Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * eeh.c |
| 3 | * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; either version 2 of the License, or |
| 8 | * (at your option) any later version. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 18 | */ |
| 19 | |
| 20 | #include <linux/bootmem.h> |
| 21 | #include <linux/init.h> |
| 22 | #include <linux/list.h> |
| 23 | #include <linux/mm.h> |
| 24 | #include <linux/notifier.h> |
| 25 | #include <linux/pci.h> |
| 26 | #include <linux/proc_fs.h> |
| 27 | #include <linux/rbtree.h> |
| 28 | #include <linux/seq_file.h> |
| 29 | #include <linux/spinlock.h> |
| 30 | #include <asm/eeh.h> |
| 31 | #include <asm/io.h> |
| 32 | #include <asm/machdep.h> |
| 33 | #include <asm/rtas.h> |
| 34 | #include <asm/atomic.h> |
| 35 | #include <asm/systemcfg.h> |
| 36 | #include "pci.h" |
| 37 | |
| 38 | #undef DEBUG |
| 39 | |
| 40 | /** Overview: |
| 41 | * EEH, or "Extended Error Handling" is a PCI bridge technology for |
| 42 | * dealing with PCI bus errors that can't be dealt with within the |
| 43 | * usual PCI framework, except by check-stopping the CPU. Systems |
| 44 | * that are designed for high-availability/reliability cannot afford |
| 45 | * to crash due to a "mere" PCI error, thus the need for EEH. |
| 46 | * An EEH-capable bridge operates by converting a detected error |
| 47 | * into a "slot freeze", taking the PCI adapter off-line, making |
| 48 | * the slot behave, from the OS'es point of view, as if the slot |
| 49 | * were "empty": all reads return 0xff's and all writes are silently |
| 50 | * ignored. EEH slot isolation events can be triggered by parity |
| 51 | * errors on the address or data busses (e.g. during posted writes), |
| 52 | * which in turn might be caused by dust, vibration, humidity, |
| 53 | * radioactivity or plain-old failed hardware. |
| 54 | * |
| 55 | * Note, however, that one of the leading causes of EEH slot |
| 56 | * freeze events are buggy device drivers, buggy device microcode, |
| 57 | * or buggy device hardware. This is because any attempt by the |
| 58 | * device to bus-master data to a memory address that is not |
| 59 | * assigned to the device will trigger a slot freeze. (The idea |
| 60 | * is to prevent devices-gone-wild from corrupting system memory). |
| 61 | * Buggy hardware/drivers will have a miserable time co-existing |
| 62 | * with EEH. |
| 63 | * |
| 64 | * Ideally, a PCI device driver, when suspecting that an isolation |
| 65 | * event has occured (e.g. by reading 0xff's), will then ask EEH |
| 66 | * whether this is the case, and then take appropriate steps to |
| 67 | * reset the PCI slot, the PCI device, and then resume operations. |
| 68 | * However, until that day, the checking is done here, with the |
| 69 | * eeh_check_failure() routine embedded in the MMIO macros. If |
| 70 | * the slot is found to be isolated, an "EEH Event" is synthesized |
| 71 | * and sent out for processing. |
| 72 | */ |
| 73 | |
| 74 | /** Bus Unit ID macros; get low and hi 32-bits of the 64-bit BUID */ |
| 75 | #define BUID_HI(buid) ((buid) >> 32) |
| 76 | #define BUID_LO(buid) ((buid) & 0xffffffff) |
| 77 | |
| 78 | /* EEH event workqueue setup. */ |
| 79 | static DEFINE_SPINLOCK(eeh_eventlist_lock); |
| 80 | LIST_HEAD(eeh_eventlist); |
| 81 | static void eeh_event_handler(void *); |
| 82 | DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL); |
| 83 | |
| 84 | static struct notifier_block *eeh_notifier_chain; |
| 85 | |
| 86 | /* |
| 87 | * If a device driver keeps reading an MMIO register in an interrupt |
| 88 | * handler after a slot isolation event has occurred, we assume it |
| 89 | * is broken and panic. This sets the threshold for how many read |
| 90 | * attempts we allow before panicking. |
| 91 | */ |
| 92 | #define EEH_MAX_FAILS 1000 |
| 93 | static atomic_t eeh_fail_count; |
| 94 | |
| 95 | /* RTAS tokens */ |
| 96 | static int ibm_set_eeh_option; |
| 97 | static int ibm_set_slot_reset; |
| 98 | static int ibm_read_slot_reset_state; |
| 99 | static int ibm_read_slot_reset_state2; |
| 100 | static int ibm_slot_error_detail; |
| 101 | |
| 102 | static int eeh_subsystem_enabled; |
| 103 | |
| 104 | /* Buffer for reporting slot-error-detail rtas calls */ |
| 105 | static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX]; |
| 106 | static DEFINE_SPINLOCK(slot_errbuf_lock); |
| 107 | static int eeh_error_buf_size; |
| 108 | |
