blob: 2c2b93d77d433248dba64b6a1dd525eae51277fc [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/arm/mm/mm-armv.c
3 *
4 * Copyright (C) 1998-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Page table sludge for ARM v3 and v4 processor architectures.
11 */
12#include <linux/config.h>
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/init.h>
16#include <linux/bootmem.h>
17#include <linux/highmem.h>
18#include <linux/nodemask.h>
19
20#include <asm/pgalloc.h>
21#include <asm/page.h>
22#include <asm/io.h>
23#include <asm/setup.h>
24#include <asm/tlbflush.h>
25
26#include <asm/mach/map.h>
27
28#define CPOLICY_UNCACHED 0
29#define CPOLICY_BUFFERED 1
30#define CPOLICY_WRITETHROUGH 2
31#define CPOLICY_WRITEBACK 3
32#define CPOLICY_WRITEALLOC 4
33
34static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
35static unsigned int ecc_mask __initdata = 0;
36pgprot_t pgprot_kernel;
37
38EXPORT_SYMBOL(pgprot_kernel);
39
Russell Kingc4e1f6f2005-05-10 10:40:19 +010040pmd_t *top_pmd;
41
Linus Torvalds1da177e2005-04-16 15:20:36 -070042struct cachepolicy {
43 const char policy[16];
44 unsigned int cr_mask;
45 unsigned int pmd;
46 unsigned int pte;
47};
48
49static struct cachepolicy cache_policies[] __initdata = {
50 {
51 .policy = "uncached",
52 .cr_mask = CR_W|CR_C,
53 .pmd = PMD_SECT_UNCACHED,
54 .pte = 0,
55 }, {
56 .policy = "buffered",
57 .cr_mask = CR_C,
58 .pmd = PMD_SECT_BUFFERED,
59 .pte = PTE_BUFFERABLE,
60 }, {
61 .policy = "writethrough",
62 .cr_mask = 0,
63 .pmd = PMD_SECT_WT,
64 .pte = PTE_CACHEABLE,
65 }, {
66 .policy = "writeback",
67 .cr_mask = 0,
68 .pmd = PMD_SECT_WB,
69 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
70 }, {
71 .policy = "writealloc",
72 .cr_mask = 0,
73 .pmd = PMD_SECT_WBWA,
74 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
75 }
76};
77
78/*
79 * These are useful for identifing cache coherency
80 * problems by allowing the cache or the cache and
81 * writebuffer to be turned off. (Note: the write
82 * buffer should not be on and the cache off).
83 */
84static void __init early_cachepolicy(char **p)
85{
86 int i;
87
88 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
89 int len = strlen(cache_policies[i].policy);
90
91 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
92 cachepolicy = i;
93 cr_alignment &= ~cache_policies[i].cr_mask;
94 cr_no_alignment &= ~cache_policies[i].cr_mask;
95 *p += len;
96 break;
97 }
98 }
99 if (i == ARRAY_SIZE(cache_policies))
100 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
101 flush_cache_all();
102 set_cr(cr_alignment);
103}
104
105static void __init early_nocache(char **__unused)
106{
107 char *p = "buffered";
108 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
109 early_cachepolicy(&p);
110}
111
112static void __init early_nowrite(char **__unused)
113{
114 char *p = "uncached";
115 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
116 early_cachepolicy(&p);
117}
118
119static void __init early_ecc(char **p)
120{
121 if (memcmp(*p, "on", 2) == 0) {
122 ecc_mask = PMD_PROTECTION;
123 *p += 2;
124 } else if (memcmp(*p, "off", 3) == 0) {
125 ecc_mask = 0;
126 *p += 3;
127 }
128}
129
