docbook: split kernel-api for device-drivers

The kernel-api docbook was much larger than any of the others,
so processing it took longer and needed some docbook extras in
some cases, so split it into kernel-api (infrastructure etc.)
and device drivers/device subsystems.  This allows these docbooks
to be generated in parallel.  (This reduced the docbook processing
time on my 4-proc system with make -j4 from about 5min:16sec to
about 2min:01sec.)

The chapters that were moved from kernel-api to device-drivers are:

Driver Basics
Device drivers infrastructure
Parallel Port Devices
Message-based devices
Sound Devices
16x50 UART Driver
Frame Buffer Library
Input Subsystem
Serial Peripheral Interface (SPI)
I2C and SMBus Subsystem

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
index dc3154e..1462ed8 100644
--- a/Documentation/DocBook/Makefile
+++ b/Documentation/DocBook/Makefile
@@ -6,7 +6,7 @@
 # To add a new book the only step required is to add the book to the
 # list of DOCBOOKS.
 
-DOCBOOKS := z8530book.xml mcabook.xml \
+DOCBOOKS := z8530book.xml mcabook.xml device-drivers.xml \
 	    kernel-hacking.xml kernel-locking.xml deviceiobook.xml \
 	    procfs-guide.xml writing_usb_driver.xml networking.xml \
 	    kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \
diff --git a/Documentation/DocBook/device-drivers.tmpl b/Documentation/DocBook/device-drivers.tmpl
new file mode 100644
index 0000000..94a20fe
--- /dev/null
+++ b/Documentation/DocBook/device-drivers.tmpl
@@ -0,0 +1,418 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
+	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
+
+<book id="LinuxDriversAPI">
+ <bookinfo>
+  <title>Linux Device Drivers</title>
+
+  <legalnotice>
+   <para>
+     This documentation is free software; you can redistribute
+     it and/or modify it under the terms of the GNU General Public
+     License as published by the Free Software Foundation; either
+     version 2 of the License, or (at your option) any later
+     version.
+   </para>
+
+   <para>
+     This program is distributed in the hope that it will be
+     useful, but WITHOUT ANY WARRANTY; without even the implied
+     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+     See the GNU General Public License for more details.
+   </para>
+
+   <para>
+     You should have received a copy of the GNU General Public
+     License along with this program; if not, write to the Free
+     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+     MA 02111-1307 USA
+   </para>
+
+   <para>
+     For more details see the file COPYING in the source
+     distribution of Linux.
+   </para>
+  </legalnotice>
+ </bookinfo>
+
+<toc></toc>
+
+  <chapter id="Basics">
+     <title>Driver Basics</title>
+     <sect1><title>Driver Entry and Exit points</title>
+!Iinclude/linux/init.h
+     </sect1>
+
+     <sect1><title>Atomic and pointer manipulation</title>
+!Iarch/x86/include/asm/atomic_32.h
+!Iarch/x86/include/asm/unaligned.h
+     </sect1>
+
+     <sect1><title>Delaying, scheduling, and timer routines</title>
+!Iinclude/linux/sched.h
+!Ekernel/sched.c
+!Ekernel/timer.c
+     </sect1>
+     <sect1><title>High-resolution timers</title>
+!Iinclude/linux/ktime.h
+!Iinclude/linux/hrtimer.h
+!Ekernel/hrtimer.c
+     </sect1>
+     <sect1><title>Workqueues and Kevents</title>
+!Ekernel/workqueue.c
+     </sect1>
+     <sect1><title>Internal Functions</title>
+!Ikernel/exit.c
+!Ikernel/signal.c
+!Iinclude/linux/kthread.h
+!Ekernel/kthread.c
+     </sect1>
+
+     <sect1><title>Kernel objects manipulation</title>
+<!--
+X!Iinclude/linux/kobject.h
+-->
+!Elib/kobject.c
+     </sect1>
+
+     <sect1><title>Kernel utility functions</title>
+!Iinclude/linux/kernel.h
+!Ekernel/printk.c
