regulator: add snapshot of cpr3-regulator and dependent drivers

Add a snapshot of the cpr3-regulator family of drivers as well as
the other drivers that CPR depends upon.

This snapshot is taken as of msm-4.4
commit d24550bbf50f ("Merge "ARM: dts: msm: Add slimbus slave
device for wcn3990 on sdm630"").

Change-Id: Ic7f81d77a8642d8581242d2a7a46c26ac3eb81a4
Signed-off-by: David Collins <collinsd@codeaurora.org>
diff --git a/Documentation/devicetree/bindings/power/apm.txt b/Documentation/devicetree/bindings/power/apm.txt
new file mode 100644
index 0000000..fa03edf
--- /dev/null
+++ b/Documentation/devicetree/bindings/power/apm.txt
@@ -0,0 +1,73 @@
+MSM Array Power Mux (msm-apm)
+
+In some MSM designs, the CPU and caches contain logic which can be powered by
+multiple rails. The APM controller exists to enable the selection of the power
+rail supplying these arrays. Since a given supply may drop below the array
+SRAM minimum operating voltage, the APM controller can be used to request a
+switch to a power supply that will guarantee logic state retention.
+
+Required properties
+- compatible:	"qcom,msm-apm", "qcom,msm8996pro-apm", "qcom,msm8953-apm"
+- reg:		Specifies physical base address and size of memory mapped regions
+		containing the APM controller, APCS CSR, APC PLL controller, and
+		SPM event registers.
+- reg-names:	List of strings identifying the reg property entries. This list must
+		contain: "pm-apcc-glb", "apcs-csr", "apc0-pll-ctl", "apc1-pll-ctl",
+		"apc0-cpu0-spm", "apc0-cpu1-spm", "apc1-cpu0-spm", "apc1-cpu1-spm",
+		"apc0-l2-spm", and "apc1-l2-spm".
+
+Optional properties
+- qcom,clock-source-override:	Specify this property to request a switch of the APC0 and APC1
+				clock sources to GPLL0 before the APM switch begins and to
+				switch back to the original clock source after the APM switch
+				completes.
+- qcom,apm-post-halt-delay:	The APM controller post halt delay counter value that SW needs
+				to program one time before starting the APM HW controller for
+				msm8953 target.
+- qcom,apm-halt-clk-delay:	The APM controller halt clock delay counter value that SW
+				needs to program one time before starting the APM HW controller
+				for msm8953 target.
+- qcom,apm-resume-clk-delay:	The APM controller resume clock delay counter value that SW
+				needs to program one time before starting the APM HW controller
+				for msm8953 target.
+- qcom,apm-sel-switch-delay:	The APM controller switch selection delay counter value that SW
+				needs to program one time before starting the APM HW controller
+				for msm8953 target.
+
+MSM APM Users
+
+Required properties:
+- qcom,apm-ctrl:		phandle of APM controller device node
+
+Example:
+	apc_apm: apm@099e0000 {
+		compatible = "qcom,msm-apm";
+		reg = <0x099e0000 0x1000>,
+			<0x09820000 0x10000>,
+			<0x06400050 0x8>,
+			<0x06480050 0x8>,
+			<0x09981068 0x8>,
+			<0x09991068 0x8>,
+			<0x099b1068 0x8>,
+			<0x099c1068 0x8>,
+			<0x099a1068 0x8>,
+			<0x099d1068 0x8>;
+		reg-names = "pm-apcc-glb",
+				"apcs-csr",
+				"apc0-pll-ctl",
+				"apc1-pll-ctl",
+				"apc0-cpu0-spm",
+				"apc0-cpu1-spm",
+				"apc1-cpu0-spm",
+				"apc1-cpu1-spm",
+				"apc0-l2-spm",
+				"apc1-l2-spm";
+		qcom,apm-post-halt-delay = <0x2>;
+		qcom,apm-halt-clk-delay = <0x11>;
+		qcom,apm-resume-clk-delay = <0x10>;
+		qcom,apm-sel-switch-delay = <0x01>;
+
+	foo_user {
+		...
+		qcom,apm-ctrl = <&apc_apm>;
+	};
diff --git a/Documentation/devicetree/bindings/regulator/cpr3-hmss-regulator.txt b/Documentation/devicetree/bindings/regulator/cpr3-hmss-regulator.txt
new file mode 100644
index 0000000..2af3cbf
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/cpr3-hmss-regulator.txt
@@ -0,0 +1,556 @@
+Qualcomm Technologies, Inc. CPR3 Regulator - HMSS Specific Bindings
+
+HMSS CPR3 controllers each support two CPR threads that monitor the voltage of
+a pair of application processor (HMSS) clusters that are powered by a shared
+regulator supply.  These controllers have a hardware aggregator to combine the
+UP/DOWN requests from each CPR thread into a single unified request.  They also
+have a hardware channel to use these requests to directly change the supply
+voltage at the PMIC via the SPM without software intervention.
+
+HMSS CPR3 controllers also have to take into account the state of the memory
+array power mux (APM) when scaling voltage to ensure that memory always receives
+a sufficiently high voltage.
+
+Both CPR open-loop voltages and CPR target quotients are stored in hardware
+fuses for HMSS CPR3 controllers.
+
+This document describes the HMSS specific CPR3 bindings.
+
+=======================
+Required Node Structure
+=======================
+
+CPR3 regulators must be described in three levels of devices nodes.  The first
+level describes the CPR3 controller.  The second level describes one or more
+hardware threads managed by the controller.  The third level describes one or
+more logical regulators handled by each CPR thread.
+
+All platform independent cpr3-regulator binding guidelines defined in
+cpr3-regulator.txt also apply to cpr3-hmss-regulator devices.
+
+====================================
+First Level Nodes - CPR3 Controllers
+====================================
+
+HMSS specific properties:
+- compatible
+	Usage:      required
+	Value type: <string>
+	Definition: should be one of the following:
+		    "qcom,cpr3-msm8996-v1-hmss-regulator",
+		    "qcom,cpr3-msm8996-v2-hmss-regulator",
+		    "qcom,cpr3-msm8996-v3-hmss-regulator",
+		    "qcom,cpr3-msm8996-hmss-regulator",
+		    "qcom,cpr3-msm8996pro-hmss-regulator".
+		    If the SoC revision is not specified, then it is assumed to
+		    be the most recent revision of MSM8996, i.e. v3.
+
+- interrupts
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: CPR interrupt specifier and a hardware closed-loop ceiling
+		    interrupt specifier.
+
+- interrupt-names
+	Usage:      required
+	Value type: <stringlist>
+	Definition: Interrupt names.  This list must match up 1-to-1 with the
+		    interrupts specified in the 'interrupts' property. "cpr"
+		    and "ceiling" must be specified.
+
+- qcom,apm-ctrl
+	Usage:      required on systems that need APM management
+	Value type: <phandle>
+	Definition: phandle of memory array power mux (APM) controller device
+		    node for the APM that is used by the HMSS VDD supply
+
+- qcom,apm-threshold-voltage
+	Usage:      required if qcom,apm-ctrl is specified
+	Value type: <u32>
+	Definition: Specifies the APM threshold voltage in microvolts.  If the
+		    vdd-supply voltage is greater than or equal to this level,
+		    then the APM is switched to use the vdd-supply. If the
+		    vdd-supply voltage is below this level, then the APM is
+		    switched to use the system-supply.
+
+- qcom,apm-hysteresis-voltage
+	Usage:      optional
+	Value type: <u32>
+	Definition: Specifies the voltage delta in microvolts between the APM
+		    threshold voltage and the highest corner open-loop voltage
+		    which may be used as the ceiling for the corner.  If this
+		    property is not specified, then a value of 0 is assumed.
+
+- qcom,system-supply-max-voltage
+	Usage:      required if qcom,vdd-threadN-ldo-supply is specified for any
+		    CPR3 regulator managed by any CPR3 thread of this controller.
+	Value type: <u32>
+	Definition: Maximum voltage setpoint for the system-supply regulator.
+
+- qcom,mem-acc-supply-threshold-voltage
+	Usage:      required if mem-acc-supply or mem-acc-threadN-supply is
+		    specified and the CPR3 controller or any of the CPR3 regulators
+		    it controls needs to manage mem-acc settings.
+	Value type: <u32>
+	Definition: Specifies the mem-acc-supply threshold voltage in microvolts.
+		    If the vdd-supply voltage is greater than or equal to this
+		    level, then the mem-acc-supply regulator is switched to the
+		    high voltage corner setting. Conversely, if the vdd-supply
+		    voltage is below this level, then the mem-acc-supply regulator
+		    is switched to the low voltage corner setting.
+
+- qcom,mem-acc-supply-corner-map
+	Usage:      required if mem-acc-supply or mem-acc-threadN-supply is
+		    specified and the CPR3 controller or any of the CPR3 regulators
+		    it controls needs to manage mem-acc settings.
+	Value type: <prop-encoded-array>
+	Definition: A tuple containing two integers which defines the mem-acc-supply
+		    corner to use for low and high vdd-supply voltages, respectively.
+
+- qcom,cpr-up-down-delay-time
+	Usage:      required
+	Value type: <u32>
+	Definition: The time to delay in nanoseconds between consecutive CPR
+		    measurements when the last measurement recommended
+		    increasing or decreasing the vdd-supply voltage.
+
+- qcom,cpr-hw-closed-loop
+	Usage:      optional
+	Value type: <empty>
+	Definition: Boolean flag which indicates that the HMSS CPR3 controller
+		    should operate in hardware closed-loop mode as opposed to
+		    software closed-loop mode.
+
+- vdd-limit-supply
+	Usage:      required
+	Value type: <phandle>
+	Definition: phandle of the VDD supply limit regulator which controls the
+		    CPR ceiling and floor voltages when operating in hardware
+		    closed-loop mode.
+
+- qcom,cpr-clock-throttling
+	Usage:      optional
+	Value type: <u32>
+	Definition: Specifies the power domains for which CPR processor clock
+		    throttling should be enabled.  This feature reduces the
+		    processor's clock frequency when it is resuming from a low
+		    power mode until CPR is able to raise the supply voltage to
+		    a final settled value.  The following bits may be set:
+			BIT(0) - Power cluster L2 cache
+			BIT(1) - Power cluster core 1
+			BIT(2) - Power cluster core 0
+			BIT(5) - Performance cluster L2 cache
+			BIT(6) - Performance cluster core 1
+			BIT(7) - Performance cluster core 0
+
+- mem-acc-threadN-supply
+	Usage:      optional
+	Value type: <phandle>
+	Definition: phandle of the regulator device which manages mem-acc
+		    configuration for the clusters per CPR thread. 'N' must
+		    match with the hardware thread ID of the thread it controls.
+
+- vdd-threadN-ldo-supply
+	Usage:      optional
+	Value type: <phandle>
+	Definition: phandle of the regulator device which manages LDO and BHS
+		    modes for the clusters per CPR thread. 'N' must match with
+		    the hardware thread ID of the thread it controls.
+
+- vdd-threadN-ldo-ret-supply
+	Usage:      required if vdd-threadN-ldo-supply is specified for
+		    this CPR thread.
+	Value type: <phandle>
+	Definition: phandle of the regulator device which manages LDO retention
+		    modes for the clusters per CPR thread. 'N' must match with
+		    the hardware thread ID of the thread it controls.
+
+=================================================
+Second Level Nodes - CPR Threads for a Controller
+=================================================
+
+HMSS specific properties:
+N/A
+
+===============================================
+Third Level Nodes - CPR Regulators for a Thread
+===============================================
+
+HMSS specific properties:
+- qcom,cpr-fuse-corners
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the number of fuse corners.  This value must be 5
+		    for HMSS.  These fuse corners are: MinSVS, LowSVS, SVS,
+		    Nominal, and Turbo.  Note that a specific fused target
+		    quotient is available for the LowSVS corner but a fused
+		    open-loop voltage is not available.  The LowSVS open-loop
+		    voltage is calculated using linear interpolation between
+		    the MinSVS and SVS values.
+
+- qcom,cpr-fuse-combos
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the number of fuse combinations being supported by
+		    the device.  This value is utilized by several other
+		    properties.  Supported values are 1 up to the maximum
+		    possible for a given regulator type.  For HMSS the maximum
+		    supported value is 16.  The first 8 fuse combos correspond
+		    to speed bin fuse value 0 along with CPR revision fuse
+		    values 0 to 7.  The last 8 fuse combos correspond to speed
+		    bin fuse value 1 along with CPR revision fuse values 0 to 7.
+
+- qcom,cpr-speed-bins
+	Usage:      optional
+	Value type: <u32>
+	Definition: Specifies the number of speed bins being supported by the
+		    device.  This value is utilized by several other properties.
+		    Supported values are 1 up to the maximum possible for a
+		    given regulator type.  For HMSS the maximum supported value
+		    is 2.