| 109 | /* System monitoring statistics */ |
| 110 | static DEFINE_PER_CPU(unsigned long, total_mmio_ffs); |
| 111 | static DEFINE_PER_CPU(unsigned long, false_positives); |
| 112 | static DEFINE_PER_CPU(unsigned long, ignored_failures); |
| 113 | static DEFINE_PER_CPU(unsigned long, slot_resets); |
| 114 | |
| 115 | /** |
| 116 | * The pci address cache subsystem. This subsystem places |
| 117 | * PCI device address resources into a red-black tree, sorted |
| 118 | * according to the address range, so that given only an i/o |
| 119 | * address, the corresponding PCI device can be **quickly** |
| 120 | * found. It is safe to perform an address lookup in an interrupt |
| 121 | * context; this ability is an important feature. |
| 122 | * |
| 123 | * Currently, the only customer of this code is the EEH subsystem; |
| 124 | * thus, this code has been somewhat tailored to suit EEH better. |
| 125 | * In particular, the cache does *not* hold the addresses of devices |
| 126 | * for which EEH is not enabled. |
| 127 | * |
| 128 | * (Implementation Note: The RB tree seems to be better/faster |
| 129 | * than any hash algo I could think of for this problem, even |
| 130 | * with the penalty of slow pointer chases for d-cache misses). |
| 131 | */ |
| 132 | struct pci_io_addr_range |
| 133 | { |
| 134 | struct rb_node rb_node; |
| 135 | unsigned long addr_lo; |
| 136 | unsigned long addr_hi; |
| 137 | struct pci_dev *pcidev; |
| 138 | unsigned int flags; |
| 139 | }; |
| 140 | |
| 141 | static struct pci_io_addr_cache |
| 142 | { |
| 143 | struct rb_root rb_root; |
| 144 | spinlock_t piar_lock; |
| 145 | } pci_io_addr_cache_root; |
| 146 | |
| 147 | static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr) |
| 148 | { |
| 149 | struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node; |
| 150 | |
| 151 | while (n) { |
| 152 | struct pci_io_addr_range *piar; |
| 153 | piar = rb_entry(n, struct pci_io_addr_range, rb_node); |
| 154 | |
| 155 | if (addr < piar->addr_lo) { |
| 156 | n = n->rb_left; |
| 157 | } else { |
| 158 | if (addr > piar->addr_hi) { |
| 159 | n = n->rb_right; |
| 160 | } else { |
| 161 | pci_dev_get(piar->pcidev); |
| 162 | return piar->pcidev; |
| 163 | } |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | return NULL; |
| 168 | } |
| 169 | |
| 170 | /** |
| 171 | * pci_get_device_by_addr - Get device, given only address |
| 172 | * @addr: mmio (PIO) phys address or i/o port number |
| 173 | * |
| 174 | * Given an mmio phys address, or a port number, find a pci device |
| 175 | * that implements this address. Be sure to pci_dev_put the device |
| 176 | * when finished. I/O port numbers are assumed to be offset |
| 177 | * from zero (that is, they do *not* have pci_io_addr added in). |
| 178 | * It is safe to call this function within an interrupt. |
| 179 | */ |
| 180 | static struct pci_dev *pci_get_device_by_addr(unsigned long addr) |
| 181 | { |
| 182 | struct pci_dev *dev; |
| 183 | unsigned long flags; |
| 184 | |
| 185 | spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); |
| 186 | dev = __pci_get_device_by_addr(addr); |
| 187 | spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); |
| 188 | return dev; |
| 189 | } |
| 190 | |
| 191 | #ifdef DEBUG |
| 192 | /* |
| 193 | * Handy-dandy debug print routine, does nothing more |
| 194 | * than print out the contents of our addr cache. |
| 195 | */ |
| 196 | static void pci_addr_cache_print(struct pci_io_addr_cache *cache) |
| 197 | { |
| 198 | struct rb_node *n; |
| 199 | int cnt = 0; |
| 200 | |
| 201 | n = rb_first(&cache->rb_root); |
| 202 | while (n) { |
| 203 | struct pci_io_addr_range *piar; |
| 204 | piar = rb_entry(n, struct pci_io_addr_range, rb_node); |
| 205 | printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s %s\n", |
| 206 | (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt, |
| 207 | piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev), |
| 208 | pci_pretty_name(piar->pcidev)); |
| 209 | cnt++; |
| 210 | n = rb_next(n); |
| 211 | } |
| 212 | } |
| 213 | #endif |
| 214 | |
| 215 | /* Insert address range into the rb tree. */ |
| 216 | static struct pci_io_addr_range * |
| 217 | pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo, |
| 218 | unsigned long ahi, unsigned int flags) |
| 219 | { |
| 220 | struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node; |
| 221 | struct rb_node *parent = NULL; |
| 222 | struct pci_io_addr_range *piar; |