+!Ekernel/panic.c
+!Ekernel/sys.c
+!Ekernel/rcupdate.c
+     </sect1>
+
+     <sect1><title>Device Resource Management</title>
+!Edrivers/base/devres.c
+     </sect1>
+
+  </chapter>
+
+  <chapter id="devdrivers">
+     <title>Device drivers infrastructure</title>
+     <sect1><title>Device Drivers Base</title>
+<!--
+X!Iinclude/linux/device.h
+-->
+!Edrivers/base/driver.c
+!Edrivers/base/core.c
+!Edrivers/base/class.c
+!Edrivers/base/firmware_class.c
+!Edrivers/base/transport_class.c
+<!-- Cannot be included, because
+     attribute_container_add_class_device_adapter
+ and attribute_container_classdev_to_container
+     exceed allowed 44 characters maximum
+X!Edrivers/base/attribute_container.c
+-->
+!Edrivers/base/sys.c
+<!--
+X!Edrivers/base/interface.c
+-->
+!Edrivers/base/platform.c
+!Edrivers/base/bus.c
+     </sect1>
+     <sect1><title>Device Drivers Power Management</title>
+!Edrivers/base/power/main.c
+     </sect1>
+     <sect1><title>Device Drivers ACPI Support</title>
+<!-- Internal functions only
+X!Edrivers/acpi/sleep/main.c
+X!Edrivers/acpi/sleep/wakeup.c
+X!Edrivers/acpi/motherboard.c
+X!Edrivers/acpi/bus.c
+-->
+!Edrivers/acpi/scan.c
+!Idrivers/acpi/scan.c
+<!-- No correct structured comments
+X!Edrivers/acpi/pci_bind.c
+-->
+     </sect1>
+     <sect1><title>Device drivers PnP support</title>
+!Idrivers/pnp/core.c
+<!-- No correct structured comments
+X!Edrivers/pnp/system.c
+ -->
+!Edrivers/pnp/card.c
+!Idrivers/pnp/driver.c
+!Edrivers/pnp/manager.c
+!Edrivers/pnp/support.c
+     </sect1>
+     <sect1><title>Userspace IO devices</title>
+!Edrivers/uio/uio.c
+!Iinclude/linux/uio_driver.h
+     </sect1>
+  </chapter>
+
+  <chapter id="parportdev">
+     <title>Parallel Port Devices</title>
+!Iinclude/linux/parport.h
+!Edrivers/parport/ieee1284.c
+!Edrivers/parport/share.c
+!Idrivers/parport/daisy.c
+  </chapter>
+
+  <chapter id="message_devices">
+	<title>Message-based devices</title>
+     <sect1><title>Fusion message devices</title>
+!Edrivers/message/fusion/mptbase.c
+!Idrivers/message/fusion/mptbase.c
+!Edrivers/message/fusion/mptscsih.c
+!Idrivers/message/fusion/mptscsih.c
+!Idrivers/message/fusion/mptctl.c
+!Idrivers/message/fusion/mptspi.c
+!Idrivers/message/fusion/mptfc.c
+!Idrivers/message/fusion/mptlan.c
+     </sect1>
+     <sect1><title>I2O message devices</title>
+!Iinclude/linux/i2o.h
+!Idrivers/message/i2o/core.h
+!Edrivers/message/i2o/iop.c
+!Idrivers/message/i2o/iop.c
+!Idrivers/message/i2o/config-osm.c
+!Edrivers/message/i2o/exec-osm.c
+!Idrivers/message/i2o/exec-osm.c
+!Idrivers/message/i2o/bus-osm.c
+!Edrivers/message/i2o/device.c
+!Idrivers/message/i2o/device.c
+!Idrivers/message/i2o/driver.c
+!Idrivers/message/i2o/pci.c
+!Idrivers/message/i2o/i2o_block.c
+!Idrivers/message/i2o/i2o_scsi.c
+!Idrivers/message/i2o/i2o_proc.c
+     </sect1>
+  </chapter>
+
+  <chapter id="snddev">
+     <title>Sound Devices</title>
+!Iinclude/sound/core.h
+!Esound/sound_core.c
+!Iinclude/sound/pcm.h
+!Esound/core/pcm.c
+!Esound/core/device.c
+!Esound/core/info.c
+!Esound/core/rawmidi.c
+!Esound/core/sound.c
+!Esound/core/memory.c
+!Esound/core/pcm_memory.c
+!Esound/core/init.c
+!Esound/core/isadma.c
+!Esound/core/control.c
+!Esound/core/pcm_lib.c
+!Esound/core/hwdep.c
+!Esound/core/pcm_native.c
+!Esound/core/memalloc.c
+<!-- FIXME: Removed for now since no structured comments in source
+X!Isound/sound_firmware.c
+-->
+  </chapter>
+
+  <chapter id="uart16x50">
+     <title>16x50 UART Driver</title>
+!Iinclude/linux/serial_core.h
+!Edrivers/serial/serial_core.c
+!Edrivers/serial/8250.c
+  </chapter>
+
+  <chapter id="fbdev">
+     <title>Frame Buffer Library</title>
+
+     <para>
+       The frame buffer drivers depend heavily on four data structures.