+
+- qcom,is-cbf-regulator
+	Usage:      optional
+	Value type: <empty>
+	Definition: Boolean flag which indicates that the CPR3 regulator
+		    corresponds to the CBF clock domain.  Special fuses are
+		    defined for the CBF CPR3 regulator on MSM8996-Pro chips.
+
+- qcom,ldo-min-headroom-voltage
+	Usage:      required if vdd-threadN-ldo-supply is specified for the
+		    CPR3 thread containing this CPR3 regulator and this CPR3
+		    regulator needs to manage the cluster LDO state.
+	Value type: <u32>
+	Definition: Voltage in microvolts required between the VDD_APCC voltage
+		    and the LDO output in order for the LDO to be operational.
+
+- qcom,ldo-max-headroom-voltage
+	Usage:      required if vdd-threadN-ldo-supply is specified for the
+		    CPR3 thread containing this CPR3 regulator and this CPR3
+		    regulator needs to manage the cluster LDO state.
+	Value type: <u32>
+	Definition: Maximum voltage difference in microvolts between the vdd-supply
+		    voltage and the LDO output voltage in order for active LDO mode
+		    to be operational.
+
+- qcom,ldo-adjust-voltage
+	Usage:      optional
+	Value type: <u32>
+	Definition: Voltage in microvolts used to offset margins between PMIC
+		    output and CPU.
+
+- qcom,ldo-max-voltage
+	Usage:      required if qcom,ldo-min-headroom-voltage is specified for this
+		    CPR3 regulator.
+	Value type: <u32>
+	Definition: Voltage in microvolts which represents the maximum
+		    physically supported voltage output of the LDO hardware.
+
+- qcom,uses-mem-acc
+	Usage:      required if mem-acc-threadN-supply is specified for the
+		    CPR3 thread containing this CPR3 regulator and this CPR3
+		    regulator needs to manage mem-acc settings.
+	Value type: <empty>
+	Definition: Boolean flag which indicates that this CPR3 regulator must
+		    manage mem-acc.
+
+- qcom,ldo-disable
+	Usage:      optional
+	Value type: <empty>
+	Definition: Boolean flag which indicates that LDO mode usage is
+		    disallowed.  If this flag is present, then the
+		    vdd-threadN-ldo-supply mode will not be modified.
+
+- qcom,allow-quotient-interpolation
+	Usage:      optional
+	Value type: <empty>
+	Definition: Boolean flag which indicates that it is acceptable to use
+		    interpolated CPR target quotient values.  These values are
+		    interpolated between the target quotient Fmax fuse values.
+
+- qcom,cpr-pd-bypass-mask
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the power domains associated with this CPR3
+		    regulator.  The following bits may be set:
+			BIT(0) - Power cluster L2 cache
+			BIT(1) - Power cluster core 1
+			BIT(2) - Power cluster core 0
+			BIT(3) - CBF
+			BIT(4) - L3 cache
+			BIT(5) - Performance cluster L2 cache
+			BIT(6) - Performance cluster core 1
+			BIT(7) - Performance cluster core 0
+
+- qcom,cpr-dynamic-floor-corner
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integers which defines for each fuse combination
+		    the CPR corner whose closed-loop voltage should be used as
+		    a CPR floor voltage whenever the power domains for this CPR3
+		    regulator are bypassed.  Supported values are 0 and 1 to N.
+		    A value of 0 means that no dynamic floor is needed.  N is
+		    the number of corners defined for this fuse combination in
+		    the qcom,cpr-corners property.
+
+		    The list must contain qcom,cpr-fuse-combos number of
+		    elements in which case the elements are matched to fuse
+		    combinations 1-to-1 or qcom,cpr-speed-bins number of
+		    elements in which case the elements are matched to
+		    speed bins 1-to-1 or exactly 1 element which is used
+		    regardless of the fuse combination and speed bin found
+		    on a given chip.
+
+=======
+Example
+=======
+
+apcc_cpr: cpr3-ctrl@99e8000 {
+	compatible = "qcom,cpr3-msm8996-hmss-regulator";
+	reg = <0x099e8000 0x4000>, <0x00074000 0x1000>;
+	reg-names = "cpr_ctrl", "fuse_base";
+	clocks = <&clock_gcc clk_gcc_hmss_rbcpr_clk>;
+	clock-names = "core_clk";
+	interrupts = <0 48 0>, <0 47 0>;
+	interrupt-names = "cpr", "ceiling";
+	qcom,cpr-interrupt-affinity = <&CPU0 &CPU1>;
+	qcom,cpr-ctrl-name = "apcc";
+
+	qcom,cpr-sensor-time = <1000>;
+	qcom,cpr-loop-time = <5000000>;
+	qcom,cpr-idle-cycles = <15>;
+	qcom,cpr-up-down-delay-time = <3000>;
+	qcom,cpr-step-quot-init-min = <13>;
+	qcom,cpr-step-quot-init-max = <13>;
+	qcom,cpr-count-mode = <2>;
+
+	qcom,apm-ctrl = <&apc_apm>;
+	qcom,apm-threshold-voltage = <850000>;
+	qcom,apm-hysteresis-voltage = <5000>;
+	qcom,system-supply-max-voltage = <1015000>;
+	qcom,mem-acc-supply-threshold-voltage = <700000>;
+	qcom,mem-acc-supply-corner-map = <1 2>;
+
+	vdd-supply = <&pm8994_s11>;
+	qcom,voltage-step = <5000>;
+	vdd-limit-supply = <&pm8994_s11_limit>;
+	mem-acc-thread0-supply = <&apc0_pwrcl_mem_acc_vreg>;
+	mem-acc-thread1-supply = <&apc1_perfcl_mem_acc_vreg>;
+	mem-acc-supply = <&apcc_l3_mem_acc_vreg>;
+	vdd-thread0-ldo-supply = <&kryo0_vreg>;
+	vdd-thread1-ldo-supply = <&kryo1_vreg>;
+	vdd-thread0-ldo-ret-supply = <&kryo0_retention_vreg>;
+	vdd-thread1-ldo-ret-supply = <&kryo1_retention_vreg>;
+
+	qcom,cpr-enable;
+	qcom,cpr-hw-closed-loop;
+	qcom,cpr-clock-throttling = <0x20>;
+
+	qcom,cpr-aging-ref-voltage = <905000>;
+
+	thread@0 {
+		qcom,cpr-thread-id = <0>;
+		qcom,cpr-consecutive-up = <0>;
+		qcom,cpr-consecutive-down = <2>;
+		qcom,cpr-up-threshold = <0>;
+		qcom,cpr-down-threshold = <2>;
+
+		apc0_pwrcl_vreg: regulator-pwrcl {
+			regulator-name = "apc0_pwrcl_corner";
+			regulator-min-microvolt = <1>;
+			regulator-max-microvolt = <19>;
+
+			qcom,cpr-pd-bypass-mask = <0x07>;
+			qcom,cpr-fuse-corners = <5>;
+			qcom,cpr-fuse-combos = <1>;
+			qcom,cpr-corners = <19>;
+
+			qcom,ldo-min-headroom-voltage = <150000>;
+			qcom,ldo-max-headroom-voltage = <470000>;
+			qcom,ldo-max-voltage = <805000>;
+			qcom,uses-mem-acc;
+
+			qcom,cpr-corner-fmax-map = <1 2 6 11 19>;
+
+			qcom,cpr-voltage-ceiling =
+				<670000  670000  745000  745000  745000
+				 745000  905000  905000  905000  905000
+				 905000 1015000 1015000 1015000 1015000
+				1015000 1015000 1015000 1015000>;
+			qcom,cpr-voltage-floor =
+				<520000  550000  555000  565000  585000
+				 615000  635000  655000  690000  720000
+				 740000  750000  760000  770000  780000
+				 790000  815000  840000  850000>;
+			qcom,corner-frequencies =
+				<192000000  268800000  307200000
+				 345600000  403200000  480000000
+				 576000000  633600000  729600000
+				 806400000  883200000  960000000
+				1017600000 1113600000 1190400000
+				1267200000 1344000000 1420800000
+				1459200000>;
+
+			qcom,cpr-ro-scaling-factor =
+			      <   0    0    0    0 2222 2275 2506 2491
+			       2649 2640 2886 2866    0    0    0    0>,
+			      <   0    0    0    0 2222 2275 2506 2491
+			       2649 2640 2886 2866    0    0    0    0>,
+			      <   0    0    0    0 2222 2275 2506 2491
+			       2649 2640 2886 2866    0    0    0    0>,
+			      <   0    0    0    0 2147 2226 2310 2312
+			       2450 2447 2603 2600    0    0    0    0>,
+			      <   0    0    0    0 1989 2079 2066 2083
+			       2193 2201 2283 2296    0    0    0    0>;
+
+			qcom,cpr-open-loop-voltage-fuse-adjustment =
+				<0 0 0 0 0>;
+			qcom,cpr-closed-loop-voltage-fuse-adjustment =
+				<0 0 0 0 0>;
+
+			qcom,allow-voltage-interpolation;
+			qcom,allow-quotient-interpolation;
+			qcom,cpr-scaled-open-loop-voltage-as-ceiling;
+
+			qcom,cpr-aging-max-voltage-adjustment = <25000>;
+			qcom,cpr-aging-ref-corner = <11>;
+			qcom,cpr-aging-ro-scaling-factor = <3200>;
+			qcom,cpr-aging-derate =
+				<1000 1000 1000 1000 1000 1000 1000 1000
+				 1000 1000 1000 1000 1000 1000 1000 1000
+				 1000 1000 1000>;
+			qcom,allow-aging-voltage-adjustment = <1>;
+		};
+
+		apc0_cbf_vreg: regulator-cbf {
+			regulator-name = "apc0_cbf_corner";
+			regulator-min-microvolt = <1>;
+			regulator-max-microvolt = <10>;
+			qcom,is-cbf-regulator;
+
+			qcom,cpr-pd-bypass-mask = <0x18>;
+			qcom,cpr-fuse-corners = <5>;
+			qcom,cpr-fuse-combos = <1>;
+			qcom,cpr-corners = <10>;
+
+			qcom,cpr-corner-fmax-map = <1 2 5 9 10>;
+
+			qcom,cpr-voltage-ceiling =
+			       <605000  670000  745000  745000  745000
+				905000  905000  905000  905000 1015000>;
+			qcom,cpr-voltage-floor =
+			       <520000  545000  565000  595000  635000
+				660000  690000  730000  750000  850000>;
+
+			qcom,corner-frequencies =
+				<150000000  307200000  384000000
+				 499200000  595200000  691200000
+				 787200000  883200000  960000000
+				1036800000>;
+
+			qcom,cpr-ro-scaling-factor =
+			      <   0    0    0    0 2222 2275 2506 2491
+			       2649 2640 2886 2866    0    0    0    0>,
+			      <   0    0    0    0 2222 2275 2506 2491
+			       2649 2640 2886 2866    0    0    0    0>,
+			      <   0    0    0    0 2222 2275 2506 2491
+			       2649 2640 2886 2866    0    0    0    0>,
+			      <   0    0    0    0 2147 2226 2310 2312
+			       2450 2447 2603 2600    0    0    0    0>,
+			      <   0    0    0    0 1989 2079 2066 2083
+			       2193 2201 2283 2296    0    0    0    0>;
+
+			qcom,cpr-open-loop-voltage-fuse-adjustment =
+				<0 0 0 0 0>;
+			qcom,cpr-closed-loop-voltage-fuse-adjustment =
+				<0 0 0 0 0>;
+
+			qcom,allow-voltage-interpolation;
+			qcom,allow-quotient-interpolation;
+			qcom,cpr-scaled-open-loop-voltage-as-ceiling;
+
+			qcom,cpr-aging-max-voltage-adjustment = <25000>;
+			qcom,cpr-aging-ref-corner = <9>;
+			qcom,cpr-aging-ro-scaling-factor = <3200>;
+			qcom,cpr-aging-derate =
+				<1000 1000 1000 1000 1000 1000 1000 1000
+				 1000 1000>;
+			qcom,allow-aging-voltage-adjustment = <1>;
+		};
+	};
+
+	thread@1 {
+		qcom,cpr-thread-id = <1>;
+		qcom,cpr-consecutive-up = <0>;
+		qcom,cpr-consecutive-down = <2>;
+		qcom,cpr-up-threshold = <0>;
+		qcom,cpr-down-threshold = <2>;
+
+		apc1_vreg: regulator {
+			regulator-name = "apc1_corner";
+			regulator-min-microvolt = <1>;
+			regulator-max-microvolt = <18>;
+
+			qcom,cpr-pd-bypass-mask = <0xe0>;
+			qcom,cpr-fuse-corners = <5>;
+			qcom,cpr-fuse-combos = <1>;
+			qcom,cpr-corners = <18>;
+
+			qcom,ldo-min-headroom-voltage = <150000>;
+			qcom,ldo-max-headroom-voltage = <470000>;
+			qcom,ldo-max-voltage = <805000>;
+			qcom,uses-mem-acc;
+
+			qcom,cpr-corner-fmax-map = <1 3 5 11 18>;
+
+			qcom,cpr-voltage-ceiling =
+				<670000  670000  670000  745000  745000
+				 905000  905000  905000  905000  905000
+				 905000 1015000 1015000 1015000 1015000
+				1015000 1015000 1015000>;
+			qcom,cpr-voltage-floor =
+				<520000  530000  545000  590000  620000
+				 635000  660000  685000  700000  730000
+				 740000  750000  765000  790000  805000
+				 815000  830000  850000>;
+
+			qcom,corner-frequencies =
+				<307200000  345600000  403200000
+				 480000000  576000000  633600000
+				 729600000  806400000  883200000
+				 960000000 1017600000 1113600000
+				1190400000 1267200000 1344000000
+				1420800000 1497600000 1593600000>;
+
+			qcom,cpr-ro-scaling-factor =
+			      <   0    0    0    0 2212 2273 2517 2506
+			       2663 2650 2908 2891    0    0    0    0>,
+			      <   0    0    0    0 2212 2273 2517 2506
+			       2663 2650 2908 2891    0    0    0    0>,
+			      <   0    0    0    0 2212 2273 2517 2506
+			       2663 2650 2908 2891    0    0    0    0>,
+			      <   0    0    0    0 2152 2237 2321 2337
+			       2475 2469 2636 2612    0    0    0    0>,
+			      <   0    0    0    0 2001 2102 2092 2090
+			       2203 2210 2297 2297    0    0    0    0>;
+
+			qcom,cpr-open-loop-voltage-fuse-adjustment =
+				<0 0 0 5000 0>;
+			qcom,cpr-closed-loop-voltage-fuse-adjustment =
+				<0 0 0 20000 0>;
+
+			qcom,allow-voltage-interpolation;
+			qcom,allow-quotient-interpolation;
+			qcom,cpr-scaled-open-loop-voltage-as-ceiling;
+
+			qcom,cpr-aging-max-voltage-adjustment = <25000>;
+			qcom,cpr-aging-ref-corner = <11>;
+			qcom,cpr-aging-ro-scaling-factor = <3200>;
+			qcom,cpr-aging-derate =
+				<1000 1000 1000 1000 1000 1000 1000 1000
+				 1000 1000 1000 1000 1000 1000 1000 1000
+				 1000 1000>;
+			qcom,allow-aging-voltage-adjustment = <1>;
+		};
+	};
+};
diff --git a/Documentation/devicetree/bindings/regulator/cpr3-mmss-regulator.txt b/Documentation/devicetree/bindings/regulator/cpr3-mmss-regulator.txt
new file mode 100644
index 0000000..baa0cd2
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/cpr3-mmss-regulator.txt
@@ -0,0 +1,345 @@
+Qualcomm Technologies, Inc. CPR3 Regulator - MMSS Specific Bindings
+
+MMSS CPR3 controllers each support one CPR thread that monitors the voltage of
+the graphics processor (MMSS) supply regulator.  The CPR open-loop voltages are
+stored in hardware fuses for MMSS CPR3 controllers.  However, the CPR target
+quotients must be defined in device tree.