130__early_param("nocache", early_nocache);
131__early_param("nowb", early_nowrite);
132__early_param("cachepolicy=", early_cachepolicy);
133__early_param("ecc=", early_ecc);
134
135static int __init noalign_setup(char *__unused)
136{
137 cr_alignment &= ~CR_A;
138 cr_no_alignment &= ~CR_A;
139 set_cr(cr_alignment);
140 return 1;
141}
142
143__setup("noalign", noalign_setup);
144
145#define FIRST_KERNEL_PGD_NR (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)
146
Russell King155bb142005-05-09 20:52:51 +0100147static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt)
148{
149 return pmd_offset(pgd, virt);
150}
151
152static inline pmd_t *pmd_off_k(unsigned long virt)
153{
154 return pmd_off(pgd_offset_k(virt), virt);
155}
156
Linus Torvalds1da177e2005-04-16 15:20:36 -0700157/*
158 * need to get a 16k page for level 1
159 */
160pgd_t *get_pgd_slow(struct mm_struct *mm)
161{
162 pgd_t *new_pgd, *init_pgd;
163 pmd_t *new_pmd, *init_pmd;
164 pte_t *new_pte, *init_pte;
165
166 new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);
167 if (!new_pgd)
168 goto no_pgd;
169
170 memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));
171
172 init_pgd = pgd_offset_k(0);
173
174 if (!vectors_high()) {
175 /*
176 * This lock is here just to satisfy pmd_alloc and pte_lock
177 */
178 spin_lock(&mm->page_table_lock);
179
180 /*
181 * On ARM, first page must always be allocated since it
182 * contains the machine vectors.
183 */
184 new_pmd = pmd_alloc(mm, new_pgd, 0);
185 if (!new_pmd)
186 goto no_pmd;
187
188 new_pte = pte_alloc_map(mm, new_pmd, 0);
189 if (!new_pte)
190 goto no_pte;
191
192 init_pmd = pmd_offset(init_pgd, 0);
193 init_pte = pte_offset_map_nested(init_pmd, 0);
194 set_pte(new_pte, *init_pte);
195 pte_unmap_nested(init_pte);
196 pte_unmap(new_pte);
197
198 spin_unlock(&mm->page_table_lock);
199 }
200
201 /*
202 * Copy over the kernel and IO PGD entries
203 */
204 memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR,
205 (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));
206
207 clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));
208
209 return new_pgd;
210
211no_pte:
212 spin_unlock(&mm->page_table_lock);
213 pmd_free(new_pmd);
214 free_pages((unsigned long)new_pgd, 2);
215 return NULL;
216
217no_pmd:
218 spin_unlock(&mm->page_table_lock);
219 free_pages((unsigned long)new_pgd, 2);
220 return NULL;
221
222no_pgd:
223 return NULL;
224}
225
226void free_pgd_slow(pgd_t *pgd)
227{
228 pmd_t *pmd;
229 struct page *pte;
230
231 if (!pgd)
232 return;
233
234 /* pgd is always present and good */
Russell King155bb142005-05-09 20:52:51 +0100235 pmd = pmd_off(pgd, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700236 if (pmd_none(*pmd))
237 goto free;
238 if (pmd_bad(*pmd)) {
239 pmd_ERROR(*pmd);
240 pmd_clear(pmd);
241 goto free;
242 }
243
244 pte = pmd_page(*pmd);
245 pmd_clear(pmd);
246 dec_page_state(nr_page_table_pages);
247 pte_free(pte);
248 pmd_free(pmd);
249free:
250 free_pages((unsigned long) pgd, 2);
251}
252
253/*
254 * Create a SECTION PGD between VIRT and PHYS in domain
255 * DOMAIN with protection PROT. This operates on half-
256 * pgdir entry increments.