+       These structures are declared in include/linux/fb.h.  They are
+       fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs.
+       The last three can be made available to and from userland.
+     </para>
+
+     <para>
+       fb_info defines the current state of a particular video card.
+       Inside fb_info, there exists a fb_ops structure which is a
+       collection of needed functions to make fbdev and fbcon work.
+       fb_info is only visible to the kernel.
+     </para>
+
+     <para>
+       fb_var_screeninfo is used to describe the features of a video card
+       that are user defined.  With fb_var_screeninfo, things such as
+       depth and the resolution may be defined.
+     </para>
+
+     <para>
+       The next structure is fb_fix_screeninfo. This defines the
+       properties of a card that are created when a mode is set and can't
+       be changed otherwise.  A good example of this is the start of the
+       frame buffer memory.  This "locks" the address of the frame buffer
+       memory, so that it cannot be changed or moved.
+     </para>
+
+     <para>
+       The last structure is fb_monospecs. In the old API, there was
+       little importance for fb_monospecs. This allowed for forbidden things
+       such as setting a mode of 800x600 on a fix frequency monitor. With
+       the new API, fb_monospecs prevents such things, and if used
+       correctly, can prevent a monitor from being cooked.  fb_monospecs
+       will not be useful until kernels 2.5.x.
+     </para>
+
+     <sect1><title>Frame Buffer Memory</title>
+!Edrivers/video/fbmem.c
+     </sect1>
+<!--
+     <sect1><title>Frame Buffer Console</title>
+X!Edrivers/video/console/fbcon.c
+     </sect1>
+-->
+     <sect1><title>Frame Buffer Colormap</title>
+!Edrivers/video/fbcmap.c
+     </sect1>
+<!-- FIXME:
+  drivers/video/fbgen.c has no docs, which stuffs up the sgml.  Comment
+  out until somebody adds docs.  KAO
+     <sect1><title>Frame Buffer Generic Functions</title>
+X!Idrivers/video/fbgen.c
+     </sect1>
+KAO -->
+     <sect1><title>Frame Buffer Video Mode Database</title>
+!Idrivers/video/modedb.c
+!Edrivers/video/modedb.c
+     </sect1>
+     <sect1><title>Frame Buffer Macintosh Video Mode Database</title>
+!Edrivers/video/macmodes.c
+     </sect1>
+     <sect1><title>Frame Buffer Fonts</title>
+        <para>
+           Refer to the file drivers/video/console/fonts.c for more information.
+        </para>
+<!-- FIXME: Removed for now since no structured comments in source
+X!Idrivers/video/console/fonts.c
+-->
+     </sect1>
+  </chapter>
+
+  <chapter id="input_subsystem">
+     <title>Input Subsystem</title>
+!Iinclude/linux/input.h
+!Edrivers/input/input.c
+!Edrivers/input/ff-core.c
+!Edrivers/input/ff-memless.c
+  </chapter>
+
+  <chapter id="spi">
+      <title>Serial Peripheral Interface (SPI)</title>
+  <para>
+	SPI is the "Serial Peripheral Interface", widely used with
+	embedded systems because it is a simple and efficient
+	interface:  basically a multiplexed shift register.