| 223 | |
| 224 | /* Walk tree, find a place to insert into tree */ |
| 225 | while (*p) { |
| 226 | parent = *p; |
| 227 | piar = rb_entry(parent, struct pci_io_addr_range, rb_node); |
| 228 | if (alo < piar->addr_lo) { |
| 229 | p = &parent->rb_left; |
| 230 | } else if (ahi > piar->addr_hi) { |
| 231 | p = &parent->rb_right; |
| 232 | } else { |
| 233 | if (dev != piar->pcidev || |
| 234 | alo != piar->addr_lo || ahi != piar->addr_hi) { |
| 235 | printk(KERN_WARNING "PIAR: overlapping address range\n"); |
| 236 | } |
| 237 | return piar; |
| 238 | } |
| 239 | } |
| 240 | piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC); |
| 241 | if (!piar) |
| 242 | return NULL; |
| 243 | |
| 244 | piar->addr_lo = alo; |
| 245 | piar->addr_hi = ahi; |
| 246 | piar->pcidev = dev; |
| 247 | piar->flags = flags; |
| 248 | |
| 249 | rb_link_node(&piar->rb_node, parent, p); |
| 250 | rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root); |
| 251 | |
| 252 | return piar; |
| 253 | } |
| 254 | |
| 255 | static void __pci_addr_cache_insert_device(struct pci_dev *dev) |
| 256 | { |
| 257 | struct device_node *dn; |
| 258 | int i; |
| 259 | int inserted = 0; |
| 260 | |
| 261 | dn = pci_device_to_OF_node(dev); |
| 262 | if (!dn) { |
| 263 | printk(KERN_WARNING "PCI: no pci dn found for dev=%s %s\n", |
| 264 | pci_name(dev), pci_pretty_name(dev)); |
| 265 | return; |
| 266 | } |
| 267 | |
| 268 | /* Skip any devices for which EEH is not enabled. */ |
| 269 | if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) || |
| 270 | dn->eeh_mode & EEH_MODE_NOCHECK) { |
| 271 | #ifdef DEBUG |
| 272 | printk(KERN_INFO "PCI: skip building address cache for=%s %s\n", |
| 273 | pci_name(dev), pci_pretty_name(dev)); |
| 274 | #endif |
| 275 | return; |
| 276 | } |
| 277 | |
| 278 | /* The cache holds a reference to the device... */ |
| 279 | pci_dev_get(dev); |
| 280 | |
| 281 | /* Walk resources on this device, poke them into the tree */ |
| 282 | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { |
| 283 | unsigned long start = pci_resource_start(dev,i); |
| 284 | unsigned long end = pci_resource_end(dev,i); |
| 285 | unsigned int flags = pci_resource_flags(dev,i); |
| 286 | |
| 287 | /* We are interested only bus addresses, not dma or other stuff */ |
| 288 | if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM))) |
| 289 | continue; |
| 290 | if (start == 0 || ~start == 0 || end == 0 || ~end == 0) |
| 291 | continue; |
| 292 | pci_addr_cache_insert(dev, start, end, flags); |
| 293 | inserted = 1; |
| 294 | } |
| 295 | |
| 296 | /* If there was nothing to add, the cache has no reference... */ |
| 297 | if (!inserted) |
| 298 | pci_dev_put(dev); |
| 299 | } |
| 300 | |
| 301 | /** |
| 302 | * pci_addr_cache_insert_device - Add a device to the address cache |
| 303 | * @dev: PCI device whose I/O addresses we are interested in. |
| 304 | * |
| 305 | * In order to support the fast lookup of devices based on addresses, |
| 306 | * we maintain a cache of devices that can be quickly searched. |
| 307 | * This routine adds a device to that cache. |
| 308 | */ |
| 309 | void pci_addr_cache_insert_device(struct pci_dev *dev) |
| 310 | { |
| 311 | unsigned long flags; |
| 312 | |
| 313 | spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); |
| 314 | __pci_addr_cache_insert_device(dev); |
| 315 | spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); |
| 316 | } |
| 317 | |
| 318 | static inline void __pci_addr_cache_remove_device(struct pci_dev *dev) |
| 319 | { |
| 320 | struct rb_node *n; |
| 321 | int removed = 0; |
| 322 | |
| 323 | restart: |
| 324 | n = rb_first(&pci_io_addr_cache_root.rb_root); |
| 325 | while (n) { |
| 326 | struct pci_io_addr_range *piar; |
| 327 | piar = rb_entry(n, struct pci_io_addr_range, rb_node); |
| 328 | |
| 329 | if (piar->pcidev == dev) { |
| 330 | rb_erase(n, &pci_io_addr_cache_root.rb_root); |
| 331 | removed = 1; |
| 332 | kfree(piar); |
| 333 | goto restart; |
| 334 | } |
| 335 | n = rb_next(n); |
| 336 | } |
| 337 | |
| 338 | /* The cache no longer holds its reference to this device... */ |
| 339 | if (removed) |
| 340 | pci_dev_put(dev); |
| 341 | } |
| 342 | |
| 343 | /** |
| 344 | * pci_addr_cache_remove_device - remove pci device from addr cache |
| 345 | * @dev: device to remove |
| 346 | * |
| 347 | * Remove a device from the addr-cache tree. |
| 348 | * This is potentially expensive, since it will walk |