+
+This document describes the MMSS specific CPR3 bindings.
+
+=======================
+Required Node Structure
+=======================
+
+CPR3 regulators must be described in three levels of devices nodes.  The first
+level describes the CPR3 controller.  The second level describes exacly one
+hardware thread managed by the controller.  The third level describes one or
+more logical regulators handled by the CPR thread.
+
+All platform independent cpr3-regulator binding guidelines defined in
+cpr3-regulator.txt also apply to cpr3-hmss-regulator devices.
+
+====================================
+First Level Nodes - CPR3 Controllers
+====================================
+
+MMSS specific properties:
+- compatible
+	Usage:      required
+	Value type: <string>
+	Definition: should be one of the following:
+		    "qcom,cpr3-msm8996-v1-mmss-regulator",
+		    "qcom,cpr3-msm8996-v2-mmss-regulator",
+		    "qcom,cpr3-msm8996-v3-mmss-regulator",
+		    "qcom,cpr3-msm8996-mmss-regulator",
+		    "qcom,cpr3-msm8996pro-mmss-regulator",
+		    "qcom,cpr4-msm8998-v1-mmss-regulator",
+		    "qcom,cpr4-msm8998-v2-mmss-regulator",
+		    "qcom,cpr4-msm8998-mmss-regulator".
+		    If the SoC revision is not specified, then it is assumed to
+		    be the most recent revision (i.e v3 for MSM8996 and v2
+		    for MSM8998).
+
+- clocks
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: Array of clock tuples in which each tuple consists of a
+		    phandle to a clock device and a clock ID number.  The
+		    following clocks must be specified: MMSS RBCPR, MMSS RBCPR
+		    AHB, and MMSS MMAGIC AHB.
+
+- clock-names
+	Usage:      required
+	Value type: <stringlist>
+	Definition: Clock names.  This list must match up 1-to-1 with the clocks
+		    specified in the 'clocks' property. "core_clk", "iface_clk",
+		    and "bus_clk" must be specified.  Note that "iface_clk" is
+		    not required for devices with compatible =
+		    "qcom,cpr4-msm8998-mmss-regulator".
+
+- qcom,cpr-temp-point-map
+	Usage:      Required if qcom,corner-allow-temp-adjustment is specified
+		    for at least one of the CPR3 regulators.
+	Value type: <prop-encoded-array>
+	Definition: The temperature points in decidegrees Celsius which indicate
+		    the range of temperature bands supported. If t1, t2, and t3
+		    are the temperature points, then the temperature bands are:
+		    (-inf, t1], (t1, t2], (t2, t3], and (t3, inf).  1 to 3
+		    temperature points should be specified.
+
+- qcom,cpr-initial-temp-band
+	Usage:      Required if qcom,cpr-temp-point-map is specified.
+	Value type: <u32>
+	Definition: The initial temp band considering 0-based index at which
+		    the baseline target quotients are derived and fused.
+		    Supported values: 0 to number of elements in
+		    qcom,cpr-temp-point-map.
+
+- qcom,cpr-step-quot-fixed
+	Usage:      Optional for controllers with compatible =
+		    "qcom,cpr4-msm8998-mmss-regulator"; unsupported for
+		    all others.
+	Value type: <u32>
+	Definition: Fixed step quotient value used by controller for applying
+		    the SDELTA margin adjustments on the programmed target
+		    quotient values. The step quotient is the number of
+		    additional ring oscillator ticks observed for each
+		    qcom,voltage-step increase in vdd-supply output voltage.
+		    Supported values: 0 - 63.
+
+=================================================
+Second Level Nodes - CPR Threads for a Controller
+=================================================
+
+MMSS specific properties:
+N/A
+
+===============================================
+Third Level Nodes - CPR Regulators for a Thread
+===============================================
+
+MMSS specific properties:
+- qcom,cpr-fuse-corners
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the number of fuse corners.  This value must be 4
+		    for MMSS.
+
+- qcom,cpr-fuse-combos
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the number of fuse combinations being supported by
+		    the device.  This value is utilized by several other
+		    properties.  Supported values are 1 up to the maximum
+		    possible for a given regulator type.  For MMSS the maximum
+		    supported value is 8.  These combos correspond to CPR
+		    revision fuse values from 0 to 7 in order.
+
+- qcom,cpr-speed-bins
+	Usage:      optional
+	Value type: <u32>
+	Definition: Specifies the number of speed bins being supported by the
+		    device.  This value is utilized by several other properties.
+		    Supported values are 1 up to the maximum possible for a
+		    given regulator type.  For MMSS the maximum supported value
+		    is 1.
+
+- qcom,mem-acc-voltage
+	Usage:      required if mem-acc-supply is specified for the CPR3 controller
+		    containing this CPR3 regulator
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the mem-acc-supply
+		    corner for each voltage corner in order from lowest to highest.
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+		    Each tuple must be of the length defined in the
+		    corresponding element of the qcom,cpr-corners property or
+		    the qcom,cpr-speed-bins property.  A single tuple may only
+		    be specified if all of the corner counts in qcom,cpr-corners
+		    are the same.
+
+- qcom,cpr-target-quotients
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: A grouping of integer tuple lists.  Each tuple defines the
+		    CPR target quotient for each ring oscillator (RO) for a
+		    given corner.  Since CPR3 supports exactly 16 ROs, each
+		    tuple must contain 16 elements corresponding to RO0 through
+		    RO15 in order.  If a given RO is unused for a corner, then
+		    its target quotient should be specified as 0.
+
+		    Each tuple list in the grouping must meet the same size
+		    requirements as those specified for qcom,mem-acc-voltage
+		    above. The tuples in a given list are ordered from the
+		    lowest corner to the highest corner.
+
+- qcom,cpr-ro-scaling-factor
+	Usage:      required if qcom,cpr-closed-loop-voltage-adjustment is
+		    specified
+	Value type: <prop-encoded-array>
+	Definition: The common definition of this property in cpr3-regulator.txt
+		    is accurate for MMSS CPR3 controllers except for this
+		    modification:
+
+		    Each tuple list must contain the number of tuples defined in
+		    the corresponding element of the qcom,cpr-corners property
+		    or the qcom,cpr-speed-bins property as opposed to the value
+		    of the qcom,cpr-fuse-corners property.
+
+- qcom,cpr-fused-closed-loop-voltage-adjustment-map
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the CPR fused
+		    corner closed-loop offset adjustment fuse to utilize for
+		    each voltage corner in order from lowest to highest.
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+		    Each tuple must be of the length defined in the
+		    corresponding element of the qcom,cpr-corners property or
+		    the qcom,cpr-speed-bins property.  A single tuple may only
+		    be specified if all of the corner counts in qcom,cpr-corners
+		    are the same.
+
+		    Each tuple element must be either 0 or in the range 1 to
+		    qcom,cpr-fuse-corners.  A value of 0 signifies that no fuse
+		    based adjustment should be applied to the fuse corner.
+		    Values 1 to qcom,cpr-fuse-corners denote the specific fuse
+		    corner that should be used by a given voltage corner.
+
+- qcom,corner-allow-temp-adjustment
+	Usage:      Optional for controllers with compatible =
+		    "qcom,cpr4-msm8998-mmss-regulator"; unsupported for
+		    all others.
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the CPR
+		    temperature adjustment feature enable state for each voltage
+		    corner in order from lowest to highest. Each element in the
+		    tuple should be either 0 (temperature adjustment not
+		    allowed) or 1 (temperature adjustment allowed).
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+		    Each tuple must be of the length defined in the
+		    corresponding element of the qcom,cpr-corners property or
+		    the qcom,cpr-speed-bin-corners property.  A single tuple may
+		    only be specified if all of the corner counts in
+		    qcom,cpr-corners are the same.
+
+- qcom,cpr-cornerX-temp-core-voltage-adjustment
+	Usage:      Required if qcom,corner-allow-temp-adjustment is specified
+		    for this CPR3 regulator.
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples for cornerX. The possible values
+		    for X are 1 to the max value specified in qcom,cpr-corners.
+		    Each tuple defines the temperature based voltage adjustment
+		    in microvolts for each temperature band from lowest to
+		    highest.  Each tuple must have a number of elements equal to
+		    (the number of elements in qcom,cpr-ctrl-temp-point-map + 1)
+
+		    The tuple list must contain qcom,cpr-fuse-combos number of
+		    tuples in which case the tuples are matched to fuse
+		    combinations 1-to-1 or qcom,cpr-speed-bins number of tuples
+		    in which case the tuples are matched to speed bins 1-to-1 or
+		    exactly 1 list which is used regardless of the fuse
+		    combination and speed bin found on a given chip.
+
+Note that the qcom,cpr-closed-loop-voltage-fuse-adjustment property is not
+meaningful for MMSS CPR3 regulator nodes since target quotients are not defined
+in fuses.