+	Its three signal wires hold a clock (SCK, often in the range
+	of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and
+	a "Master In, Slave Out" (MISO) data line.
+	SPI is a full duplex protocol; for each bit shifted out the
+	MOSI line (one per clock) another is shifted in on the MISO line.
+	Those bits are assembled into words of various sizes on the
+	way to and from system memory.
+	An additional chipselect line is usually active-low (nCS);
+	four signals are normally used for each peripheral, plus
+	sometimes an interrupt.
+  </para>
+  <para>
+	The SPI bus facilities listed here provide a generalized
+	interface to declare SPI busses and devices, manage them
+	according to the standard Linux driver model, and perform
+	input/output operations.
+	At this time, only "master" side interfaces are supported,
+	where Linux talks to SPI peripherals and does not implement
+	such a peripheral itself.
+	(Interfaces to support implementing SPI slaves would
+	necessarily look different.)
+  </para>
+  <para>
+	The programming interface is structured around two kinds of driver,
+	and two kinds of device.
+	A "Controller Driver" abstracts the controller hardware, which may
+	be as simple as a set of GPIO pins or as complex as a pair of FIFOs
+	connected to dual DMA engines on the other side of the SPI shift
+	register (maximizing throughput).  Such drivers bridge between
+	whatever bus they sit on (often the platform bus) and SPI, and
+	expose the SPI side of their device as a
+	<structname>struct spi_master</structname>.
+	SPI devices are children of that master, represented as a
+	<structname>struct spi_device</structname> and manufactured from
+	<structname>struct spi_board_info</structname> descriptors which
+	are usually provided by board-specific initialization code.
+	A <structname>struct spi_driver</structname> is called a
+	"Protocol Driver", and is bound to a spi_device using normal
+	driver model calls.
+  </para>
+  <para>
+	The I/O model is a set of queued messages.  Protocol drivers
+	submit one or more <structname>struct spi_message</structname>
+	objects, which are processed and completed asynchronously.
+	(There are synchronous wrappers, however.)  Messages are
+	built from one or more <structname>struct spi_transfer</structname>
+	objects, each of which wraps a full duplex SPI transfer.
+	A variety of protocol tweaking options are needed, because
+	different chips adopt very different policies for how they
+	use the bits transferred with SPI.
+  </para>
+!Iinclude/linux/spi/spi.h
+!Fdrivers/spi/spi.c spi_register_board_info
+!Edrivers/spi/spi.c
+  </chapter>
+
+  <chapter id="i2c">
+     <title>I<superscript>2</superscript>C and SMBus Subsystem</title>
+
+     <para>
+	I<superscript>2</superscript>C (or without fancy typography, "I2C")
+	is an acronym for the "Inter-IC" bus, a simple bus protocol which is
+	widely used where low data rate communications suffice.
+	Since it's also a licensed trademark, some vendors use another
+	name (such as "Two-Wire Interface", TWI) for the same bus.
+	I2C only needs two signals (SCL for clock, SDA for data), conserving
+	board real estate and minimizing signal quality issues.
+	Most I2C devices use seven bit addresses, and bus speeds of up
+	to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet
+	found wide use.
+	I2C is a multi-master bus; open drain signaling is used to
+	arbitrate between masters, as well as to handshake and to
+	synchronize clocks from slower clients.
+     </para>
+
+     <para>
+	The Linux I2C programming interfaces support only the master
+	side of bus interactions, not the slave side.
+	The programming interface is structured around two kinds of driver,
+	and two kinds of device.
+	An I2C "Adapter Driver" abstracts the controller hardware; it binds
+	to a physical device (perhaps a PCI device or platform_device) and
+	exposes a <structname>struct i2c_adapter</structname> representing
+	each I2C bus segment it manages.
+	On each I2C bus segment will be I2C devices represented by a
+	<structname>struct i2c_client</structname>.  Those devices will
+	be bound to a <structname>struct i2c_driver</structname>,
+	which should follow the standard Linux driver model.