| 349 | * the tree multiple times (once per resource). |
| 350 | * But so what; device removal doesn't need to be that fast. |
| 351 | */ |
| 352 | void pci_addr_cache_remove_device(struct pci_dev *dev) |
| 353 | { |
| 354 | unsigned long flags; |
| 355 | |
| 356 | spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); |
| 357 | __pci_addr_cache_remove_device(dev); |
| 358 | spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); |
| 359 | } |
| 360 | |
| 361 | /** |
| 362 | * pci_addr_cache_build - Build a cache of I/O addresses |
| 363 | * |
| 364 | * Build a cache of pci i/o addresses. This cache will be used to |
| 365 | * find the pci device that corresponds to a given address. |
| 366 | * This routine scans all pci busses to build the cache. |
| 367 | * Must be run late in boot process, after the pci controllers |
| 368 | * have been scaned for devices (after all device resources are known). |
| 369 | */ |
| 370 | void __init pci_addr_cache_build(void) |
| 371 | { |
| 372 | struct pci_dev *dev = NULL; |
| 373 | |
| 374 | spin_lock_init(&pci_io_addr_cache_root.piar_lock); |
| 375 | |
| 376 | while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { |
| 377 | /* Ignore PCI bridges ( XXX why ??) */ |
| 378 | if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) { |
| 379 | continue; |
| 380 | } |
| 381 | pci_addr_cache_insert_device(dev); |
| 382 | } |
| 383 | |
| 384 | #ifdef DEBUG |
| 385 | /* Verify tree built up above, echo back the list of addrs. */ |
| 386 | pci_addr_cache_print(&pci_io_addr_cache_root); |
| 387 | #endif |
| 388 | } |
| 389 | |
| 390 | /* --------------------------------------------------------------- */ |
| 391 | /* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */ |
| 392 | |
| 393 | /** |
| 394 | * eeh_register_notifier - Register to find out about EEH events. |
| 395 | * @nb: notifier block to callback on events |
| 396 | */ |
| 397 | int eeh_register_notifier(struct notifier_block *nb) |
| 398 | { |
| 399 | return notifier_chain_register(&eeh_notifier_chain, nb); |
| 400 | } |
| 401 | |
| 402 | /** |
| 403 | * eeh_unregister_notifier - Unregister to an EEH event notifier. |
| 404 | * @nb: notifier block to callback on events |
| 405 | */ |
| 406 | int eeh_unregister_notifier(struct notifier_block *nb) |
| 407 | { |
| 408 | return notifier_chain_unregister(&eeh_notifier_chain, nb); |
| 409 | } |
| 410 | |
| 411 | /** |
| 412 | * read_slot_reset_state - Read the reset state of a device node's slot |
| 413 | * @dn: device node to read |
| 414 | * @rets: array to return results in |
| 415 | */ |
| 416 | static int read_slot_reset_state(struct device_node *dn, int rets[]) |
| 417 | { |
| 418 | int token, outputs; |
| 419 | |
| 420 | if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) { |
| 421 | token = ibm_read_slot_reset_state2; |
| 422 | outputs = 4; |
| 423 | } else { |
| 424 | token = ibm_read_slot_reset_state; |
| 425 | outputs = 3; |
| 426 | } |
| 427 | |
| 428 | return rtas_call(token, 3, outputs, rets, dn->eeh_config_addr, |
| 429 | BUID_HI(dn->phb->buid), BUID_LO(dn->phb->buid)); |
| 430 | } |
| 431 | |
| 432 | /** |
| 433 | * eeh_panic - call panic() for an eeh event that cannot be handled. |
| 434 | * The philosophy of this routine is that it is better to panic and |
| 435 | * halt the OS than it is to risk possible data corruption by |
| 436 | * oblivious device drivers that don't know better. |
| 437 | * |
| 438 | * @dev pci device that had an eeh event |
| 439 | * @reset_state current reset state of the device slot |
| 440 | */ |
| 441 | static void eeh_panic(struct pci_dev *dev, int reset_state) |
| 442 | { |
| 443 | /* |
| 444 | * XXX We should create a separate sysctl for this. |
| 445 | * |
| 446 | * Since the panic_on_oops sysctl is used to halt the system |
| 447 | * in light of potential corruption, we can use it here. |
| 448 | */ |
| 449 | if (panic_on_oops) |
| 450 | panic("EEH: MMIO failure (%d) on device:%s %s\n", reset_state, |
| 451 | pci_name(dev), pci_pretty_name(dev)); |
| 452 | else { |
| 453 | __get_cpu_var(ignored_failures)++; |
| 454 | printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s %s\n", |
| 455 | reset_state, pci_name(dev), pci_pretty_name(dev)); |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | /** |
| 460 | * eeh_event_handler - dispatch EEH events. The detection of a frozen |
| 461 | * slot can occur inside an interrupt, where it can be hard to do |