+
+=======
+Example
+=======
+
+gfx_cpr: cpr3-ctrl@838000 {
+	compatible = "qcom,cpr3-msm8996-mmss-regulator";
+	reg = <0x00838000 0x4000>, <0x00074000 0x1000>;
+	reg-names = "cpr_ctrl", "fuse_base";
+	clocks = <&clock_mmss clk_mmss_rbcpr_clk>,
+		 <&clock_mmss clk_mmss_rbcpr_ahb_clk>,
+		 <&clock_mmss clk_mmss_mmagic_ahb_clk>;
+	clock-names = "core_clk", "iface_clk", "bus_clk";
+	interrupts = <0 166 0>;
+	interrupt-names = "cpr";
+	qcom,cpr-ctrl-name = "gfx";
+
+	qcom,cpr-sensor-time = <1000>;
+	qcom,cpr-loop-time = <5000000>;
+	qcom,cpr-idle-cycles = <15>;
+	qcom,cpr-step-quot-init-min = <13>;
+	qcom,cpr-step-quot-init-max = <13>;
+	qcom,cpr-count-mode = <2>;
+
+	vdd-supply = <&pmi8994_s2>;
+	qcom,voltage-step = <5000>;
+
+	qcom,cpr-enable;
+
+	qcom,cpr-aging-ref-voltage = <905000>;
+
+	thread@0 {
+		qcom,cpr-thread-id = <0>;
+		qcom,cpr-consecutive-up = <0>;
+		qcom,cpr-consecutive-down = <2>;
+		qcom,cpr-up-threshold = <0>;
+		qcom,cpr-down-threshold = <2>;
+
+		gfx_vreg: regulator {
+			regulator-name = "gfx_corner";
+			regulator-min-microvolt = <1>;
+			regulator-max-microvolt = <4>;
+
+			qcom,cpr-fuse-corners = <4>;
+			qcom,cpr-fuse-combos = <1>;
+			qcom,cpr-corners = <4>;
+
+			qcom,cpr-corner-fmax-map = <1 2 3 4>;
+
+			qcom,cpr-voltage-ceiling =
+				<670000  745000  905000 1015000>;
+			qcom,cpr-voltage-floor =
+				<545000  625000  755000  855000>;
+
+			qcom,mem-acc-voltage = <1 1 2 2>;
+
+			qcom,corner-frequencies =
+				<120000000 205000000 360000000
+				 480000000>;
+
+			qcom,cpr-target-quotients =
+			      <   0    0    0    0  249  232    0  394
+				  0  422    0    0    0    0    0    0>,
+			      <   0    0    0    0  400  363    0  565
+				  0  603    0    0    0    0    0    0>,
+			      <   0    0    0    0  669  601    0  851
+				  0  905    0    0    0    0    0    0>,
+			      <   0    0    0    0  899  806    0 1084
+				  0 1149    0    0    0    0    0    0>;
+
+			qcom,cpr-ro-scaling-factor =
+			      <   0    0    0    0 2268 2004    0 2408
+				  0 2539    0    0    0    0    0    0>,
+			      <   0    0    0    0 2268 2004    0 2408
+				  0 2539    0    0    0    0    0    0>,
+			      <   0    0    0    0 2268 2004    0 2408
+				  0 2539    0    0    0    0    0    0>,
+			      <   0    0    0    0 2268 2004    0 2408
+				  0 2539    0    0    0    0    0    0>;
+
+			qcom,cpr-open-loop-voltage-fuse-adjustment =
+				<35000 0 0 0>;
+			qcom,cpr-closed-loop-voltage-adjustment =
+				<45000 0 0 0>;
+
+			qcom,cpr-fused-closed-loop-voltage-adjustment-map =
+				<2 2 0 4>;
+
+			qcom,allow-voltage-interpolation;
+			qcom,cpr-scaled-open-loop-voltage-as-ceiling;
+
+			qcom,cpr-aging-max-voltage-adjustment = <25000>;
+			qcom,cpr-aging-ref-corner = <3>;
+			qcom,cpr-aging-ro-scaling-factor = <2950>;
+			qcom,cpr-aging-derate =
+				<1000 1000 1000 1000>;
+			qcom,allow-aging-voltage-adjustment = <1>;
+		};
+	};
+};
diff --git a/Documentation/devicetree/bindings/regulator/cpr3-regulator.txt b/Documentation/devicetree/bindings/regulator/cpr3-regulator.txt
new file mode 100644
index 0000000..af53e59
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/cpr3-regulator.txt
@@ -0,0 +1,622 @@
+Qualcomm Technologies, Inc. CPR3 Regulator - Platform Independent Bindings
+
+Core Power Reduction (CPR) version 3 controllers are used by some Qualcomm
+Technologies, Inc. (QTI) SoCs to manage important voltage regulators.  CPR3
+controllers are capable of monitoring several ring oscillator sensing loops
+simultaneously.  The CPR3 controller informs software when the silicon
+conditions require the supply voltage to be increased or decreased.  On certain
+supply rails, the CPR3 controller is able to propagate the voltage increase
+or decrease requests all the way to the PMIC without software involvement.
+
+This document describes the common platform independent bindings that apply
+to all CPR3 controllers.
+
+=======================
+Required Node Structure
+=======================
+
+CPR3 regulators must be described in three levels of devices nodes.  The first
+level describes the CPR3 controller.  The second level describes one or more
+hardware threads managed by the controller.  The third level describes one or
+more logical regulators handled by each CPR thread.
+
+====================================
+First Level Nodes - CPR3 Controllers
+====================================
+
+Platform independent properties:
+- compatible
+	Usage:      required
+	Value type: <string>
+	Definition: The value to use for this property is defined in the
+		    platform specific cpr3-regulator binding documentation
+		    files.
+
+- reg
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: Addresses and sizes for the memory of the CPR3 controller,
+		    the first fuse row, and optionally a register used to check
+		    if aging measurements are possible.
+
+- reg-names
+	Usage:      required
+	Value type: <stringlist>
+	Definition: Address names. Must include "cpr_ctrl" and "fuse_base".
+		    "aging_allowed" may also be specified.  The strings must be
+		    specified in the same order as the corresponding addresses
+		    are specified in the reg property.
+
+- qcom,cpr-ctrl-name
+	Usage:      required
+	Value type: <string>
+	Definition: Name for this CPR controller
+
+- vdd-supply
+	Usage:      required
+	Value type: <phandle>
+	Definition: phandle of the underlying regulator device that is managed
+		    by this CPR controller.
+
+- system-supply
+	Usage:      optional
+	Value type: <phandle>
+	Definition: phandle of the system-level regulator device which the
+		    vdd-supply depends upon.  Requests for this regulator must
+		    be made before increasing the vdd-supply voltage and after
+		    decreasing the vdd-supply voltage.
+
+- mem-acc-supply
+	Usage:      optional
+	Value type: <phandle>
+	Definition: phandle of the mem-acc regulator device which is used to
+		    configure memory array circuitry settings based upon
+		    the performance operating point. Requests for this regulator
+		    must be made before decreasing the vdd-supply voltage and
+		    after increasing the vdd-supply voltage.
+
+- clocks
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: Array of clock tuples in which each tuple consists of a
+		    phandle to a clock device and a clock ID number. The CPR3
+		    core clock must be specified for some targets. See platform
+		    specific cpr3-regulator binding documentation for additional
+		    clocks that may also need to be specified.
+
+- clock-names
+	Usage:      optional
+	Value type: <stringlist>
+	Definition: Clock names.  This list must match up 1-to-1 with the clocks
+		    specified in the 'clocks' property. "core_clk" must be
+		    specified for some platforms. Other clocks may be required
+		    for some platforms.
+
+- interrupts
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: CPR interrupt specifier and optionally a hardware
+		    closed-loop ceiling interrupt specifier.
+
+- interrupt-names
+	Usage:      required
+	Value type: <stringlist>
+	Definition: Interrupt names.  This list must match up 1-to-1 with the
+		    interrupts specified in the 'interrupts' property. "cpr"
+		    must be specified.  "ceiling" may be specified for some
+		    platforms.
+
+- qcom,cpr-interrupt-affinity
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of CPU phandles which correspond to the cores that
+		    the "cpr" interrupt should have affinity for.
+
+- qcom,cpr-sensor-time
+	Usage:      required
+	Value type: <u32>
+	Definition: The time in nanoseconds that each CPR sensor within the
+		    sensing loop takes to perform a measurement.
+
+- qcom,cpr-loop-time
+	Usage:      required
+	Value type: <u32>
+	Definition: The time in nanoseconds between consecutive CPR
+		    measurements.
+
+- qcom,cpr-idle-cycles
+	Usage:      required
+	Value type: <u32>
+	Definition: The number of CPR core clock cycles for the CPR controller
+		    to wait in transitional states.
+		    Supported values: 0 - 31.
+
+- qcom,voltage-step
+	Usage:      required
+	Value type: <u32>
+	Definition: The voltage in microvolts of a single step of the VDD supply
+		    regulator being controlled by CPR.
+
+- qcom,cpr-step-quot-init-min
+	Usage:      required
+	Value type: <u32>
+	Definition: The default minimum CPR step quotient value.  The step
+		    quotient is the number of additional ring oscillator ticks
+		    observed for each qcom,voltage-step increase in vdd-supply
+		    output voltage.  Supported values: 0 - 63.
+
+- qcom,cpr-step-quot-init-max
+	Usage:      required
+	Value type: <u32>
+	Definition: The default maximum CPR step quotient value.
+		    Supported values: 0 - 63.
+
+- qcom,cpr-count-mode
+	Usage:      required
+	Value type: <u32>
+	Definition: The CPR counting mode to use during CPR measurements.
+		    Supported values:
+			0 - Read all sensors at once and use the minimum
+			    quotient value observed in repeated measurements.
+			1 - Read all sensors at once and use the maximum
+			    quotient value observed in repeated measurements.
+			2 - Read each sensor once in a sequential, staggered
+			    fashion.
+
+- qcom,cpr-count-repeat
+	Usage:      optional
+	Value type: <u32>
+	Definition: The number of times to read CPR sensors during a single CPR
+		    measurement when using one of the all-at-once count modes.
+
+- qcom,cpr-enable
+	Usage:      optional
+	Value type: <empty>
+	Definition: Boolean flag which indicates that the CPR3 controller
+		    should operate in closed-loop mode (i.e. CPR sensing loop
+		    enabled) as opposed to open-loop mode (i.e. CPR sensing loop
+		    disabled) by default.
+
+- qcom,cpr-aging-ref-voltage
+	Usage:      required if qcom,allow-aging-voltage-adjustment is specified
+		    for any third level nodes
+	Value type: <u32>
+	Definition: Specifies the CPR aging reference voltage in microvolts.
+		    This is the voltage that vdd-supply must be set to when
+		    performing an aging measurement.
+
+- qcom,cpr-aging-allowed-reg-mask
+	Usage:      required if "aging_allowed" register is specified
+	Value type: <u32>
+	Definition: Bitmask used to mask off the "aging_allowed" register.
+
+- qcom,cpr-aging-allowed-reg-value
+	Usage:      required if "aging_allowed" register is specified
+	Value type: <u32>
+	Definition: Value required in the masked off "aging_allowed" register
+		    bits in order for a CPR aging measurement to be possible.
+
+- qcom,cpr-panic-reg-addr-list
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: Array of register addresses to be dumped when device resets.
+
+- qcom,cpr-panic-reg-name-list
+	Usage:      optional, though only meaningful if
+		    qcom,cpr-panic-reg-addr-list is specified
+	Value type: <prop-encoded-array>
+	Definition: Address names. Must be specified in the same order
+		    as the corresponding addresses are specified in
+		    the qcom,cpr-panic-reg-addr-list property.
+
+=================================================
+Second Level Nodes - CPR Threads for a Controller
+=================================================
+
+Platform independent properties:
+- qcom,cpr-thread-id
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the hardware thread ID of this thread within the
+		    CPR controller.
+
+- qcom,cpr-consecutive-up
+	Usage:      required
+	Value type: <u32>
+	Definition: The number of consecutive CPR step up events needed to
+		    to trigger an up interrupt.  Supported values: 0 - 15.
+
+- qcom,cpr-consecutive-down
+	Usage:      required
+	Value type: <u32>
+	Definition: The number of consecutive CPR step down events needed to
+		    to trigger a down interrupt.  Supported values: 0 - 15.
+
+- qcom,cpr-up-threshold
+	Usage:      required
+	Value type: <u32>
+	Definition: The number CPR error steps required to generate an up event.
+		    Supported values: 0 - 31.
+
+- qcom,cpr-down-threshold
+	Usage:      required
+	Value type: <u32>
+	Definition: The number CPR error steps required to generate a down
+		    event.  Supported values: 0 - 31.
+
+===============================================
+Third Level Nodes - CPR Regulators for a Thread
+===============================================
+
+Platform independent properties:
+- regulator-name
+	Usage:      required
+	Value type: <string>
+	Definition: Specifies the name for this CPR3 regulator.
+
+- regulator-min-microvolt
+	Usage:      required
+	Value type: <u32>
+	Definition: Minimum corner value which should be 1 to represent the
+		    lowest supported corner.
+
+- regulator-max-microvolt
+	Usage:      required
+	Value type: <u32>
+	Definition: Maximum corner value which should be equal to largest value
+		    listed in qcom,cpr-corners.
+
+- qcom,cpr-fuse-corners
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the number of fuse corners.  See platform specific
+		    binding files for further requirements.
+
+- qcom,cpr-fuse-combos
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the number of fuse combinations being supported by
+		    the device.  This value is utilized by several other
+		    properties.  Supported values are 1 up to the maximum
+		    possible for a given regulator type.  See platform specific
+		    binding files for further details.
+
+- qcom,cpr-speed-bins
+	Usage:      optional
+	Value type: <u32>
+	Definition: Specifies the number of speed bins being supported by the
+		    device.  This value is utilized by several other properties.
+		    Supported values are 1 up to the maximum possible for a
+		    given regulator type.  See platform specific binding files
+		    for further details.
+
+		    This property can only be utilized if the number of corners
+		    for all fuse combinations associated with a given speed bin
+		    is the same.