+	(At this writing, a legacy model is more widely used.)
+	There are functions to perform various I2C protocol operations; at
+	this writing all such functions are usable only from task context.
+     </para>
+
+     <para>
+	The System Management Bus (SMBus) is a sibling protocol.  Most SMBus
+	systems are also I2C conformant.  The electrical constraints are
+	tighter for SMBus, and it standardizes particular protocol messages
+	and idioms.  Controllers that support I2C can also support most
+	SMBus operations, but SMBus controllers don't support all the protocol
+	options that an I2C controller will.
+	There are functions to perform various SMBus protocol operations,
+	either using I2C primitives or by issuing SMBus commands to
+	i2c_adapter devices which don't support those I2C operations.
+     </para>
+
+!Iinclude/linux/i2c.h
+!Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info
+!Edrivers/i2c/i2c-core.c
+  </chapter>
+
+</book>
diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl
index 5818ff7..bc962cd 100644
--- a/Documentation/DocBook/kernel-api.tmpl
+++ b/Documentation/DocBook/kernel-api.tmpl
@@ -38,58 +38,6 @@
 
 <toc></toc>
 
-  <chapter id="Basics">
-     <title>Driver Basics</title>
-     <sect1><title>Driver Entry and Exit points</title>
-!Iinclude/linux/init.h
-     </sect1>
-
-     <sect1><title>Atomic and pointer manipulation</title>
-!Iarch/x86/include/asm/atomic_32.h
-!Iarch/x86/include/asm/unaligned.h
-     </sect1>
-
-     <sect1><title>Delaying, scheduling, and timer routines</title>
-!Iinclude/linux/sched.h
-!Ekernel/sched.c
-!Ekernel/timer.c
-     </sect1>
-     <sect1><title>High-resolution timers</title>
-!Iinclude/linux/ktime.h
-!Iinclude/linux/hrtimer.h
-!Ekernel/hrtimer.c
-     </sect1>
-     <sect1><title>Workqueues and Kevents</title>
-!Ekernel/workqueue.c
-     </sect1>
-     <sect1><title>Internal Functions</title>
-!Ikernel/exit.c
-!Ikernel/signal.c
-!Iinclude/linux/kthread.h
-!Ekernel/kthread.c
-     </sect1>
-
-     <sect1><title>Kernel objects manipulation</title>
-<!--
-X!Iinclude/linux/kobject.h
--->
-!Elib/kobject.c
-     </sect1>
-
-     <sect1><title>Kernel utility functions</title>
-!Iinclude/linux/kernel.h
-!Ekernel/printk.c
-!Ekernel/panic.c
-!Ekernel/sys.c
-!Ekernel/rcupdate.c
-     </sect1>
-
-     <sect1><title>Device Resource Management</title>
-!Edrivers/base/devres.c
-     </sect1>
-
-  </chapter>
-
   <chapter id="adt">
      <title>Data Types</title>
      <sect1><title>Doubly Linked Lists</title>
@@ -298,62 +246,6 @@
 !Ikernel/acct.c
   </chapter>
 
-  <chapter id="devdrivers">
-     <title>Device drivers infrastructure</title>
-     <sect1><title>Device Drivers Base</title>
-<!--
-X!Iinclude/linux/device.h
--->
-!Edrivers/base/driver.c
-!Edrivers/base/core.c
-!Edrivers/base/class.c
-!Edrivers/base/firmware_class.c
-!Edrivers/base/transport_class.c
-<!-- Cannot be included, because
-     attribute_container_add_class_device_adapter
- and attribute_container_classdev_to_container
-     exceed allowed 44 characters maximum
-X!Edrivers/base/attribute_container.c
--->
-!Edrivers/base/sys.c
-<!--
-X!Edrivers/base/interface.c