| 462 | * anything about it. The goal of this routine is to pull these |
| 463 | * detection events out of the context of the interrupt handler, and |
| 464 | * re-dispatch them for processing at a later time in a normal context. |
| 465 | * |
| 466 | * @dummy - unused |
| 467 | */ |
| 468 | static void eeh_event_handler(void *dummy) |
| 469 | { |
| 470 | unsigned long flags; |
| 471 | struct eeh_event *event; |
| 472 | |
| 473 | while (1) { |
| 474 | spin_lock_irqsave(&eeh_eventlist_lock, flags); |
| 475 | event = NULL; |
| 476 | if (!list_empty(&eeh_eventlist)) { |
| 477 | event = list_entry(eeh_eventlist.next, struct eeh_event, list); |
| 478 | list_del(&event->list); |
| 479 | } |
| 480 | spin_unlock_irqrestore(&eeh_eventlist_lock, flags); |
| 481 | if (event == NULL) |
| 482 | break; |
| 483 | |
| 484 | printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device " |
| 485 | "%s %s\n", event->reset_state, |
| 486 | pci_name(event->dev), pci_pretty_name(event->dev)); |
| 487 | |
| 488 | atomic_set(&eeh_fail_count, 0); |
| 489 | notifier_call_chain (&eeh_notifier_chain, |
| 490 | EEH_NOTIFY_FREEZE, event); |
| 491 | |
| 492 | __get_cpu_var(slot_resets)++; |
| 493 | |
| 494 | pci_dev_put(event->dev); |
| 495 | kfree(event); |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | /** |
| 500 | * eeh_token_to_phys - convert EEH address token to phys address |
| 501 | * @token i/o token, should be address in the form 0xE.... |
| 502 | */ |
| 503 | static inline unsigned long eeh_token_to_phys(unsigned long token) |
| 504 | { |
| 505 | pte_t *ptep; |
| 506 | unsigned long pa; |
| 507 | |
| 508 | ptep = find_linux_pte(ioremap_mm.pgd, token); |
| 509 | if (!ptep) |
| 510 | return token; |
| 511 | pa = pte_pfn(*ptep) << PAGE_SHIFT; |
| 512 | |
| 513 | return pa | (token & (PAGE_SIZE-1)); |
| 514 | } |
| 515 | |
| 516 | /** |
| 517 | * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze |
| 518 | * @dn device node |
| 519 | * @dev pci device, if known |
| 520 | * |
| 521 | * Check for an EEH failure for the given device node. Call this |
| 522 | * routine if the result of a read was all 0xff's and you want to |
| 523 | * find out if this is due to an EEH slot freeze. This routine |
| 524 | * will query firmware for the EEH status. |
| 525 | * |
| 526 | * Returns 0 if there has not been an EEH error; otherwise returns |
| 527 | * a non-zero value and queues up a solt isolation event notification. |
| 528 | * |
| 529 | * It is safe to call this routine in an interrupt context. |
| 530 | */ |
| 531 | int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev) |
| 532 | { |
| 533 | int ret; |
| 534 | int rets[3]; |
| 535 | unsigned long flags; |
| 536 | int rc, reset_state; |
| 537 | struct eeh_event *event; |
| 538 | |
| 539 | __get_cpu_var(total_mmio_ffs)++; |
| 540 | |
| 541 | if (!eeh_subsystem_enabled) |
| 542 | return 0; |
| 543 | |
| 544 | if (!dn) |
| 545 | return 0; |
| 546 | |
| 547 | /* Access to IO BARs might get this far and still not want checking. */ |
| 548 | if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) || |
| 549 | dn->eeh_mode & EEH_MODE_NOCHECK) { |
| 550 | return 0; |
| 551 | } |
| 552 | |
| 553 | if (!dn->eeh_config_addr) { |
| 554 | return 0; |
| 555 | } |
| 556 | |
| 557 | /* |
| 558 | * If we already have a pending isolation event for this |
| 559 | * slot, we know it's bad already, we don't need to check... |
| 560 | */ |
| 561 | if (dn->eeh_mode & EEH_MODE_ISOLATED) { |
| 562 | atomic_inc(&eeh_fail_count); |
| 563 | if (atomic_read(&eeh_fail_count) >= EEH_MAX_FAILS) { |
| 564 | /* re-read the slot reset state */ |
| 565 | if (read_slot_reset_state(dn, rets) != 0) |
| 566 | rets[0] = -1; /* reset state unknown */ |
| 567 | eeh_panic(dev, rets[0]); |
| 568 | } |
| 569 | return 0; |
| 570 | } |
| 571 | |
| 572 | /* |
| 573 | * Now test for an EEH failure. This is VERY expensive. |
| 574 | * Note that the eeh_config_addr may be a parent device |
| 575 | * in the case of a device behind a bridge, or it may be |
| 576 | * function zero of a multi-function device. |
| 577 | * In any case they must share a common PHB. |
| 578 | */ |
| 579 | ret = read_slot_reset_state(dn, rets); |
| 580 | if (!(ret == 0 && rets[1] == 1 && (rets[0] == 2 || rets[0] == 4))) { |
| 581 | __get_cpu_var(false_positives)++; |
| 582 | return 0; |
| 583 | } |
| 584 | |
| 585 | /* prevent repeated reports of this failure */ |