+
+- qcom,cpr-corners
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: A list of integers which defines how many voltage corners
+		    are to be used for each fuse combination.  The list must
+		    contain either qcom,cpr-fuse-combos number of elements in
+		    which case the corner counts are applied to fuse
+		    combinations 1-to-1 or the list must contain exactly 1
+		    element which is used regardless of the fuse combination
+		    found on a given chip.
+
+- qcom,cpr-speed-bin-corners
+	Usage:      required if qcom,cpr-speed-bins is specified
+	Value type: <prop-encoded-array>
+	Definition: A list of integers which defines how many voltage corners
+		    are to be used for each speed bin.  The list must contain
+		    qcom,cpr-speed-bins number of elements.
+
+- qcom,cpr-corner-fmax-map
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the highest
+		    (i.e. maximum frequency) 1-based corner value associated
+		    with each fuse-corner.
+
+		    Each tuple must have a number of elements equal to the value
+		    of the qcom,cpr-fuse-corners property.  The elements of a
+		    tuple are ordered from lowest to highest fuse corner.
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+- qcom,cpr-voltage-ceiling
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the CPR ceiling
+		    voltage in microvolts for each voltage corner in order from
+		    lowest to highest.
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+		    Each tuple must be of the length defined in the
+		    corresponding element of the qcom,cpr-corners property or
+		    the qcom,cpr-speed-bins property.  A single tuple may only
+		    be specified if all of the corner counts in qcom,cpr-corners
+		    are the same.
+
+- qcom,cpr-voltage-floor
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the CPR floor
+		    voltage in microvolts for each voltage corner in order from
+		    lowest to highest.
+
+		    The list and tuples must meet the same size requirements as
+		    those specified for qcom,cpr-voltage-ceiling above.
+
+- qcom,cpr-floor-to-ceiling-max-range
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the maximum
+		    allowed difference between the final floor voltage and the
+		    final ceiling voltage in microvolts for each voltage corner
+		    in order from lowest to highest.  A negative value may be
+		    specified for an element to indicate that there is no
+		    limitation of the floor to ceiling voltage range for the
+		    corresponding corner.
+
+		    In the case that the initial floor to ceiling voltage is
+		    greater than the max range specified, the floor voltage will
+		    be increased in order to satisfy the max range constraint.
+
+		    The list and tuples must meet the same size requirements as
+		    those specified for qcom,cpr-voltage-ceiling above.
+
+- qcom,system-voltage
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the system-supply
+		    voltage in microvolts or corners or levels for each voltage
+		    corner in order from lowest to highest.
+
+		    The list and tuples must meet the same size requirements as
+		    those specified for qcom,cpr-voltage-ceiling above.
+
+- qcom,corner-frequencies
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the CPU frequency
+		    in Hertz corresponding to each voltage corner in order from
+		    lowest to highest.
+
+		    The list and tuples must meet the same size requirements as
+		    those specified for qcom,cpr-voltage-ceiling above.
+
+- qcom,allow-voltage-interpolation
+	Usage:      optional
+	Value type: <empty>
+	Definition: Boolean flag which indicates that it is acceptable to use
+		    interpolated open-loop voltage values.  These values are
+		    interpolated between the open-loop voltage Fmax fuse values.
+
+- qcom,cpr-scaled-open-loop-voltage-as-ceiling
+	Usage:      optional
+	Value type: <empty>
+	Definition: Boolean flag which indicates that it is acceptable to use
+		    the interpolated open-loop voltage for each corner as the
+		    CPR ceiling voltage for each corner.
+
+- qcom,cpr-open-loop-voltage-fuse-adjustment
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the open-loop
+		    voltage adjustment in microvolts for each fused voltage
+		    corner in order from lowest to highest.  This adjustment is
+		    applied to the values read from fuses before the values are
+		    used in interpolation for intermediate corners.
+
+		    The list and tuples must meet the same size requirements as
+		    those specified for qcom,cpr-corner-fmax-map above.
+
+		    The open-loop voltage for a given fuse corner corresponds to
+		    the voltage that is safe to use under all circumstances.
+		    It is used as a starting voltage for CPR and may also be
+		    specified as a ceiling voltage for CPR scaling.
+
+- qcom,cpr-open-loop-voltage-adjustment
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the open-loop
+		    voltage adjustment in microvolts for each voltage corner in
+		    order from lowest to highest.  This adjustment is applied to
+		    the open-loop voltage values after they have been
+		    interpolated for intermediate corners.
+
+		    The list and tuples must meet the same size requirements as
+		    those specified for qcom,cpr-voltage-ceiling above.
+
+- qcom,cpr-open-loop-voltage-min-diff
+	Usage:      optional; only meaningful if the
+		    qcom,cpr-open-loop-voltage-adjustment property is specified
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the minimum
+		    allowed open-loop voltage difference in microvolts between
+		    each voltage corner and the one immediately preceding it.
+		    The elements in a tuple are ordered from the lowest to the
+		    highest corner.  The value specified for the first corner is
+		    ignored since there is no corner before it.
+
+		    Negative voltage values may be specified for this property.
+		    A negative value means that the open-loop voltage of a
+		    corner may be lower than that of the preceding corner.
+
+		    The minimum difference is enforced after the open-loop
+		    voltage values have been interpolated for intermediate
+		    corners and after adjustments have been applied.
+
+		    The list and tuples must meet the same size requirements as
+		    those specified for qcom,cpr-voltage-ceiling above.
+
+		    If this property is not specified, then the minimum
+		    difference is assumed to be 0 uV for all corners.
+
+- qcom,cpr-closed-loop-voltage-fuse-adjustment
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the closed-loop
+		    voltage adjustment in microvolts for each fused voltage
+		    corner in order from lowest to highest.  This adjustment is
+		    applied to the values read from fuses before the values are
+		    used in interpolation for intermediate corners.
+
+		    The list and tuples must meet the same size requirements as
+		    those specified for qcom,cpr-corner-fmax-map above.
+
+		    The qcom,cpr-ro-scaling-factor property must be specified in
+		    order to utilize this property.
+
+		    The closed-loop voltage for a given fuse corner corresponds
+		    to the voltage that the CPR controller settles the VDD
+		    supply rail to based upon the programmed CPR target
+		    quotients and the current silicon conditions.
+
+- qcom,cpr-closed-loop-voltage-adjustment
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the closed-loop
+		    voltage adjustment in microvolts for each voltage corner in
+		    order from lowest to highest.  This adjustment is applied to
+		    target quotient values after they have been interpolated
+		    for intermediate corners.
+
+		    The list and tuples must meet the same size requirements as
+		    those specified for qcom,cpr-voltage-ceiling above.
+
+		    The qcom,cpr-ro-scaling-factor property must be specified in
+		    order to utilize this property.
+
+- qcom,cpr-ro-scaling-factor
+	Usage:      required if qcom,cpr-closed-loop-voltage-fuse-adjustment,
+		    qcom,cpr-closed-loop-voltage-adjustment, or
+		    qcom,allow-aging-voltage-adjustment is specified
+	Value type: <prop-encoded-array>
+	Definition: A grouping of integer tuple lists.  Each tuple defines the
+		    CPR ring oscillator (RO) scaling factor with units of QUOT/V
+		    for each RO for a given fuse corner.  Since CPR3 supports
+		    exactly 16 ROs, each tuple must contain 16 elements
+		    corresponding to RO0 through RO15 in order.  If a given RO
+		    is unused for a fuse corner, then its scaling factor may be
+		    specified as 0.
+
+		    Each tuple list must contain the number of tuples defined in
+		    the qcom,cpr-fuse-corners property.  The tuples in a given
+		    list are ordered from the lowest fuse corner to the highest
+		    fuse corner.
+
+		    The tuple list grouping must contain qcom,cpr-fuse-combos
+		    number of tuple lists in which case the lists are matched to
+		    fuse combinations 1-to-1 or qcom,cpr-speed-bins number of
+		    tuple lists in which case the lists are matched to
+		    speed bins 1-to-1 or exactly 1 list which is used regardless
+		    of the fuse combination and speed bin found on a given chip.
+
+		    The target quotient adjustment to apply for each RO of a
+		    given corner is determined by multiplying the adjustment
+		    value in qcom,cpr-closed-loop-voltage-fuse-adjustment or
+		    qcom,cpr-closed-loop-voltage-adjustment by the relevant RO
+		    scaling factor in this property.
+
+- qcom,allow-aging-voltage-adjustment
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integers which specifies if CPR aging adjustment
+		    should be performed for each fuse combination.
+		    Supported per-combo element values:
+			0 - do not perform CPR aging adjustment
+			1 - perform CPR aging adjustment
+
+		    The list must contain qcom,cpr-fuse-combos number of
+		    elements in which case the elements are matched to fuse
+		    combinations 1-to-1 or qcom,cpr-speed-bins number of
+		    elements in which case the elements are matched to
+		    speed bins 1-to-1 or exactly 1 element which is used
+		    regardless of the fuse combination and speed bin found
+		    on a given chip.
+
+- qcom,allow-aging-open-loop-voltage-adjustment
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integers which specifies if CPR aging adjustment
+		    should be applied to open-loop voltages for each fuse
+		    combination.  Note that aging adjustment must be allowed via
+		    qcom,allow-aging-voltage-adjustment in order for this
+		    property to have an effect.
+		    Supported per-combo element values:
+			0 - do not perform CPR aging adjustment
+			1 - perform CPR aging adjustment
+
+		    The list must meet the same size requirements as those
+		    specified for qcom,allow-aging-voltage-adjustment above.
+
+- qcom,cpr-aging-max-voltage-adjustment
+	Usage:      required if qcom,allow-aging-voltage-adjustment is specified
+	Value type: <prop-encoded-array>
+	Definition: A list of integers which defines the maximum CPR aging
+		    voltage margin adjustment in microvolts that may be added
+		    for each fuse combination.  If this property is specified
+		    and the adjustment specified is greater than 0, then aging
+		    adjustments are required for this regulator.
+
+		    The list must meet the same size requirements as those
+		    specified for qcom,allow-aging-voltage-adjustment above.
+
+- qcom,cpr-aging-ref-corner
+	Usage:      required if qcom,allow-aging-voltage-adjustment is specified
+	Value type: <prop-encoded-array>
+	Definition: A list of integers which defines the CPR reference corner
+		    for this regulator to use during aging measurements for each
+		    fuse combination.
+
+		    The list must meet the same size requirements as those
+		    specified for qcom,allow-aging-voltage-adjustment above.
+
+- qcom,cpr-aging-ro-scaling-factor
+	Usage:      required if qcom,allow-aging-voltage-adjustment is specified
+	Value type: <prop-encoded-array>
+	Definition: A list of integers which defines the CPR aging ring
+		    oscillator (RO) scaling factor with units of QUOT/V to use
+		    during aging measurements for each fuse combination.
+
+		    The list must meet the same size requirements as those
+		    specified for qcom,allow-aging-voltage-adjustment above.
+
+- qcom,cpr-aging-derate
+	Usage:      optional, though only meaningful if
+		    qcom,allow-aging-voltage-adjustment is specified
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the CPR aging
+		    derating scaling factor to apply to the closed-loop voltage
+		    margin adjustment for each corner.  The individual scaling
+		    factors have units of uV/mV and are ordered from lowest to
+		    highest corner per tuple.  For example, a value of 900
+		    specifies that the voltage adjustment for the corner should
+		    be 90% (900/1000) of that for the reference corner.
+
+		    The list and tuples must meet the same size requirements as
+		    those specified for qcom,cpr-voltage-ceiling above.
+
+		    If this property is not specified, then it is assumed that
+		    no corners require derating (i.e. the scaling factor would
+		    be 1000).
+
+All properties specified within the core regulator framework can also be used in
+third level nodes.  These bindings can be found in:
+Documentation/devicetree/bindings/regulator/regulator.txt.
+
+See platform specific cpr3-regulator binding documentation files for examples.
diff --git a/Documentation/devicetree/bindings/regulator/cpr4-apss-regulator.txt b/Documentation/devicetree/bindings/regulator/cpr4-apss-regulator.txt
new file mode 100644
index 0000000..29bb2d3
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/cpr4-apss-regulator.txt
@@ -0,0 +1,522 @@
+Qualcomm Technologies, Inc. CPR4 Regulator - APSS Specific Bindings
+
+APSS CPR4 controllers each support one CPR thread that monitors the voltage of
+a pair of application processor (APSS) clusters that are powered by a shared
+regulator supply. They also have a hardware channel to use these requests to
+directly change the supply voltage at the PMIC via the SPM without software
+intervention.
+
+APSS CPR4 controllers also have to take into account the state of the memory
+array power mux (APM) when scaling voltage to ensure that memory always receives
+a sufficiently high voltage.
+
+Both CPR open-loop voltages and CPR target quotients are stored in hardware
+fuses for APSS CPR4 controllers.
+
+This document describes the APSS specific CPR4 bindings.
+
+=======================
+Required Node Structure
+=======================
+
+CPR4 regulators must be described in three levels of devices nodes.  The first
+level describes the CPR4 controller.  The second level describes one or more
+hardware threads managed by the controller.  The third level describes one or
+more logical regulators handled by each CPR thread.