--->
-!Edrivers/base/platform.c
-!Edrivers/base/bus.c
-     </sect1>
-     <sect1><title>Device Drivers Power Management</title>
-!Edrivers/base/power/main.c
-     </sect1>
-     <sect1><title>Device Drivers ACPI Support</title>
-<!-- Internal functions only
-X!Edrivers/acpi/sleep/main.c
-X!Edrivers/acpi/sleep/wakeup.c
-X!Edrivers/acpi/motherboard.c
-X!Edrivers/acpi/bus.c
--->
-!Edrivers/acpi/scan.c
-!Idrivers/acpi/scan.c
-<!-- No correct structured comments
-X!Edrivers/acpi/pci_bind.c
--->
-     </sect1>
-     <sect1><title>Device drivers PnP support</title>
-!Idrivers/pnp/core.c
-<!-- No correct structured comments
-X!Edrivers/pnp/system.c
- -->
-!Edrivers/pnp/card.c
-!Idrivers/pnp/driver.c
-!Edrivers/pnp/manager.c
-!Edrivers/pnp/support.c
-     </sect1>
-     <sect1><title>Userspace IO devices</title>
-!Edrivers/uio/uio.c
-!Iinclude/linux/uio_driver.h
-     </sect1>
-  </chapter>
-
   <chapter id="blkdev">
      <title>Block Devices</title>
 !Eblock/blk-core.c
@@ -381,275 +273,6 @@
 !Edrivers/char/misc.c
   </chapter>
 
-  <chapter id="parportdev">
-     <title>Parallel Port Devices</title>
-!Iinclude/linux/parport.h
-!Edrivers/parport/ieee1284.c
-!Edrivers/parport/share.c
-!Idrivers/parport/daisy.c
-  </chapter>
-
-  <chapter id="message_devices">
-	<title>Message-based devices</title>
-     <sect1><title>Fusion message devices</title>
-!Edrivers/message/fusion/mptbase.c
-!Idrivers/message/fusion/mptbase.c
-!Edrivers/message/fusion/mptscsih.c
-!Idrivers/message/fusion/mptscsih.c
-!Idrivers/message/fusion/mptctl.c
-!Idrivers/message/fusion/mptspi.c
-!Idrivers/message/fusion/mptfc.c
-!Idrivers/message/fusion/mptlan.c
-     </sect1>
-     <sect1><title>I2O message devices</title>
-!Iinclude/linux/i2o.h
-!Idrivers/message/i2o/core.h
-!Edrivers/message/i2o/iop.c
-!Idrivers/message/i2o/iop.c
-!Idrivers/message/i2o/config-osm.c
-!Edrivers/message/i2o/exec-osm.c
-!Idrivers/message/i2o/exec-osm.c
-!Idrivers/message/i2o/bus-osm.c
-!Edrivers/message/i2o/device.c
-!Idrivers/message/i2o/device.c
-!Idrivers/message/i2o/driver.c
-!Idrivers/message/i2o/pci.c
-!Idrivers/message/i2o/i2o_block.c
-!Idrivers/message/i2o/i2o_scsi.c
-!Idrivers/message/i2o/i2o_proc.c
-     </sect1>
-  </chapter>
-
-  <chapter id="snddev">
-     <title>Sound Devices</title>
-!Iinclude/sound/core.h
-!Esound/sound_core.c
-!Iinclude/sound/pcm.h
-!Esound/core/pcm.c
-!Esound/core/device.c
-!Esound/core/info.c
-!Esound/core/rawmidi.c
-!Esound/core/sound.c
-!Esound/core/memory.c
-!Esound/core/pcm_memory.c
-!Esound/core/init.c
-!Esound/core/isadma.c
-!Esound/core/control.c
-!Esound/core/pcm_lib.c
-!Esound/core/hwdep.c
-!Esound/core/pcm_native.c
-!Esound/core/memalloc.c
-<!-- FIXME: Removed for now since no structured comments in source
-X!Isound/sound_firmware.c
--->
-  </chapter>
-
-  <chapter id="uart16x50">
-     <title>16x50 UART Driver</title>
-!Iinclude/linux/serial_core.h
-!Edrivers/serial/serial_core.c
-!Edrivers/serial/8250.c
-  </chapter>
-
-  <chapter id="fbdev">
-     <title>Frame Buffer Library</title>
-
-     <para>
-       The frame buffer drivers depend heavily on four data structures.  