| 586 | dn->eeh_mode |= EEH_MODE_ISOLATED; |
| 587 | |
| 588 | reset_state = rets[0]; |
| 589 | |
| 590 | spin_lock_irqsave(&slot_errbuf_lock, flags); |
| 591 | memset(slot_errbuf, 0, eeh_error_buf_size); |
| 592 | |
| 593 | rc = rtas_call(ibm_slot_error_detail, |
| 594 | 8, 1, NULL, dn->eeh_config_addr, |
| 595 | BUID_HI(dn->phb->buid), |
| 596 | BUID_LO(dn->phb->buid), NULL, 0, |
| 597 | virt_to_phys(slot_errbuf), |
| 598 | eeh_error_buf_size, |
| 599 | 1 /* Temporary Error */); |
| 600 | |
| 601 | if (rc == 0) |
| 602 | log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0); |
| 603 | spin_unlock_irqrestore(&slot_errbuf_lock, flags); |
| 604 | |
| 605 | printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n", |
| 606 | rets[0], dn->name, dn->full_name); |
| 607 | event = kmalloc(sizeof(*event), GFP_ATOMIC); |
| 608 | if (event == NULL) { |
| 609 | eeh_panic(dev, reset_state); |
| 610 | return 1; |
| 611 | } |
| 612 | |
| 613 | event->dev = dev; |
| 614 | event->dn = dn; |
| 615 | event->reset_state = reset_state; |
| 616 | |
| 617 | /* We may or may not be called in an interrupt context */ |
| 618 | spin_lock_irqsave(&eeh_eventlist_lock, flags); |
| 619 | list_add(&event->list, &eeh_eventlist); |
| 620 | spin_unlock_irqrestore(&eeh_eventlist_lock, flags); |
| 621 | |
| 622 | /* Most EEH events are due to device driver bugs. Having |
| 623 | * a stack trace will help the device-driver authors figure |
| 624 | * out what happened. So print that out. */ |
| 625 | dump_stack(); |
| 626 | schedule_work(&eeh_event_wq); |
| 627 | |
| 628 | return 0; |
| 629 | } |
| 630 | |
| 631 | EXPORT_SYMBOL(eeh_dn_check_failure); |
| 632 | |
| 633 | /** |
| 634 | * eeh_check_failure - check if all 1's data is due to EEH slot freeze |
| 635 | * @token i/o token, should be address in the form 0xA.... |
| 636 | * @val value, should be all 1's (XXX why do we need this arg??) |
| 637 | * |
| 638 | * Check for an eeh failure at the given token address. |
| 639 | * Check for an EEH failure at the given token address. Call this |
| 640 | * routine if the result of a read was all 0xff's and you want to |
| 641 | * find out if this is due to an EEH slot freeze event. This routine |
| 642 | * will query firmware for the EEH status. |
| 643 | * |
| 644 | * Note this routine is safe to call in an interrupt context. |
| 645 | */ |
| 646 | unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val) |
| 647 | { |
| 648 | unsigned long addr; |
| 649 | struct pci_dev *dev; |
| 650 | struct device_node *dn; |
| 651 | |
| 652 | /* Finding the phys addr + pci device; this is pretty quick. */ |
| 653 | addr = eeh_token_to_phys((unsigned long __force) token); |
| 654 | dev = pci_get_device_by_addr(addr); |
| 655 | if (!dev) |
| 656 | return val; |
| 657 | |
| 658 | dn = pci_device_to_OF_node(dev); |
| 659 | eeh_dn_check_failure (dn, dev); |
| 660 | |
| 661 | pci_dev_put(dev); |
| 662 | return val; |
| 663 | } |
| 664 | |
| 665 | EXPORT_SYMBOL(eeh_check_failure); |
| 666 | |
| 667 | struct eeh_early_enable_info { |
| 668 | unsigned int buid_hi; |
| 669 | unsigned int buid_lo; |
| 670 | }; |
| 671 | |
| 672 | /* Enable eeh for the given device node. */ |
| 673 | static void *early_enable_eeh(struct device_node *dn, void *data) |
| 674 | { |
| 675 | struct eeh_early_enable_info *info = data; |
| 676 | int ret; |
| 677 | char *status = get_property(dn, "status", NULL); |
| 678 | u32 *class_code = (u32 *)get_property(dn, "class-code", NULL); |
| 679 | u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL); |
| 680 | u32 *device_id = (u32 *)get_property(dn, "device-id", NULL); |
| 681 | u32 *regs; |
| 682 | int enable; |
| 683 | |
| 684 | dn->eeh_mode = 0; |
| 685 | |
| 686 | if (status && strcmp(status, "ok") != 0) |
| 687 | return NULL; /* ignore devices with bad status */ |
| 688 | |
| 689 | /* Ignore bad nodes. */ |
| 690 | if (!class_code || !vendor_id || !device_id) |
| 691 | return NULL; |
| 692 | |
| 693 | /* There is nothing to check on PCI to ISA bridges */ |
| 694 | if (dn->type && !strcmp(dn->type, "isa")) { |
| 695 | dn->eeh_mode |= EEH_MODE_NOCHECK; |
| 696 | return NULL; |
| 697 | } |
| 698 | |
| 699 | /* |
| 700 | * Now decide if we are going to "Disable" EEH checking |
| 701 | * for this device. We still run with the EEH hardware active, |
| 702 | * but we won't be checking for ff's. This means a driver |
| 703 | * could return bad data (very bad!), an interrupt handler could |
