process. All of these now use has_capability().
(2) cap_ptrace() and smack_ptrace() were using __capable() to check to see
whether the parent was allowed to trace any process. As mentioned above,
these have been split. For PTRACE_ATTACH and /proc, capable() is now
used, and for PTRACE_TRACEME, has_capability() is used.
(3) cap_safe_nice() only ever saw current, so now uses capable().
(4) smack_setprocattr() rejected accesses to tasks other than current just
after calling __capable(), so the order of these two tests have been
switched and capable() is used instead.
(5) In smack_file_send_sigiotask(), we need to allow privileged processes to
receive SIGIO on files they're manipulating.
(6) In smack_task_wait(), we let a process wait for a privileged process,
whether or not the process doing the waiting is privileged.
I've tested this with the LTP SELinux and syscalls testscripts.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: James Morris <jmorris@namei.org>
diff --git a/security/commoncap.c b/security/commoncap.c
index 4afbece..e4c4b3f 100644
--- a/security/commoncap.c
+++ b/security/commoncap.c
@@ -63,14 +63,24 @@
return 0;
}
-int cap_ptrace (struct task_struct *parent, struct task_struct *child,
- unsigned int mode)
+int cap_ptrace_may_access(struct task_struct *child, unsigned int mode)
{
/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
- if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
- !__capable(parent, CAP_SYS_PTRACE))
- return -EPERM;
- return 0;
+ if (cap_issubset(child->cap_permitted, current->cap_permitted))
+ return 0;
+ if (capable(CAP_SYS_PTRACE))
+ return 0;
+ return -EPERM;
+}
+
+int cap_ptrace_traceme(struct task_struct *parent)
+{
+ /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
+ if (cap_issubset(current->cap_permitted, parent->cap_permitted))
+ return 0;
+ if (has_capability(parent, CAP_SYS_PTRACE))
+ return 0;
+ return -EPERM;
}
int cap_capget (struct task_struct *target, kernel_cap_t *effective,
@@ -534,7 +544,7 @@
static inline int cap_safe_nice(struct task_struct *p)
{
if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
- !__capable(current, CAP_SYS_NICE))
+ !capable(CAP_SYS_NICE))
return -EPERM;
return 0;
}