-       These structures are declared in include/linux/fb.h.  They are 
-       fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs. 
-       The last three can be made available to and from userland. 
-     </para>
-
-     <para>
-       fb_info defines the current state of a particular video card. 
-       Inside fb_info, there exists a fb_ops structure which is a 
-       collection of needed functions to make fbdev and fbcon work.
-       fb_info is only visible to the kernel.
-     </para>
-
-     <para>
-       fb_var_screeninfo is used to describe the features of a video card 
-       that are user defined.  With fb_var_screeninfo, things such as
-       depth and the resolution may be defined.
-     </para>
-
-     <para>
-       The next structure is fb_fix_screeninfo. This defines the 
-       properties of a card that are created when a mode is set and can't 
-       be changed otherwise.  A good example of this is the start of the 
-       frame buffer memory.  This "locks" the address of the frame buffer
-       memory, so that it cannot be changed or moved.
-     </para>
-
-     <para>
-       The last structure is fb_monospecs. In the old API, there was 
-       little importance for fb_monospecs. This allowed for forbidden things 
-       such as setting a mode of 800x600 on a fix frequency monitor. With 
-       the new API, fb_monospecs prevents such things, and if used 
-       correctly, can prevent a monitor from being cooked.  fb_monospecs
-       will not be useful until kernels 2.5.x.
-     </para>
-
-     <sect1><title>Frame Buffer Memory</title>
-!Edrivers/video/fbmem.c
-     </sect1>
-<!--
-     <sect1><title>Frame Buffer Console</title>
-X!Edrivers/video/console/fbcon.c
-     </sect1>
--->
-     <sect1><title>Frame Buffer Colormap</title>
-!Edrivers/video/fbcmap.c
-     </sect1>
-<!-- FIXME:
-  drivers/video/fbgen.c has no docs, which stuffs up the sgml.  Comment
-  out until somebody adds docs.  KAO
-     <sect1><title>Frame Buffer Generic Functions</title>
-X!Idrivers/video/fbgen.c
-     </sect1>
-KAO -->
-     <sect1><title>Frame Buffer Video Mode Database</title>
-!Idrivers/video/modedb.c
-!Edrivers/video/modedb.c
-     </sect1>
-     <sect1><title>Frame Buffer Macintosh Video Mode Database</title>
-!Edrivers/video/macmodes.c
-     </sect1>
-     <sect1><title>Frame Buffer Fonts</title>
-        <para>
-           Refer to the file drivers/video/console/fonts.c for more information.
-        </para>
-<!-- FIXME: Removed for now since no structured comments in source
-X!Idrivers/video/console/fonts.c
--->
-     </sect1>
-  </chapter>
-
-  <chapter id="input_subsystem">
-     <title>Input Subsystem</title>
-!Iinclude/linux/input.h
-!Edrivers/input/input.c
-!Edrivers/input/ff-core.c
-!Edrivers/input/ff-memless.c
-  </chapter>
-
-  <chapter id="spi">
-      <title>Serial Peripheral Interface (SPI)</title>
-  <para>
-	SPI is the "Serial Peripheral Interface", widely used with
-	embedded systems because it is a simple and efficient
-	interface:  basically a multiplexed shift register.
-	Its three signal wires hold a clock (SCK, often in the range
-	of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and
-	a "Master In, Slave Out" (MISO) data line.
-	SPI is a full duplex protocol; for each bit shifted out the
-	MOSI line (one per clock) another is shifted in on the MISO line.
-	Those bits are assembled into words of various sizes on the
-	way to and from system memory.
-	An additional chipselect line is usually active-low (nCS);
-	four signals are normally used for each peripheral, plus
-	sometimes an interrupt.
-  </para>
-  <para>
-	The SPI bus facilities listed here provide a generalized
-	interface to declare SPI busses and devices, manage them
-	according to the standard Linux driver model, and perform
-	input/output operations.
-	At this time, only "master" side interfaces are supported,
-	where Linux talks to SPI peripherals and does not implement
-	such a peripheral itself.