257 */
258static inline void
259alloc_init_section(unsigned long virt, unsigned long phys, int prot)
260{
Russell King155bb142005-05-09 20:52:51 +0100261 pmd_t *pmdp = pmd_off_k(virt);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700262
Linus Torvalds1da177e2005-04-16 15:20:36 -0700263 if (virt & (1 << 20))
264 pmdp++;
265
266 *pmdp = __pmd(phys | prot);
267 flush_pmd_entry(pmdp);
268}
269
270/*
271 * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
272 */
273static inline void
274alloc_init_supersection(unsigned long virt, unsigned long phys, int prot)
275{
276 int i;
277
278 for (i = 0; i < 16; i += 1) {
279 alloc_init_section(virt, phys & SUPERSECTION_MASK,
280 prot | PMD_SECT_SUPER);
281
282 virt += (PGDIR_SIZE / 2);
283 phys += (PGDIR_SIZE / 2);
284 }
285}
286
287/*
288 * Add a PAGE mapping between VIRT and PHYS in domain
289 * DOMAIN with protection PROT. Note that due to the
290 * way we map the PTEs, we must allocate two PTE_SIZE'd
291 * blocks - one for the Linux pte table, and one for
292 * the hardware pte table.
293 */
294static inline void
295alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot)
296{
Russell King155bb142005-05-09 20:52:51 +0100297 pmd_t *pmdp = pmd_off_k(virt);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700298 pte_t *ptep;
299
Linus Torvalds1da177e2005-04-16 15:20:36 -0700300 if (pmd_none(*pmdp)) {
301 unsigned long pmdval;
302 ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
303 sizeof(pte_t));
304
305 pmdval = __pa(ptep) | prot_l1;
306 pmdp[0] = __pmd(pmdval);
307 pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t));
308 flush_pmd_entry(pmdp);
309 }
310 ptep = pte_offset_kernel(pmdp, virt);
311
312 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
313}
314
315/*
316 * Clear any PGD mapping. On a two-level page table system,
317 * the clearance is done by the middle-level functions (pmd)
318 * rather than the top-level (pgd) functions.
319 */
320static inline void clear_mapping(unsigned long virt)
321{
Russell King155bb142005-05-09 20:52:51 +0100322 pmd_clear(pmd_off_k(virt));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700323}
324
325struct mem_types {
326 unsigned int prot_pte;
327 unsigned int prot_l1;
328 unsigned int prot_sect;
329 unsigned int domain;
330};
331
332static struct mem_types mem_types[] __initdata = {
333 [MT_DEVICE] = {
334 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
335 L_PTE_WRITE,
336 .prot_l1 = PMD_TYPE_TABLE,
337 .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
338 PMD_SECT_AP_WRITE,
339 .domain = DOMAIN_IO,
340 },
341 [MT_CACHECLEAN] = {
342 .prot_sect = PMD_TYPE_SECT,
343 .domain = DOMAIN_KERNEL,
344 },
345 [MT_MINICLEAN] = {
346 .prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE,
347 .domain = DOMAIN_KERNEL,
348 },
349 [MT_LOW_VECTORS] = {
350 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
351 L_PTE_EXEC,
352 .prot_l1 = PMD_TYPE_TABLE,
353 .domain = DOMAIN_USER,
354 },
355 [MT_HIGH_VECTORS] = {
356 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
357 L_PTE_USER | L_PTE_EXEC,
358 .prot_l1 = PMD_TYPE_TABLE,
359 .domain = DOMAIN_USER,
360 },
361 [MT_MEMORY] = {
362 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
363 .domain = DOMAIN_KERNEL,
364 },
365 [MT_ROM] = {
366 .prot_sect = PMD_TYPE_SECT,
367 .domain = DOMAIN_KERNEL,
368 },
369 [MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */
370 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
371 L_PTE_WRITE,
372 .prot_l1 = PMD_TYPE_TABLE,
373 .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
374 PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE |
375 PMD_SECT_TEX(1),
376 .domain = DOMAIN_IO,
377 }
378};
379
380/*
381 * Adjust the PMD section entries according to the CPU in use.
