Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/Documentation/exception.txt b/Documentation/exception.txt
new file mode 100644
index 0000000..f1d4369
--- /dev/null
+++ b/Documentation/exception.txt
@@ -0,0 +1,292 @@
+     Kernel level exception handling in Linux 2.1.8
+  Commentary by Joerg Pommnitz <joerg@raleigh.ibm.com>
+
+When a process runs in kernel mode, it often has to access user 
+mode memory whose address has been passed by an untrusted program. 
+To protect itself the kernel has to verify this address.
+
+In older versions of Linux this was done with the 
+int verify_area(int type, const void * addr, unsigned long size) 
+function.
+
+This function verified that the memory area starting at address 
+addr and of size size was accessible for the operation specified 
+in type (read or write). To do this, verify_read had to look up the 
+virtual memory area (vma) that contained the address addr. In the 
+normal case (correctly working program), this test was successful. 
+It only failed for a few buggy programs. In some kernel profiling
+tests, this normally unneeded verification used up a considerable
+amount of time.
+
+To overcome this situation, Linus decided to let the virtual memory 
+hardware present in every Linux-capable CPU handle this test.
+
+How does this work?
+
+Whenever the kernel tries to access an address that is currently not 
+accessible, the CPU generates a page fault exception and calls the 
+page fault handler 
+
+void do_page_fault(struct pt_regs *regs, unsigned long error_code)
+
+in arch/i386/mm/fault.c. The parameters on the stack are set up by 
+the low level assembly glue in arch/i386/kernel/entry.S. The parameter
+regs is a pointer to the saved registers on the stack, error_code 
+contains a reason code for the exception.
+
+do_page_fault first obtains the unaccessible address from the CPU 
+control register CR2. If the address is within the virtual address 
+space of the process, the fault probably occurred, because the page 
+was not swapped in, write protected or something similar. However, 
+we are interested in the other case: the address is not valid, there 
+is no vma that contains this address. In this case, the kernel jumps 
+to the bad_area label. 
+
+There it uses the address of the instruction that caused the exception 
+(i.e. regs->eip) to find an address where the execution can continue 
+(fixup). If this search is successful, the fault handler modifies the 
+return address (again regs->eip) and returns. The execution will 
+continue at the address in fixup.
+
+Where does fixup point to?
+
+Since we jump to the contents of fixup, fixup obviously points 
+to executable code. This code is hidden inside the user access macros. 
+I have picked the get_user macro defined in include/asm/uaccess.h as an
+example. The definition is somewhat hard to follow, so let's peek at 
+the code generated by the preprocessor and the compiler. I selected
+the get_user call in drivers/char/console.c for a detailed examination.
+
+The original code in console.c line 1405:
+        get_user(c, buf);
+
+The preprocessor output (edited to become somewhat readable):
+
+(
+  {        
+    long __gu_err = - 14 , __gu_val = 0;        
+    const __typeof__(*( (  buf ) )) *__gu_addr = ((buf));        
+    if (((((0 + current_set[0])->tss.segment) == 0x18 )  || 
+       (((sizeof(*(buf))) <= 0xC0000000UL) && 
+       ((unsigned long)(__gu_addr ) <= 0xC0000000UL - (sizeof(*(buf)))))))        
+      do {
+        __gu_err  = 0;        
+        switch ((sizeof(*(buf)))) {        
+          case 1: 
+            __asm__ __volatile__(        
+              "1:      mov" "b" " %2,%" "b" "1\n"        
+              "2:\n"        
+              ".section .fixup,\"ax\"\n"        
+              "3:      movl %3,%0\n"        
+              "        xor" "b" " %" "b" "1,%" "b" "1\n"        
+              "        jmp 2b\n"        
+              ".section __ex_table,\"a\"\n"        
+              "        .align 4\n"        
+              "        .long 1b,3b\n"        
+              ".text"        : "=r"(__gu_err), "=q" (__gu_val): "m"((*(struct __large_struct *)
+                            (   __gu_addr   )) ), "i"(- 14 ), "0"(  __gu_err  )) ; 
+              break;        
+          case 2: 
+            __asm__ __volatile__(
+              "1:      mov" "w" " %2,%" "w" "1\n"        
+              "2:\n"        