+
+All platform independent cpr3-regulator binding guidelines defined in
+cpr3-regulator.txt also apply to cpr4-apss-regulator devices.
+
+====================================
+First Level Nodes - CPR4 Controllers
+====================================
+
+APSS specific properties:
+- compatible
+	Usage:      required
+	Value type: <string>
+	Definition: should be one of the following:
+		    "qcom,cpr4-msm8953-apss-regulator";
+
+- interrupts
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: CPR interrupt specifier.
+
+- interrupt-names
+	Usage:      required
+	Value type: <stringlist>
+	Definition: Interrupt names.  This list must match up 1-to-1 with the
+		    interrupts specified in the 'interrupts' property. "cpr"
+		    must be specified.
+
+- qcom,apm-ctrl
+	Usage:      required on systems that need APM management
+	Value type: <phandle>
+	Definition: phandle of memory array power mux (APM) controller device
+		    node for the APM that is used by the APSS VDD supply
+
+- qcom,apm-threshold-voltage
+	Usage:      required if qcom,apm-ctrl is specified
+	Value type: <u32>
+	Definition: Specifies the APM threshold voltage in microvolts.  If the
+		    vdd-supply voltage is greater than or equal to this level,
+		    then the APM is switched to use the vdd-supply. If the
+		    vdd-supply voltage is below this level, then the APM is
+		    switched to use the system-supply.
+
+- qcom,apm-hysteresis-voltage
+	Usage:      optional
+	Value type: <u32>
+	Definition: Specifies the voltage delta in microvolts between the APM
+		    threshold voltage and the highest corner open-loop voltage
+		    which may be used as the ceiling for the corner.  If this
+		    property is not specified, then a value of 0 is assumed.
+
+- qcom,cpr-hw-closed-loop
+	Usage:      optional
+	Value type: <empty>
+	Definition: Boolean flag which indicates that the APSS CPR4 controller
+		    should operate in hardware closed-loop mode as opposed to
+		    software closed-loop mode.
+
+- vdd-limit-supply
+	Usage:      required
+	Value type: <phandle>
+	Definition: phandle of the VDD supply limit regulator which controls the
+		    CPR ceiling and floor voltages when operating in hardware
+		    closed-loop mode.
+
+- qcom,cpr-down-error-step-limit
+	Usage:      required
+	Value type: <u32>
+	Definition: CPR4 hardware closed-loop down error step limit which
+		    defines the maximum number of vdd-supply regulator steps
+		    that the voltage may be reduced as the result of a single
+		    CPR measurement.
+
+- qcom,cpr-up-error-step-limit
+	Usage:      required
+	Value type: <u32>
+	Definition: CPR4 hardware closed-loop up error step limit which defines
+		    the maximum number of vdd-supply regulator steps that the
+                    voltage may be increased as the result of a single
+		    CPR measurement.
+
+- qcom,cpr-saw-use-unit-mV
+	Usage:      optional
+	Value type: <empty>
+	Definition: Boolean flag which indicates that the unit used in SAW PVC
+		    interface is mV. Use this for vdd-supply regulators which
+		    do not use PMIC voltage control register LSBs per actually
+		    unique PMIC regulator output voltage.
+
+- qcom,cpr-temp-point-map
+	Usage:      required if qcom,corner-allow-temp-adjustment is specified
+		    for at least one of the CPR3 regulators.
+	Value type: <prop-encoded-array>
+	Definition: The temperature points in decidegrees Celsius which indicate
+		    the range of temperature bands supported. If t1, t2, and t3
+		    are the temperature points, then the temperature bands are:
+		    (-inf, t1], (t1, t2], (t2, t3], and (t3, inf).
+
+- qcom,cpr-initial-temp-band
+	Usage:      required if qcom,corner-allow-temp-adjustment is specified
+		    for at least one of the CPR3 regulators.
+	Value type: <u32>
+	Definition: The initial temp band considering 0-based index at which
+		    the baseline target quotients are derived and fused.
+
+- qcom,cpr-step-quot-fixed
+	Usage:      optional
+	Value type: <u32>
+	Definition: Fixed step quotient value used by controller for applying
+		    the SDELTA margin adjustments on the programmed target
+		    quotient values. The step quotient is the number of
+		    additional ring oscillator ticks observed for each
+		    qcom,voltage-step increase in vdd-supply output voltage.
+		    Supported values: 0 - 63.
+
+- qcom,cpr-voltage-settling-time
+	Usage:      optional
+	Value type: <u32>
+		    The time in nanoseconds that it takes for the vdd-supply
+		    voltage to settle after being increased or decreased by
+		    qcom,voltage-step microvolts. This is used as the wait
+		    time after applying SDELTA voltage margin adjustments.
+
+=================================================
+Second Level Nodes - CPR Threads for a Controller
+=================================================
+
+APSS specific properties:
+N/A
+
+===============================================
+Third Level Nodes - CPR Regulators for a Thread
+===============================================
+
+APSS specific properties:
+- qcom,cpr-fuse-corners
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the number of fuse corners. This value must be 4
+		    for APSS. These fuse corners are: LowSVS, SVS, Nominal,
+		    and Turbo.
+
+- qcom,cpr-fuse-combos
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the number of fuse combinations being supported by
+		    the device.  This value is utilized by several other
+		    properties.  Supported values are 1 up to the maximum
+		    possible for a given regulator type.  For APSS the maximum
+		    supported value is 64.  The first 8 fuse combos correspond
+		    to speed bin fuse value 0 along with CPR revision fuse
+		    values 0 to 7.  The second 8 fuse combos correspond to speed
+		    bin fuse value 1 along with CPR revision fuse values 0 to 7.
+		    The last 8 fuse combos correspond to speed bin fuse value 7
+		    along with CPR revision fuse values 0 to 7.
+
+- qcom,cpr-speed-bins
+	Usage:      optional
+	Value type: <u32>
+	Definition: Specifies the number of speed bins being supported by the
+		    device.  This value is utilized by several other properties.
+		    Supported values are 1 up to the maximum possible for a
+		    given regulator type.  For APSS the maximum supported value
+		    is 8.
+
+- qcom,mem-acc-voltage
+	Usage:      required if mem-acc-supply is specified for the CPR4 controller
+		    containing this regulator
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the mem-acc-supply
+		    corner for each voltage corner in order from lowest to highest.
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+		    Each tuple must be of the length defined in the
+		    corresponding element of the qcom,cpr-corners property or
+		    the qcom,cpr-speed-bins property.  A single tuple may only
+		    be specified if all of the corner counts in qcom,cpr-corners
+		    are the same.
+
+- qcom,allow-quotient-interpolation
+	Usage:      optional
+	Value type: <empty>
+	Definition: Boolean flag which indicates that it is acceptable to use
+		    interpolated CPR target quotient values.  These values are
+		    interpolated between the target quotient Fmax fuse values.
+
+- qcom,corner-allow-core-count-adjustment
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the CPR core
+		    count adjustment feature enable state for each voltage
+		    corner in order from lowest to highest. Each element in
+		    the tuple should be either 0 (per-core-count adjustment
+		    not allowed) or 1 (per-core-count adjustment allowed).
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+		    Each tuple must be of the length defined in the
+		    corresponding element of the qcom,cpr-corners property or
+		    the qcom,cpr-speed-bins property.  A single tuple may only
+		    be specified if all of the corner counts in qcom,cpr-corners
+		    are the same.
+
+- qcom,max-core-count
+	Usage:      required if qcom,corner-allow-core-count-adjustment is
+		    specified for this CPR3 regulator.
+	Value type: <u32>
+	Definition: The maximum number of cores considered for core-count vmin
+		    adjustments specified for this regulator voltage corners.
+
+- qcom,corner-allow-temp-adjustment
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the CPR
+		    temperature adjustment feature enable state for each voltage
+		    corner in order from lowest to highest. Each element in the
+		    tuple should be either 0 (temperature adjustment not
+		    allowed) or 1 (temperature adjustment allowed).
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+		    Each tuple must be of the length defined in the
+		    corresponding element of the qcom,cpr-corners property or
+		    the qcom,cpr-speed-bins property.  A single tuple may only
+		    be specified if all of the corner counts in qcom,cpr-corners
+		    are the same.
+
+- qcom,cpr-cornerX-temp-core-voltage-adjustment
+	Usage:      required if qcom,corner-allow-core-count-adjustment
+		    specified for this CPR3 regulator.
+	Value type: <prop-encoded-array>
+	Definition: A grouping of integer tuple lists for cornerX. The possible
+		    values for X are 1 to the max value specified in
+		    qcom,cpr-corners. Each tuple defines the temperature based
+		    voltage adjustment in microvolts for each temperature band
+		    from lowest to highest for a given number of online cores.
+		    Each tuple must have a number of elements equal to either
+		    (the number of elements in qcom,cpr-ctrl-temp-point-map
+		    + 1), if qcom,cpr-ctrl-temp-point-map is specified, or 1.
+
+		    Each tuple list must contain a number of tuples equal to
+		    either qcom,max-core-count, if qcom,max-core-count is
+		    specified, or 1. The tuples should be ordered from lowest
+		    to highest core count.
+
+		    The tuple list grouping must contain qcom,cpr-fuse-combos
+		    number of tuple lists in which case the lists are matched to
+		    fuse combinations 1-to-1 or qcom,cpr-speed-bins number of
+		    tuple lists in which case the lists are matched to
+		    speed bins 1-to-1 or exactly 1 list which is used regardless
+		    of the fuse combination and speed bin found on a given chip.
+
+- qcom,cpr-num-boost-cores
+	Usage:      required if qcom,allow-boost specified for this CPR3
+		    regulator.
+	Value type: <u32>
+	Definition: Integer value indicates that voltage boost will be applied
+		    when the number of online cores become this value.
+
+- qcom,cpr-boost-temp-adjustment
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the temperature
+		    based voltage adjustment to boost voltage in microvolts
+		    for each temperature band in order from lowest to highest.
+
+		    The number of elements in each tuple should be equal to either
+		    (the number of elements in qcom,cpr-ctrl-temp-point-map
+		    + 1), if qcom,cpr-ctrl-temp-point-map is specified, or 1.
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+- qcom,allow-boost
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integers which specifies if the voltage boost
+		    feature should be enabled for each fuse combination.
+		    Supported per-combo element values:
+			0 - voltage boost feature disabled
+			1 - voltage boost feature enabled
+
+		    The list must contain qcom,cpr-fuse-combos number of
+		    elements in which case the elements are matched to fuse
+		    combinations 1-to-1 or qcom,cpr-speed-bins number of
+		    elements in which case the elements are matched to
+		    speed bins 1-to-1 or exactly 1 element which is used
+		    regardless of the fuse combination and speed bin found
+		    on a given chip.
+
+- qcom,cpr-boost-voltage-fuse-adjustment
+	Usage:      optional
+	Value type: <u32>
+	Definition: A list of integers which defines the voltage adjustment
+		    in microvolts for the fused boost voltage. This adjustment
+		    is applied to the values read from boost fuses.
+
+		    The list must contain qcom,cpr-fuse-combos number of
+		    elements in which case the elements are matched to fuse
+		    combinations 1-to-1 or qcom,cpr-speed-bins number of
+		    elements in which case the elements are matched to
+		    speed bins 1-to-1 or exactly 1 element which is used
+		    regardless of the fuse combination and speed bin found
+		    on a given chip.
+
+- qcom,cpr-misc-fuse-voltage-adjustment
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A grouping of integer tuple lists where each tuple defines
+		    the voltage adjustments in microvolts for each voltage
+		    corner in order from lowest to highest. This adjustment is
+		    applied to both open-loop and closed-loop voltages.
+
+		    Each tuple list must contain a number of tuples equal to
+		    2 to the power of the number of bits selected for misc
+		    voltage adj fuse definition. For MSM8953 the tuple
+		    list must contain 2 tuples for the 1-bit misc fuse.
+		    Tuples in a list should be specified in ascending order
+		    according to the misc fuse value assuming that the fuse
+		    is treated like an unsigned integer.
+
+		    The tuple list grouping must contain qcom,cpr-speed-bins
+		    number of tuple lists in which case the lists are matched to
+		    speed bins 1-to-1 or exactly 1 list which is used regardless
+		    of the speed bin found on a given chip.