382 */
383static void __init build_mem_type_table(void)
384{
385 struct cachepolicy *cp;
386 unsigned int cr = get_cr();
387 int cpu_arch = cpu_architecture();
388 int i;
389
390#if defined(CONFIG_CPU_DCACHE_DISABLE)
391 if (cachepolicy > CPOLICY_BUFFERED)
392 cachepolicy = CPOLICY_BUFFERED;
393#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
394 if (cachepolicy > CPOLICY_WRITETHROUGH)
395 cachepolicy = CPOLICY_WRITETHROUGH;
396#endif
397 if (cpu_arch < CPU_ARCH_ARMv5) {
398 if (cachepolicy >= CPOLICY_WRITEALLOC)
399 cachepolicy = CPOLICY_WRITEBACK;
400 ecc_mask = 0;
401 }
402
403 if (cpu_arch <= CPU_ARCH_ARMv5) {
404 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
405 if (mem_types[i].prot_l1)
406 mem_types[i].prot_l1 |= PMD_BIT4;
407 if (mem_types[i].prot_sect)
408 mem_types[i].prot_sect |= PMD_BIT4;
409 }
410 }
411
412 /*
413 * ARMv6 and above have extended page tables.
414 */
415 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
416 /*
417 * bit 4 becomes XN which we must clear for the
418 * kernel memory mapping.
419 */
420 mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4;
421 mem_types[MT_ROM].prot_sect &= ~PMD_BIT4;
422 /*
George G. Davisca315152005-04-29 22:08:35 +0100423 * Mark cache clean areas and XIP ROM read only
424 * from SVC mode and no access from userspace.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425 */
George G. Davisca315152005-04-29 22:08:35 +0100426 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700427 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
428 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
429 }
430
431 cp = &cache_policies[cachepolicy];
432
433 if (cpu_arch >= CPU_ARCH_ARMv5) {
434 mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
435 mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
436 } else {
437 mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte;
438 mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte;
439 mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
440 }
441
442 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
443 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
444 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
445 mem_types[MT_ROM].prot_sect |= cp->pmd;
446
447 for (i = 0; i < 16; i++) {
448 unsigned long v = pgprot_val(protection_map[i]);
449 v &= (~(PTE_BUFFERABLE|PTE_CACHEABLE)) | cp->pte;
450 protection_map[i] = __pgprot(v);
451 }
452
453 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
454 L_PTE_DIRTY | L_PTE_WRITE |
455 L_PTE_EXEC | cp->pte);
456
457 switch (cp->pmd) {
458 case PMD_SECT_WT:
459 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
460 break;
461 case PMD_SECT_WB:
462 case PMD_SECT_WBWA:
463 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
464 break;
465 }
466 printk("Memory policy: ECC %sabled, Data cache %s\n",
467 ecc_mask ? "en" : "dis", cp->policy);
468}
469
470#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
471
472/*
473 * Create the page directory entries and any necessary
474 * page tables for the mapping specified by `md'. We
475 * are able to cope here with varying sizes and address
476 * offsets, and we take full advantage of sections and
477 * supersections.
478 */
479static void __init create_mapping(struct map_desc *md)
480{
481 unsigned long virt, length;
482 int prot_sect, prot_l1, domain;
483 pgprot_t prot_pte;
484 long off;
485
486 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
487 printk(KERN_WARNING "BUG: not creating mapping for "
488 "0x%08lx at 0x%08lx in user region\n",
489 md->physical, md->virtual);
490 return;
491 }
492
493 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
494 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
495 printk(KERN_WARNING "BUG: mapping for 0x%08lx at 0x%08lx "
496 "overlaps vmalloc space\n",
497 md->physical, md->virtual);
498 }
499
500 domain = mem_types[md->type].domain;
501 prot_pte = __pgprot(mem_types[md->type].prot_pte);
502 prot_l1 = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain);
503 prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain);
504
505 virt = md->virtual;
506 off = md->physical - virt;
507 length = md->length;
508
509 if (mem_types[md->type].prot_l1 == 0 &&
510 (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) {
511 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
512 "be mapped using pages, ignoring.\n",
513 md->physical, md->virtual);
514 return;
515 }
516
517 while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
518 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
519
520 virt += PAGE_SIZE;
521 length -= PAGE_SIZE;
522 }
523
524 /* N.B. ARMv6 supersections are only defined to work with domain 0.
525 * Since domain assignments can in fact be arbitrary, the
526 * 'domain == 0' check below is required to insure that ARMv6
527 * supersections are only allocated for domain 0 regardless
528 * of the actual domain assignments in use.