+              ".section .fixup,\"ax\"\n"        
+              "3:      movl %3,%0\n"        
+              "        xor" "w" " %" "w" "1,%" "w" "1\n"        
+              "        jmp 2b\n"        
+              ".section __ex_table,\"a\"\n"        
+              "        .align 4\n"        
+              "        .long 1b,3b\n"        
+              ".text"        : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *)
+                            (   __gu_addr   )) ), "i"(- 14 ), "0"(  __gu_err  )); 
+              break;        
+          case 4: 
+            __asm__ __volatile__(        
+              "1:      mov" "l" " %2,%" "" "1\n"        
+              "2:\n"        
+              ".section .fixup,\"ax\"\n"        
+              "3:      movl %3,%0\n"        
+              "        xor" "l" " %" "" "1,%" "" "1\n"        
+              "        jmp 2b\n"        
+              ".section __ex_table,\"a\"\n"        
+              "        .align 4\n"        "        .long 1b,3b\n"        
+              ".text"        : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *)
+                            (   __gu_addr   )) ), "i"(- 14 ), "0"(__gu_err)); 
+              break;        
+          default: 
+            (__gu_val) = __get_user_bad();        
+        }        
+      } while (0) ;        
+    ((c)) = (__typeof__(*((buf))))__gu_val;        
+    __gu_err;
+  }
+);
+
+WOW! Black GCC/assembly magic. This is impossible to follow, so let's
+see what code gcc generates:
+
+ >         xorl %edx,%edx
+ >         movl current_set,%eax
+ >         cmpl $24,788(%eax)        
+ >         je .L1424        
+ >         cmpl $-1073741825,64(%esp)
+ >         ja .L1423                
+ > .L1424:
+ >         movl %edx,%eax                        
+ >         movl 64(%esp),%ebx
+ > #APP
+ > 1:      movb (%ebx),%dl                /* this is the actual user access */
+ > 2:
+ > .section .fixup,"ax"
+ > 3:      movl $-14,%eax
+ >         xorb %dl,%dl
+ >         jmp 2b
+ > .section __ex_table,"a"
+ >         .align 4
+ >         .long 1b,3b
+ > .text
+ > #NO_APP
+ > .L1423:
+ >         movzbl %dl,%esi
+
+The optimizer does a good job and gives us something we can actually 
+understand. Can we? The actual user access is quite obvious. Thanks 
+to the unified address space we can just access the address in user 
+memory. But what does the .section stuff do?????
+
+To understand this we have to look at the final kernel:
+
+ > objdump --section-headers vmlinux
+ > 
+ > vmlinux:     file format elf32-i386
+ > 
+ > Sections:
+ > Idx Name          Size      VMA       LMA       File off  Algn
+ >   0 .text         00098f40  c0100000  c0100000  00001000  2**4
+ >                   CONTENTS, ALLOC, LOAD, READONLY, CODE
+ >   1 .fixup        000016bc  c0198f40  c0198f40  00099f40  2**0
+ >                   CONTENTS, ALLOC, LOAD, READONLY, CODE
+ >   2 .rodata       0000f127  c019a5fc  c019a5fc  0009b5fc  2**2
+ >                   CONTENTS, ALLOC, LOAD, READONLY, DATA
+ >   3 __ex_table    000015c0  c01a9724  c01a9724  000aa724  2**2
+ >                   CONTENTS, ALLOC, LOAD, READONLY, DATA
+ >   4 .data         0000ea58  c01abcf0  c01abcf0  000abcf0  2**4
+ >                   CONTENTS, ALLOC, LOAD, DATA
+ >   5 .bss          00018e21  c01ba748  c01ba748  000ba748  2**2
+ >                   ALLOC
+ >   6 .comment      00000ec4  00000000  00000000  000ba748  2**0
+ >                   CONTENTS, READONLY
+ >   7 .note         00001068  00000ec4  00000ec4  000bb60c  2**0
+ >                   CONTENTS, READONLY
+
+There are obviously 2 non standard ELF sections in the generated object
+file. But first we want to find out what happened to our code in the
+final kernel executable:
+
+ > objdump --disassemble --section=.text vmlinux
+ >
+ > c017e785 <do_con_write+c1> xorl   %edx,%edx
+ > c017e787 <do_con_write+c3> movl   0xc01c7bec,%eax
+ > c017e78c <do_con_write+c8> cmpl   $0x18,0x314(%eax)
+ > c017e793 <do_con_write+cf> je     c017e79f <do_con_write+db>
+ > c017e795 <do_con_write+d1> cmpl   $0xbfffffff,0x40(%esp,1)
+ > c017e79d <do_con_write+d9> ja     c017e7a7 <do_con_write+e3>
+ > c017e79f <do_con_write+db> movl   %edx,%eax
+ > c017e7a1 <do_con_write+dd> movl   0x40(%esp,1),%ebx
+ > c017e7a5 <do_con_write+e1> movb   (%ebx),%dl
+ > c017e7a7 <do_con_write+e3> movzbl %dl,%esi
+
+The whole user memory access is reduced to 10 x86 machine instructions.