| 704 | * hang waiting on status bits that won't change, etc. |
| 705 | * But there are a few cases like display devices that make sense. |
| 706 | */ |
| 707 | enable = 1; /* i.e. we will do checking */ |
| 708 | if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY) |
| 709 | enable = 0; |
| 710 | |
| 711 | if (!enable) |
| 712 | dn->eeh_mode |= EEH_MODE_NOCHECK; |
| 713 | |
| 714 | /* Ok... see if this device supports EEH. Some do, some don't, |
| 715 | * and the only way to find out is to check each and every one. */ |
| 716 | regs = (u32 *)get_property(dn, "reg", NULL); |
| 717 | if (regs) { |
| 718 | /* First register entry is addr (00BBSS00) */ |
| 719 | /* Try to enable eeh */ |
| 720 | ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL, |
| 721 | regs[0], info->buid_hi, info->buid_lo, |
| 722 | EEH_ENABLE); |
| 723 | if (ret == 0) { |
| 724 | eeh_subsystem_enabled = 1; |
| 725 | dn->eeh_mode |= EEH_MODE_SUPPORTED; |
| 726 | dn->eeh_config_addr = regs[0]; |
| 727 | #ifdef DEBUG |
| 728 | printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name); |
| 729 | #endif |
| 730 | } else { |
| 731 | |
| 732 | /* This device doesn't support EEH, but it may have an |
| 733 | * EEH parent, in which case we mark it as supported. */ |
| 734 | if (dn->parent && (dn->parent->eeh_mode & EEH_MODE_SUPPORTED)) { |
| 735 | /* Parent supports EEH. */ |
| 736 | dn->eeh_mode |= EEH_MODE_SUPPORTED; |
| 737 | dn->eeh_config_addr = dn->parent->eeh_config_addr; |
| 738 | return NULL; |
| 739 | } |
| 740 | } |
| 741 | } else { |
| 742 | printk(KERN_WARNING "EEH: %s: unable to get reg property.\n", |
| 743 | dn->full_name); |
| 744 | } |
| 745 | |
| 746 | return NULL; |
| 747 | } |
| 748 | |
| 749 | /* |
| 750 | * Initialize EEH by trying to enable it for all of the adapters in the system. |
| 751 | * As a side effect we can determine here if eeh is supported at all. |
| 752 | * Note that we leave EEH on so failed config cycles won't cause a machine |
| 753 | * check. If a user turns off EEH for a particular adapter they are really |
| 754 | * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't |
| 755 | * grant access to a slot if EEH isn't enabled, and so we always enable |
| 756 | * EEH for all slots/all devices. |
| 757 | * |
| 758 | * The eeh-force-off option disables EEH checking globally, for all slots. |
| 759 | * Even if force-off is set, the EEH hardware is still enabled, so that |
| 760 | * newer systems can boot. |
| 761 | */ |
| 762 | void __init eeh_init(void) |
| 763 | { |
| 764 | struct device_node *phb, *np; |
| 765 | struct eeh_early_enable_info info; |
| 766 | |
| 767 | np = of_find_node_by_path("/rtas"); |
| 768 | if (np == NULL) |
| 769 | return; |
| 770 | |
| 771 | ibm_set_eeh_option = rtas_token("ibm,set-eeh-option"); |
| 772 | ibm_set_slot_reset = rtas_token("ibm,set-slot-reset"); |
| 773 | ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2"); |
| 774 | ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state"); |
| 775 | ibm_slot_error_detail = rtas_token("ibm,slot-error-detail"); |
| 776 | |
| 777 | if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE) |
| 778 | return; |
| 779 | |
| 780 | eeh_error_buf_size = rtas_token("rtas-error-log-max"); |
| 781 | if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) { |
| 782 | eeh_error_buf_size = 1024; |
| 783 | } |
| 784 | if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) { |
| 785 | printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated " |
| 786 | "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX); |
| 787 | eeh_error_buf_size = RTAS_ERROR_LOG_MAX; |
| 788 | } |
| 789 | |
| 790 | /* Enable EEH for all adapters. Note that eeh requires buid's */ |
| 791 | for (phb = of_find_node_by_name(NULL, "pci"); phb; |
| 792 | phb = of_find_node_by_name(phb, "pci")) { |
| 793 | unsigned long buid; |
| 794 | |
| 795 | buid = get_phb_buid(phb); |
| 796 | if (buid == 0) |
| 797 | continue; |
| 798 | |
| 799 | info.buid_lo = BUID_LO(buid); |
| 800 | info.buid_hi = BUID_HI(buid); |
| 801 | traverse_pci_devices(phb, early_enable_eeh, &info); |
| 802 | } |
| 803 | |
| 804 | if (eeh_subsystem_enabled) |
| 805 | printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n"); |
| 806 | else |
| 807 | printk(KERN_WARNING "EEH: No capable adapters found\n"); |
| 808 | } |
| 809 | |
| 810 | /** |
| 811 | * eeh_add_device_early - enable EEH for the indicated device_node |