529 */
530 if (cpu_architecture() >= CPU_ARCH_ARMv6 && domain == 0) {
531 /* Align to supersection boundary */
532 while ((virt & ~SUPERSECTION_MASK || (virt + off) &
533 ~SUPERSECTION_MASK) && length >= (PGDIR_SIZE / 2)) {
534 alloc_init_section(virt, virt + off, prot_sect);
535
536 virt += (PGDIR_SIZE / 2);
537 length -= (PGDIR_SIZE / 2);
538 }
539
540 while (length >= SUPERSECTION_SIZE) {
541 alloc_init_supersection(virt, virt + off, prot_sect);
542
543 virt += SUPERSECTION_SIZE;
544 length -= SUPERSECTION_SIZE;
545 }
546 }
547
548 /*
549 * A section mapping covers half a "pgdir" entry.
550 */
551 while (length >= (PGDIR_SIZE / 2)) {
552 alloc_init_section(virt, virt + off, prot_sect);
553
554 virt += (PGDIR_SIZE / 2);
555 length -= (PGDIR_SIZE / 2);
556 }
557
558 while (length >= PAGE_SIZE) {
559 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
560
561 virt += PAGE_SIZE;
562 length -= PAGE_SIZE;
563 }
564}
565
566/*
567 * In order to soft-boot, we need to insert a 1:1 mapping in place of
568 * the user-mode pages. This will then ensure that we have predictable
569 * results when turning the mmu off
570 */
571void setup_mm_for_reboot(char mode)
572{
573 unsigned long pmdval;
574 pgd_t *pgd;
575 pmd_t *pmd;
576 int i;
577 int cpu_arch = cpu_architecture();
578
579 if (current->mm && current->mm->pgd)
580 pgd = current->mm->pgd;
581 else
582 pgd = init_mm.pgd;
583
584 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) {
585 pmdval = (i << PGDIR_SHIFT) |
586 PMD_SECT_AP_WRITE | PMD_SECT_AP_READ |
587 PMD_TYPE_SECT;
588 if (cpu_arch <= CPU_ARCH_ARMv5)
589 pmdval |= PMD_BIT4;
Russell King155bb142005-05-09 20:52:51 +0100590 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700591 pmd[0] = __pmd(pmdval);
592 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
593 flush_pmd_entry(pmd);
594 }
595}
596
597extern void _stext, _etext;
598
599/*
600 * Setup initial mappings. We use the page we allocated for zero page to hold
601 * the mappings, which will get overwritten by the vectors in traps_init().
602 * The mappings must be in virtual address order.
603 */
604void __init memtable_init(struct meminfo *mi)
605{
606 struct map_desc *init_maps, *p, *q;
607 unsigned long address = 0;
608 int i;
609
610 build_mem_type_table();
611
612 init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE);
613
614#ifdef CONFIG_XIP_KERNEL
615 p->physical = CONFIG_XIP_PHYS_ADDR & PMD_MASK;
616 p->virtual = (unsigned long)&_stext & PMD_MASK;
617 p->length = ((unsigned long)&_etext - p->virtual + ~PMD_MASK) & PMD_MASK;
618 p->type = MT_ROM;
619 p ++;
620#endif
621
622 for (i = 0; i < mi->nr_banks; i++) {
623 if (mi->bank[i].size == 0)
624 continue;
625
626 p->physical = mi->bank[i].start;
627 p->virtual = __phys_to_virt(p->physical);
628 p->length = mi->bank[i].size;
629 p->type = MT_MEMORY;
630 p ++;
631 }
632
633#ifdef FLUSH_BASE
634 p->physical = FLUSH_BASE_PHYS;
635 p->virtual = FLUSH_BASE;
636 p->length = PGDIR_SIZE;
637 p->type = MT_CACHECLEAN;
638 p ++;
639#endif
640
641#ifdef FLUSH_BASE_MINICACHE
642 p->physical = FLUSH_BASE_PHYS + PGDIR_SIZE;
643 p->virtual = FLUSH_BASE_MINICACHE;
644 p->length = PGDIR_SIZE;
645 p->type = MT_MINICLEAN;
646 p ++;
647#endif
648
649 /*
650 * Go through the initial mappings, but clear out any
651 * pgdir entries that are not in the description.