+The instructions bracketed in the .section directives are no longer
+in the normal execution path. They are located in a different section 
+of the executable file:
+
+ > objdump --disassemble --section=.fixup vmlinux
+ > 
+ > c0199ff5 <.fixup+10b5> movl   $0xfffffff2,%eax
+ > c0199ffa <.fixup+10ba> xorb   %dl,%dl
+ > c0199ffc <.fixup+10bc> jmp    c017e7a7 <do_con_write+e3>
+
+And finally:
+ > objdump --full-contents --section=__ex_table vmlinux
+ > 
+ >  c01aa7c4 93c017c0 e09f19c0 97c017c0 99c017c0  ................
+ >  c01aa7d4 f6c217c0 e99f19c0 a5e717c0 f59f19c0  ................
+ >  c01aa7e4 080a18c0 01a019c0 0a0a18c0 04a019c0  ................
+
+or in human readable byte order:
+
+ >  c01aa7c4 c017c093 c0199fe0 c017c097 c017c099  ................
+ >  c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5  ................
+                               ^^^^^^^^^^^^^^^^^
+                               this is the interesting part!
+ >  c01aa7e4 c0180a08 c019a001 c0180a0a c019a004  ................
+
+What happened? The assembly directives
+
+.section .fixup,"ax"
+.section __ex_table,"a"
+
+told the assembler to move the following code to the specified
+sections in the ELF object file. So the instructions
+3:      movl $-14,%eax
+        xorb %dl,%dl
+        jmp 2b
+ended up in the .fixup section of the object file and the addresses
+        .long 1b,3b
+ended up in the __ex_table section of the object file. 1b and 3b
+are local labels. The local label 1b (1b stands for next label 1 
+backward) is the address of the instruction that might fault, i.e. 
+in our case the address of the label 1 is c017e7a5:
+the original assembly code: > 1:      movb (%ebx),%dl
+and linked in vmlinux     : > c017e7a5 <do_con_write+e1> movb   (%ebx),%dl
+
+The local label 3 (backwards again) is the address of the code to handle
+the fault, in our case the actual value is c0199ff5:
+the original assembly code: > 3:      movl $-14,%eax
+and linked in vmlinux     : > c0199ff5 <.fixup+10b5> movl   $0xfffffff2,%eax
+
+The assembly code
+ > .section __ex_table,"a"
+ >         .align 4
+ >         .long 1b,3b
+
+becomes the value pair
+ >  c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5  ................
+                               ^this is ^this is
+                               1b       3b 
+c017e7a5,c0199ff5 in the exception table of the kernel.
+
+So, what actually happens if a fault from kernel mode with no suitable
+vma occurs?
+
+1.) access to invalid address:
+ > c017e7a5 <do_con_write+e1> movb   (%ebx),%dl
+2.) MMU generates exception
+3.) CPU calls do_page_fault
+4.) do page fault calls search_exception_table (regs->eip == c017e7a5);
+5.) search_exception_table looks up the address c017e7a5 in the
+    exception table (i.e. the contents of the ELF section __ex_table) 
+    and returns the address of the associated fault handle code c0199ff5.
+6.) do_page_fault modifies its own return address to point to the fault 
+    handle code and returns.
+7.) execution continues in the fault handling code.
+8.) 8a) EAX becomes -EFAULT (== -14)
+    8b) DL  becomes zero (the value we "read" from user space)
+    8c) execution continues at local label 2 (address of the
+        instruction immediately after the faulting user access).
+
+The steps 8a to 8c in a certain way emulate the faulting instruction.
+
+That's it, mostly. If you look at our example, you might ask why
+we set EAX to -EFAULT in the exception handler code. Well, the
+get_user macro actually returns a value: 0, if the user access was
+successful, -EFAULT on failure. Our original code did not test this
+return value, however the inline assembly code in get_user tries to
+return -EFAULT. GCC selected EAX to return this value.
+
+NOTE:
+Due to the way that the exception table is built and needs to be ordered,
+only use exceptions for code in the .text section.  Any other section
+will cause the exception table to not be sorted correctly, and the
+exceptions will fail.