-	(Interfaces to support implementing SPI slaves would
-	necessarily look different.)
-  </para>
-  <para>
-	The programming interface is structured around two kinds of driver,
-	and two kinds of device.
-	A "Controller Driver" abstracts the controller hardware, which may
-	be as simple as a set of GPIO pins or as complex as a pair of FIFOs
-	connected to dual DMA engines on the other side of the SPI shift
-	register (maximizing throughput).  Such drivers bridge between
-	whatever bus they sit on (often the platform bus) and SPI, and
-	expose the SPI side of their device as a
-	<structname>struct spi_master</structname>.
-	SPI devices are children of that master, represented as a
-	<structname>struct spi_device</structname> and manufactured from
-	<structname>struct spi_board_info</structname> descriptors which
-	are usually provided by board-specific initialization code.
-	A <structname>struct spi_driver</structname> is called a
-	"Protocol Driver", and is bound to a spi_device using normal
-	driver model calls.
-  </para>
-  <para>
-	The I/O model is a set of queued messages.  Protocol drivers
-	submit one or more <structname>struct spi_message</structname>
-	objects, which are processed and completed asynchronously.
-	(There are synchronous wrappers, however.)  Messages are
-	built from one or more <structname>struct spi_transfer</structname>
-	objects, each of which wraps a full duplex SPI transfer.
-	A variety of protocol tweaking options are needed, because
-	different chips adopt very different policies for how they
-	use the bits transferred with SPI.
-  </para>
-!Iinclude/linux/spi/spi.h
-!Fdrivers/spi/spi.c spi_register_board_info
-!Edrivers/spi/spi.c
-  </chapter>
-
-  <chapter id="i2c">
-     <title>I<superscript>2</superscript>C and SMBus Subsystem</title>
-
-     <para>
-	I<superscript>2</superscript>C (or without fancy typography, "I2C")
-	is an acronym for the "Inter-IC" bus, a simple bus protocol which is
-	widely used where low data rate communications suffice.
-	Since it's also a licensed trademark, some vendors use another
-	name (such as "Two-Wire Interface", TWI) for the same bus.
-	I2C only needs two signals (SCL for clock, SDA for data), conserving
-	board real estate and minimizing signal quality issues.
-	Most I2C devices use seven bit addresses, and bus speeds of up
-	to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet
-	found wide use.
-	I2C is a multi-master bus; open drain signaling is used to
-	arbitrate between masters, as well as to handshake and to
-	synchronize clocks from slower clients.
-     </para>
-
-     <para>
-	The Linux I2C programming interfaces support only the master
-	side of bus interactions, not the slave side.
-	The programming interface is structured around two kinds of driver,
-	and two kinds of device.
-	An I2C "Adapter Driver" abstracts the controller hardware; it binds
-	to a physical device (perhaps a PCI device or platform_device) and
-	exposes a <structname>struct i2c_adapter</structname> representing
-	each I2C bus segment it manages.
-	On each I2C bus segment will be I2C devices represented by a
-	<structname>struct i2c_client</structname>.  Those devices will
-	be bound to a <structname>struct i2c_driver</structname>,
-	which should follow the standard Linux driver model.
-	(At this writing, a legacy model is more widely used.)
-	There are functions to perform various I2C protocol operations; at
-	this writing all such functions are usable only from task context.
-     </para>
-
-     <para>
-	The System Management Bus (SMBus) is a sibling protocol.  Most SMBus
-	systems are also I2C conformant.  The electrical constraints are
-	tighter for SMBus, and it standardizes particular protocol messages
-	and idioms.  Controllers that support I2C can also support most
-	SMBus operations, but SMBus controllers don't support all the protocol
-	options that an I2C controller will.
-	There are functions to perform various SMBus protocol operations,
-	either using I2C primitives or by issuing SMBus commands to
-	i2c_adapter devices which don't support those I2C operations.
-     </para>
-
-!Iinclude/linux/i2c.h
-!Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info
-!Edrivers/i2c/i2c-core.c
-  </chapter>
-
   <chapter id="clk">
      <title>Clock Framework</title>