652 */
653 q = init_maps;
654 do {
655 if (address < q->virtual || q == p) {
656 clear_mapping(address);
657 address += PGDIR_SIZE;
658 } else {
659 create_mapping(q);
660
661 address = q->virtual + q->length;
662 address = (address + PGDIR_SIZE - 1) & PGDIR_MASK;
663
664 q ++;
665 }
666 } while (address != 0);
667
668 /*
669 * Create a mapping for the machine vectors at the high-vectors
670 * location (0xffff0000). If we aren't using high-vectors, also
671 * create a mapping at the low-vectors virtual address.
672 */
673 init_maps->physical = virt_to_phys(init_maps);
674 init_maps->virtual = 0xffff0000;
675 init_maps->length = PAGE_SIZE;
676 init_maps->type = MT_HIGH_VECTORS;
677 create_mapping(init_maps);
678
679 if (!vectors_high()) {
680 init_maps->virtual = 0;
681 init_maps->type = MT_LOW_VECTORS;
682 create_mapping(init_maps);
683 }
684
685 flush_cache_all();
686 flush_tlb_all();
Russell Kingc4e1f6f2005-05-10 10:40:19 +0100687
Russell King8711a1b2005-05-16 23:36:22 +0100688 top_pmd = pmd_off_k(0xffff0000);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700689}
690
691/*
692 * Create the architecture specific mappings
693 */
694void __init iotable_init(struct map_desc *io_desc, int nr)
695{
696 int i;
697
698 for (i = 0; i < nr; i++)
699 create_mapping(io_desc + i);
700}
701
702static inline void
703free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
704{
705 struct page *start_pg, *end_pg;
706 unsigned long pg, pgend;
707
708 /*
709 * Convert start_pfn/end_pfn to a struct page pointer.
710 */
711 start_pg = pfn_to_page(start_pfn);
712 end_pg = pfn_to_page(end_pfn);
713
714 /*
715 * Convert to physical addresses, and
716 * round start upwards and end downwards.
717 */
718 pg = PAGE_ALIGN(__pa(start_pg));
719 pgend = __pa(end_pg) & PAGE_MASK;
720
721 /*
722 * If there are free pages between these,
723 * free the section of the memmap array.
724 */
725 if (pg < pgend)
726 free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
727}
728
729static inline void free_unused_memmap_node(int node, struct meminfo *mi)
730{
731 unsigned long bank_start, prev_bank_end = 0;
732 unsigned int i;
733
734 /*
735 * [FIXME] This relies on each bank being in address order. This
736 * may not be the case, especially if the user has provided the
737 * information on the command line.
738 */
739 for (i = 0; i < mi->nr_banks; i++) {
740 if (mi->bank[i].size == 0 || mi->bank[i].node != node)
741 continue;
742
743 bank_start = mi->bank[i].start >> PAGE_SHIFT;
744 if (bank_start < prev_bank_end) {
745 printk(KERN_ERR "MEM: unordered memory banks. "
746 "Not freeing memmap.\n");
747 break;
748 }
749
750 /*
751 * If we had a previous bank, and there is a space
752 * between the current bank and the previous, free it.
753 */
754 if (prev_bank_end && prev_bank_end != bank_start)
755 free_memmap(node, prev_bank_end, bank_start);
756
757 prev_bank_end = PAGE_ALIGN(mi->bank[i].start +
758 mi->bank[i].size) >> PAGE_SHIFT;
759 }
760}
761
762/*
763 * The mem_map array can get very big. Free
764 * the unused area of the memory map.
765 */
766void __init create_memmap_holes(struct meminfo *mi)
767{
768 int node;
769
770 for_each_online_node(node)
771 free_unused_memmap_node(node, mi);
772}