+
+=======
+Example
+=======
+
+apc_cpr: cpr4-ctrl@b018000 {
+	compatible = "qcom,cpr4-msm8953-apss-regulator";
+	reg = <0xb018000 0x4000>, <0xa4000 0x1000>;
+	reg-names = "cpr_ctrl", "fuse_base";
+	interrupts = <GIC_SPI 15 IRQ_TYPE_EDGE_RISING>;
+	interrupt-names = "cpr";
+
+	qcom,cpr-ctrl-name = "apc";
+
+	qcom,cpr-sensor-time = <1000>;
+	qcom,cpr-loop-time = <5000000>;
+	qcom,cpr-idle-cycles = <15>;
+	qcom,cpr-step-quot-init-min = <13>;
+	qcom,cpr-step-quot-init-max = <13>;
+	qcom,cpr-count-mode = <2>;		/* Staggered */
+	qcom,cpr-down-error-step-limit = <1>;
+	qcom,cpr-up-error-step-limit = <1>;
+
+	qcom,apm-ctrl = <&apc_apm>;
+	qcom,apm-threshold-voltage = <848000>;
+	qcom,apm-hysteresis-voltage = <5000>;
+
+	vdd-supply = <&pm8953_s5>;
+	qcom,voltage-step = <5000>;
+	vdd-limit-supply = <&pm8953_s5_limit>;
+	mem-acc-supply = <&apc_mem_acc_vreg>;
+
+	qcom,cpr-enable;
+	qcom,cpr-hw-closed-loop;
+
+	qcom,cpr-temp-point-map = <0 250 850>;
+	qcom,cpr-initial-temp-band = <3>;
+	qcom,cpr-step-quot-fixed = <16>;
+	qcom,cpr-voltage-settling-time = <1600>;
+
+	qcom,cpr-panic-reg-addr-list =
+			<0xb1d2c18 0xb1d2900 0x0b1112b0 0xb018798>;
+	qcom,cpr-panic-reg-name-list =
+			"CCI_SAW4_PMIC_STS", "CCI_SAW4_VCTL",
+			"APCS_ALIAS0_APM_CTLER_STATUS",
+			"APCS0_CPR_CORE_ADJ_MODE_REG";
+
+	thread@0 {
+		qcom,cpr-thread-id = <0>;
+		qcom,cpr-consecutive-up = <1>;
+		qcom,cpr-consecutive-down = <1>;
+		qcom,cpr-up-threshold = <1>;
+		qcom,cpr-down-threshold = <1>;
+
+		apc_vreg: regulator {
+			regulator-name = "apc_corner";
+			regulator-min-microvolt = <1>;
+			regulator-max-microvolt = <8>;
+
+			qcom,cpr-fuse-corners = <4>;
+			qcom,cpr-fuse-combos = <8>;
+			qcom,cpr-speed-bins = <1>;
+			qcom,cpr-corners = <8>;
+
+			qcom,cpr-corner-fmax-map = <1 2 4 8>;
+
+			qcom,cpr-voltage-ceiling =
+				<645000  720000 790000  865000 920000
+				 990000 1065000 1065000>;
+
+			qcom,cpr-voltage-floor =
+				<590000  625000 690000  755000 800000
+				 855000  920000 920000>;
+
+			qcom,mem-acc-voltage = <1 1 2 2 2 2 2 2>;
+
+			qcom,corner-frequencies =
+				<652800000 1036800000 1401600000
+				1689600000 1843200000 1958400000
+				2150400000 2208000000>;
+
+			qcom,cpr-misc-fuse-voltage-adjustment =
+				/* Speed bin 0; misc fuse 0..1 */
+				<    0     0     0     0
+				     0     0     0     0>,
+				<    0     0 30000     0
+				     0     0     0     0>;
+
+			qcom,allow-voltage-interpolation;
+			qcom,allow-quotient-interpolation;
+			qcom,cpr-scaled-open-loop-voltage-as-ceiling;
+
+			qcom,corner-allow-temp-adjustment =
+					<0 0 0 1 0 1 1 1>;
+
+			qcom,corner-allow-core-count-adjustment =
+					<0 0 0 0 1 1 1 1>;
+			qcom,max-core-count = <8>;
+			qcom,cpr-corner4-temp-core-voltage-adjustment =
+				<(-20000) (-10000) (-5000) 0>,
+				<(-20000) (-10000) (-5000) 0>,
+				<(-20000) (-10000) (-5000) 0>,
+				<(-20000) (-10000) (-5000) 0>,
+				<(-20000) (-10000) (-5000) 0>,
+				<(-20000) (-10000) (-5000) 0>,
+				<(-20000) (-10000) (-5000) 0>,
+				<(-20000) (-10000) (-5000) 0>;
+			qcom,cpr-corner5-temp-core-voltage-adjustment =
+				<(-50000) (-50000) (-50000) (-50000)>,
+				<(-50000) (-50000) (-50000) (-50000)>,
+				<(-40000) (-40000) (-40000) (-40000)>,
+				<(-40000) (-40000) (-40000) (-40000)>,
+				<(-30000) (-30000) (-30000) (-30000)>,
+				<(-30000) (-30000) (-30000) (-30000)>,
+				<(-20000) (-20000) (-20000) (-20000)>,
+				<(-20000) (-20000) (-20000) (-20000)>;
+			qcom,cpr-corner6-temp-core-voltage-adjustment =
+				<(-50000) (-40000) (-30000) (-20000)>,
+				<(-50000) (-40000) (-30000) (-20000)>,
+				<(-40000) (-30000) (-20000) (-10000)>,
+				<(-40000) (-30000) (-20000) (-10000)>,
+				<(-30000) (-20000) (-10000)  (-5000)>,
+				<(-30000) (-20000) (-10000)  (-5000)>,
+				<(-20000) (-10000)  (-5000)       0 >,
+				<(-20000) (-10000)  (-5000)       0 >;
+			qcom,cpr-corner7-temp-core-voltage-adjustment =
+				<(-50000) (-40000) (-30000) (-20000)>,
+				<(-50000) (-40000) (-30000) (-20000)>,
+				<(-40000) (-30000) (-20000) (-10000)>,
+				<(-40000) (-30000) (-20000) (-10000)>,
+				<(-30000) (-20000) (-10000)  (-5000)>,
+				<(-30000) (-20000) (-10000)  (-5000)>,
+				<(-20000) (-10000)  (-5000)       0 >,
+				<(-20000) (-10000)  (-5000)       0 >;
+			qcom,cpr-corner8-temp-core-voltage-adjustment =
+				<(-50000) (-40000) (-30000) (-20000)>,
+				<(-50000) (-40000) (-30000) (-20000)>,
+				<(-40000) (-30000) (-20000) (-10000)>,
+				<(-40000) (-30000) (-20000) (-10000)>,
+				<(-30000) (-20000) (-10000)  (-5000)>,
+				<(-30000) (-20000) (-10000)  (-5000)>,
+				<(-20000) (-10000)  (-5000)       0 >,
+				<(-20000) (-10000)  (-5000)       0 >;
+
+			qcom,cpr-num-boost-cores = <4>;
+			qcom,cpr-boost-voltage-fuse-adjustment = <(-10000)>;
+			qcom,cpr-boost-temp-adjustment =
+				<(-20000) (-15000) (-10000) 0>;
+			qcom,allow-boost =
+				<1>;
+		};
+	};
+};
diff --git a/Documentation/devicetree/bindings/regulator/cpr4-mmss-ldo-regulator.txt b/Documentation/devicetree/bindings/regulator/cpr4-mmss-ldo-regulator.txt
new file mode 100644
index 0000000..8515285
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/cpr4-mmss-ldo-regulator.txt
@@ -0,0 +1,321 @@
+Qualcomm Technologies, Inc. CPR4 Regulator - MMSS LDO Specific Bindings
+
+MMSS LDO CPR4 controllers each support one CPR thread that monitors the voltage
+of the graphics processor (MMSS) supply regulator.  The CPR open-loop voltages
+are stored in hardware fuses for MMSS CPR4 controllers.  However, the CPR target
+quotients must be defined in device tree.
+
+This document describes the MMSS LDO specific CPR4 bindings.
+
+=======================
+Required Node Structure
+=======================
+
+CPR3 regulators must be described in three levels of devices nodes.  The first
+level describes the CPR3 controller.  The second level describes exacly one
+hardware thread managed by the controller.  The third level describes one or
+more logical regulators handled by the CPR thread.
+
+All platform independent cpr3-regulator binding guidelines defined in
+cpr3-regulator.txt also apply to cpr4-mmss-ldo-regulator devices.
+
+====================================
+First Level Nodes - CPR3 Controllers
+====================================
+
+MMSS LDO specific properties:
+- compatible
+	Usage:      required
+	Value type: <string>
+	Definition: should be the following:
+		    "qcom,cpr4-sdm660-mmss-ldo-regulator".
+
+- clocks
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: Array of clock tuples in which each tuple consists of a
+		    phandle to a clock device and a clock ID number.  The
+		    following clocks must be specified: MMSS RBCPR and MMSS
+		    RBCPR AHB.
+
+- clock-names
+	Usage:      required
+	Value type: <stringlist>
+	Definition: Clock names.  This list must match up 1-to-1 with the clocks
+		    specified in the 'clocks' property. "core_clk", and "bus_clk"
+		    must be specified.
+
+- qcom,cpr-step-quot-fixed
+	Usage:      Optional
+	Value type: <u32>
+	Definition: Fixed step quotient value used by controller for applying
+		    the SDELTA margin adjustments on the programmed target
+		    quotient values. The step quotient is the number of
+		    additional ring oscillator ticks observed for each
+		    qcom,voltage-step increase in vdd-supply output voltage.
+		    Supported values: 0 - 63.
+
+=================================================
+Second Level Nodes - CPR Threads for a Controller
+=================================================
+
+MMSS specific properties:
+N/A
+
+===============================================
+Third Level Nodes - CPR Regulators for a Thread
+===============================================
+
+MMSS specific properties:
+- qcom,cpr-fuse-corners
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the number of fuse corners. This value must be 6
+		    for sdm660 GFX LDO. These fuse corners are: MinSVS,
+		    LowSVS, SVS, SVSP, NOM and NOMP. The open-loop voltage fuses
+		    are allocated for LowSVS, SVS, NOM and NOMP corners. The
+		    open-loop voltages for MinSVS and SVSP are derived by
+		    applying fixed offset from LowSVS and NOM open-loop voltages
+		    respectively. The closed-loop offset voltage fuses are
+		    allocated for LowSVS, SVS, NOM and NOMP corners. The MinSVS
+		    and SVSP corners use the closed-loop offset voltage fuses of
+		    LowSVS and NOM corners respectively.
+
+- qcom,cpr-fuse-combos
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the number of fuse combinations being supported by
+		    the device.  This value is utilized by several other
+		    properties.  Supported values are 1 up to the maximum
+		    possible for a given regulator type.  For MMSS the maximum
+		    supported value is 8.  These combos correspond to CPR
+		    revision fuse values from 0 to 7 in order.
+
+- qcom,mem-acc-voltage
+	Usage:      required if mem-acc-supply is specified for the CPR3 controller
+		    containing this CPR3 regulator
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the mem-acc-supply
+		    corner for each voltage corner in order from lowest to highest.
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+		    Each tuple must be of the length defined in the
+		    corresponding element of the qcom,cpr-corners property or
+		    the qcom,cpr-speed-bins property.  A single tuple may only
+		    be specified if all of the corner counts in qcom,cpr-corners
+		    are the same.
+
+- qcom,cpr-target-quotients
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: A grouping of integer tuple lists.  Each tuple defines the
+		    CPR target quotient for each ring oscillator (RO) for a
+		    given corner.  Since CPR3 supports exactly 16 ROs, each
+		    tuple must contain 16 elements corresponding to RO0 through
+		    RO15 in order.  If a given RO is unused for a corner, then
+		    its target quotient should be specified as 0.
+
+		    Each tuple list in the grouping must meet the same size
+		    requirements as those specified for qcom,mem-acc-voltage
+		    above. The tuples in a given list are ordered from the
+		    lowest corner to the highest corner.
+
+- qcom,cpr-ro-scaling-factor
+	Usage:      required if qcom,cpr-closed-loop-voltage-adjustment is
+		    specified
+	Value type: <prop-encoded-array>
+	Definition: The common definition of this property in cpr3-regulator.txt
+		    is accurate for MMSS CPR3 controllers except for this
+		    modification:
+
+		    Each tuple list must contain the number of tuples defined in
+		    the corresponding element of the qcom,cpr-corners property
+		    or the qcom,cpr-speed-bins property as opposed to the value
+		    of the qcom,cpr-fuse-corners property.
+
+- qcom,cpr-fused-closed-loop-voltage-adjustment-map
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the CPR fused
+		    corner closed-loop offset adjustment fuse to utilize for
+		    each voltage corner in order from lowest to highest.
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+		    Each tuple must be of the length defined in the
+		    corresponding element of the qcom,cpr-corners property or
+		    the qcom,cpr-speed-bins property.  A single tuple may only
+		    be specified if all of the corner counts in qcom,cpr-corners
+		    are the same.
+
+		    Each tuple element must be either 0 or in the range 1 to
+		    qcom,cpr-fuse-corners.  A value of 0 signifies that no fuse
+		    based adjustment should be applied to the fuse corner.
+		    Values 1 to qcom,cpr-fuse-corners denote the specific fuse
+		    corner that should be used by a given voltage corner.