| 812 | * @dn: device node for which to set up EEH |
| 813 | * |
| 814 | * This routine must be used to perform EEH initialization for PCI |
| 815 | * devices that were added after system boot (e.g. hotplug, dlpar). |
| 816 | * This routine must be called before any i/o is performed to the |
| 817 | * adapter (inluding any config-space i/o). |
| 818 | * Whether this actually enables EEH or not for this device depends |
| 819 | * on the CEC architecture, type of the device, on earlier boot |
| 820 | * command-line arguments & etc. |
| 821 | */ |
| 822 | void eeh_add_device_early(struct device_node *dn) |
| 823 | { |
| 824 | struct pci_controller *phb; |
| 825 | struct eeh_early_enable_info info; |
| 826 | |
| 827 | if (!dn) |
| 828 | return; |
| 829 | phb = dn->phb; |
| 830 | if (NULL == phb || 0 == phb->buid) { |
| 831 | printk(KERN_WARNING "EEH: Expected buid but found none\n"); |
| 832 | return; |
| 833 | } |
| 834 | |
| 835 | info.buid_hi = BUID_HI(phb->buid); |
| 836 | info.buid_lo = BUID_LO(phb->buid); |
| 837 | early_enable_eeh(dn, &info); |
| 838 | } |
| 839 | EXPORT_SYMBOL(eeh_add_device_early); |
| 840 | |
| 841 | /** |
| 842 | * eeh_add_device_late - perform EEH initialization for the indicated pci device |
| 843 | * @dev: pci device for which to set up EEH |
| 844 | * |
| 845 | * This routine must be used to complete EEH initialization for PCI |
| 846 | * devices that were added after system boot (e.g. hotplug, dlpar). |
| 847 | */ |
| 848 | void eeh_add_device_late(struct pci_dev *dev) |
| 849 | { |
| 850 | if (!dev || !eeh_subsystem_enabled) |
| 851 | return; |
| 852 | |
| 853 | #ifdef DEBUG |
| 854 | printk(KERN_DEBUG "EEH: adding device %s %s\n", pci_name(dev), |
| 855 | pci_pretty_name(dev)); |
| 856 | #endif |
| 857 | |
| 858 | pci_addr_cache_insert_device (dev); |
| 859 | } |
| 860 | EXPORT_SYMBOL(eeh_add_device_late); |
| 861 | |
| 862 | /** |
| 863 | * eeh_remove_device - undo EEH setup for the indicated pci device |
| 864 | * @dev: pci device to be removed |
| 865 | * |
| 866 | * This routine should be when a device is removed from a running |
| 867 | * system (e.g. by hotplug or dlpar). |
| 868 | */ |
| 869 | void eeh_remove_device(struct pci_dev *dev) |
| 870 | { |
| 871 | if (!dev || !eeh_subsystem_enabled) |
| 872 | return; |
| 873 | |
| 874 | /* Unregister the device with the EEH/PCI address search system */ |
| 875 | #ifdef DEBUG |
| 876 | printk(KERN_DEBUG "EEH: remove device %s %s\n", pci_name(dev), |
| 877 | pci_pretty_name(dev)); |
| 878 | #endif |
| 879 | pci_addr_cache_remove_device(dev); |
| 880 | } |
| 881 | EXPORT_SYMBOL(eeh_remove_device); |
| 882 | |
| 883 | static int proc_eeh_show(struct seq_file *m, void *v) |
| 884 | { |
| 885 | unsigned int cpu; |
| 886 | unsigned long ffs = 0, positives = 0, failures = 0; |
| 887 | unsigned long resets = 0; |
| 888 | |
| 889 | for_each_cpu(cpu) { |
| 890 | ffs += per_cpu(total_mmio_ffs, cpu); |
| 891 | positives += per_cpu(false_positives, cpu); |
| 892 | failures += per_cpu(ignored_failures, cpu); |
| 893 | resets += per_cpu(slot_resets, cpu); |
| 894 | } |
| 895 | |
| 896 | if (0 == eeh_subsystem_enabled) { |
| 897 | seq_printf(m, "EEH Subsystem is globally disabled\n"); |
| 898 | seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs); |
| 899 | } else { |
| 900 | seq_printf(m, "EEH Subsystem is enabled\n"); |
| 901 | seq_printf(m, "eeh_total_mmio_ffs=%ld\n" |
| 902 | "eeh_false_positives=%ld\n" |
| 903 | "eeh_ignored_failures=%ld\n" |
| 904 | "eeh_slot_resets=%ld\n" |
| 905 | "eeh_fail_count=%d\n", |
| 906 | ffs, positives, failures, resets, |
| 907 | eeh_fail_count.counter); |
| 908 | } |
| 909 | |
| 910 | return 0; |
| 911 | } |
| 912 | |
| 913 | static int proc_eeh_open(struct inode *inode, struct file *file) |
| 914 | { |
| 915 | return single_open(file, proc_eeh_show, NULL); |
| 916 | } |
| 917 | |
| 918 | static struct file_operations proc_eeh_operations = { |
| 919 | .open = proc_eeh_open, |
| 920 | .read = seq_read, |
| 921 | .llseek = seq_lseek, |
| 922 | .release = single_release, |
| 923 | }; |
| 924 | |
| 925 | static int __init eeh_init_proc(void) |
| 926 | { |
| 927 | struct proc_dir_entry *e; |
| 928 | |
| 929 | if (systemcfg->platform & PLATFORM_PSERIES) { |
| 930 | e = create_proc_entry("ppc64/eeh", 0, NULL); |
| 931 | if (e) |
| 932 | e->proc_fops = &proc_eeh_operations; |
| 933 | } |
| 934 | |
| 935 | return 0; |
| 936 | } |
| 937 | __initcall(eeh_init_proc); |