+
+- qcom,cpr-corner-allow-ldo-mode
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the LDO mode
+		    allowed state for each voltage corner in order from lowest
+		    to highest. Each element in the tuple should be either
+		    0 (LDO mode not allowed) or 1 (LDO mode allowed).
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+		    Each tuple must be of the length defined in the
+		    corresponding element of the qcom,cpr-corners property or
+		    the qcom,cpr-speed-bin-corners property.  A single tuple may
+		    only be specified if all of the corner counts in
+		    qcom,cpr-corners are the same.
+
+- qcom,cpr-corner-allow-closed-loop
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the CPR
+		    closed-loop operation allowed state for each voltage corner
+		    in order from lowest to highest. Each element in the tuple
+		    should be either 0 (CPR closed-loop operation not allowed)
+		    or 1 (CPR closed-loop operation allowed).
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+		    Each tuple must be of the length defined in the
+		    corresponding element of the qcom,cpr-corners property or
+		    the qcom,cpr-speed-bin-corners property.  A single tuple may
+		    only be specified if all of the corner counts in
+		    qcom,cpr-corners are the same.
+
+Note that the qcom,cpr-closed-loop-voltage-fuse-adjustment property is not
+meaningful for MMSS LDO CPR3 regulator nodes since target quotients are not
+defined in fuses.
+
+=======
+Example
+=======
+
+gfx_cpr: cpr4-ctrl@05061000 {
+	compatible = "qcom,cpr4-sdm660-mmss-ldo-regulator";
+	reg = <0x05061000 0x4000>, <0x00784000 0x1000>;
+	reg-names = "cpr_ctrl", "fuse_base";
+	interrupts = <GIC_SPI 285 IRQ_TYPE_EDGE_RISING>;
+	interrupt-names = "cpr";
+	qcom,cpr-ctrl-name = "gfx";
+
+	qcom,cpr-sensor-time = <1000>;
+	qcom,cpr-loop-time = <5000000>;
+	qcom,cpr-idle-cycles = <15>;
+	qcom,cpr-step-quot-init-min = <8>;
+	qcom,cpr-step-quot-init-max = <12>;
+	qcom,cpr-count-mode = <0>;		/* All at once */
+
+	vdd-supply = <&gfx_stub_vreg>;
+	mem-acc-supply = <&gfx_mem_acc_vreg>;
+	system-supply = <&pm660l_s3_level>; /* vdd_cx */
+	qcom,voltage-step = <5000>;
+	vdd-thread0-ldo-supply = <&gfx_ldo_vreg>;
+
+	qcom,cpr-enable;
+
+	thread@0 {
+		qcom,cpr-thread-id = <0>;
+		qcom,cpr-consecutive-up = <0>;
+		qcom,cpr-consecutive-down = <2>;
+		qcom,cpr-up-threshold = <0>;
+		qcom,cpr-down-threshold = <2>;
+
+		gfx_vreg_corner: regulator {
+			regulator-name = "gfx_corner";
+			regulator-min-microvolt = <1>;
+			regulator-max-microvolt = <7>;
+
+			qcom,cpr-fuse-corners = <6>;
+			qcom,cpr-fuse-combos = <8>;
+			qcom,cpr-corners = <7>;
+
+			qcom,cpr-corner-fmax-map = <1 2 3 4 5 6>;
+
+			qcom,cpr-voltage-ceiling =
+				<584000  644000  724000  788000
+				 868000  924000 1068000>;
+			qcom,cpr-voltage-floor =
+				<504000  504000  596000  652000
+				 712000  744000 1068000>;
+
+			qcom,mem-acc-voltage = <1 1 1 2 2 2 2>;
+			qcom,system-voltage =
+				<RPM_SMD_REGULATOR_LEVEL_MIN_SVS>,
+				<RPM_SMD_REGULATOR_LEVEL_LOW_SVS>,
+				<RPM_SMD_REGULATOR_LEVEL_SVS>,
+				<RPM_SMD_REGULATOR_LEVEL_SVS_PLUS>,
+				<RPM_SMD_REGULATOR_LEVEL_NOM>,
+				<RPM_SMD_REGULATOR_LEVEL_NOM_PLUS>,
+				<RPM_SMD_REGULATOR_LEVEL_TURBO>;
+
+			qcom,corner-frequencies =
+				<160000000 266000000 370000000
+				 465000000 588000000 647000000
+				 800000000>;
+
+			qcom,cpr-target-quotients =
+				<0    0    0    0     0    0  185  179
+				291  299  304  319    0    0    0    0>,
+				<0    0    0    0     0    0  287  273
+				425  426  443  453    0    0    0    0>,
+				<0    0    0    0     0    0  414  392
+				584  576  608  612    0    0    0    0>,
+				<0    0    0    0     0    0  459  431
+				684  644  692  679    0    0    0    0>,
+				<0    0    0    0     0    0  577  543
+				798  768  823  810    0    0    0    0>,
+				<0    0    0    0     0    0  669  629
+				886  864  924  911    0    0    0    0>,
+				<0    0    0    0     0    0    0    0
+				 0    0    0    0     0    0    0    0>;
+
+			qcom,cpr-ro-scaling-factor =
+				<  0    0    0    0   0    0 2035 1917
+				1959 2131 2246 2253   0    0    0    0>,
+				<  0    0    0    0   0    0 2035 1917
+				1959 2131 2246 2253   0    0    0    0>,
+				<  0    0    0    0   0    0 2035 1917
+				1959 2131 2246 2253   0    0    0    0>,
+				<  0    0    0    0   0    0 2035 1917
+				1959 2131 2246 2253   0    0    0    0>,
+				<  0    0    0    0   0    0 2035 1917
+				1959 2131 2246 2253   0    0    0    0>,
+				<  0    0    0    0   0    0 2035 1917
+				1959 2131 2246 2253   0    0    0    0>,
+				<  0    0    0    0   0    0    0    0
+				   0    0    0    0   0    0    0    0>;
+
+			qcom,cpr-scaled-open-loop-voltage-as-ceiling;
+			qcom,cpr-corner-ldo-mode-allowed =
+				<1 1 1 1 1 1 0>;
+			qcom,cpr-corner-use-closed-loop =
+				<1 1 1 1 1 1 0>;
+		};
+	};
+};
diff --git a/Documentation/devicetree/bindings/regulator/cprh-kbss-regulator.txt b/Documentation/devicetree/bindings/regulator/cprh-kbss-regulator.txt
new file mode 100644
index 0000000..ff80035
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/cprh-kbss-regulator.txt
@@ -0,0 +1,459 @@
+Qualcomm Technologies, Inc. CPRh Regulator - KBSS Specific Bindings
+
+KBSS CPRh controllers each support one CPR thread that monitors the voltage
+of a single Kryo-B CPU subystem (KBSS) cluster that is powered by a single
+regulator supply. The DCVSh block interacts with the CPRh controller for full
+hardware DCVS support.
+
+Both CPR open-loop voltages and CPR target quotients are stored in hardware
+fuses for KBSS CPRh controllers.
+
+This document describes the KBSS specific CPRh bindings.
+
+=======================
+Required Node Structure
+=======================
+
+CPRh regulators must be described in three levels of devices nodes.  The first
+level describes the CPRh controller.  The second level describes one hardware
+thread managed by the controller.  The third level describes one regulator
+handled by the CPR thread.
+
+All platform independent cpr3-regulator binding guidelines defined in
+cpr3-regulator.txt also apply to cprh-kbss-regulator devices.
+
+====================================
+First Level Nodes - CPR3 Controllers
+====================================
+
+KBSS specific properties:
+- compatible
+	Usage:      required
+	Value type: <string>
+	Definition: should be one of the following:
+		    "qcom,cprh-msm8998-v1-kbss-regulator",
+		    "qcom,cprh-msm8998-v2-kbss-regulator",
+		    "qcom,cprh-msm8998-kbss-regulator",
+		    "qcom,cprh-sdm660-kbss-regulator".
+		    If the SoC revision is not specified, then it is assumed to
+		    be the most recent revision of MSM8998, i.e. v2.
+
+- qcom,cpr-controller-id
+	Usage:      required
+	Value type: <u32>
+	Definition: Identifies the controller number for subsystems that are managed
+		    by multiple CPR controllers. For KBSS, the supported values are 0
+		    and 1, corresponding to each cluster.
+
+- qcom,apm-threshold-voltage
+	Usage:      optional
+	Value type: <u32>
+	Definition: Specifies the APM threshold voltage in microvolts.  The
+		    floor to ceiling range for every corner is adjusted to ensure
+		    it does not intersect this voltage. The value of this property
+		    must match with the APM threshold voltage defined in the OSM
+		    device to ensure that if the VDD_APCC supply voltage is above
+		    this level, then the APM is switched to use VDD_APCC and if
+		    VDD_APCC is below this level, then the APM is switched to use
+		    VDD_MX.
+
+- qcom,apm-crossover-voltage
+	Usage:      required if qcom,apm-threshold-voltage is specified
+	Value type: <u32>
+	Definition: Specifies the APM crossover voltage in microvolts which
+		    corresponds to the voltage the VDD supply must be set at
+		    during an APM switch transition.
+
+- qcom,apm-hysteresis-voltage
+	Usage:      optional
+	Value type: <u32>
+	Definition: Specifies the voltage in microvolts used to adjust floor
+		    voltages with respect to the APM threshold voltage. This
+		    voltage is used to reduce the number of corners whose floor
+		    must be raised to ensure stable operation with manual APM
+		    switching. If this property is not specified, then a value
+		    of 0 is assumed.
+
+- qcom,mem-acc-threshold-voltage
+	Usage:      optional
+	Value type: <u32>
+	Definition: Specifies the highest memory accelerator (MEM ACC) threshold
+		    voltage in microvolts.  The floor to ceiling voltage range
+		    for every corner is adjusted to ensure that it does not
+		    intersect this voltage. The value of this property must
+		    match with the MEM ACC threshold voltage defined in the OSM
+		    device to ensure that MEM ACC settings are switched
+		    appropriately.
+
+- qcom,mem-acc-crossover-voltage
+	Usage:      required if qcom,mem-acc-threshold-voltage is specified
+	Value type: <u32>
+	Definition: Specifies the MEM ACC crossover voltage in microvolts which
+		    corresponds to the voltage the VDD supply must be set to
+		    when switching the MEM ACC configuration.
+
+- qcom,voltage-base
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the voltage in microvolts used by the CRR controller
+		    to resolve open-loop and floor voltages. In particular, this
+		    voltage is added to the programmed open-loop and floor voltages
+		    and it corresponds to the minimum supported setpoint of the
+		    vdd-supply.
+
+- qcom,cpr-saw-use-unit-mV
+	Usage:      optional
+	Value type: <empty>
+	Definition: Boolean flag which indicates that the unit used in SAW PVC
+		    interface is mV. Use this for vdd-supply regulators which
+		    do not use PMIC voltage control register LSBs per actually
+		    unique PMIC regulator output voltage.
+
+- qcom,cpr-up-down-delay-time
+	Usage:      required
+	Value type: <u32>
+	Definition: The time to delay in nanoseconds between consecutive CPR
+		    measurements when the last measurement recommended
+		    increasing or decreasing the vdd-supply voltage.
+
+- qcom,cpr-down-error-step-limit
+	Usage:      required
+	Value type: <u32>
+	Definition: CPRh hardware closed-loop down error step limit which
+		    defines the maximum number of vdd-supply regulator steps
+		    that the voltage may be reduced as the result of a single
+		    CPR measurement.
+
+- qcom,cpr-up-error-step-limit
+	Usage:      required
+	Value type: <u32>
+	Definition: CPRh hardware closed-loop up error step limit which defines
+		    the maximum number of vdd-supply regulator steps that the
+                    voltage may be increased as the result of a single
+		    CPR measurement.
+
+- qcom,cpr-step-quot-fixed
+	Usage:      optional
+	Value type: <u32>
+	Definition: Fixed step quotient value used by controller for applying
+		    the SDELTA margin adjustments on the programmed target
+		    quotient values. The step quotient is the number of
+		    additional ring oscillator ticks observed for each
+		    qcom,voltage-step increase in vdd-supply output voltage.
+		    Supported values: 0 - 63.
+
+- qcom,cpr-voltage-settling-time
+	Usage:      optional
+	Value type: <u32>
+		    The time in nanoseconds that it takes for the vdd-supply
+		    voltage to settle after being increased or decreased by
+		    qcom,voltage-step microvolts. This is used as the wait
+		    time after applying SDELTA voltage margin adjustments.
+
+- qcom,cpr-corner-switch-delay-time
+	Usage:      optional
+	Value type: <u32>
+		    The time in nanoseconds that the CPR controller must delay
+		    to allow voltage settling per 1 mV of voltage change after a
+		    corner change.
+
+- qcom,cpr-hw-closed-loop
+	Usage:      optional
+	Value type: <empty>
+	Definition: Boolean flag which indicates that the KBSS CPRh controller
+		    should operate in hardware closed-loop mode as opposed to
+		    open-loop.
+
+- qcom,cpr-temp-point-map
+	Usage:      required if qcom,corner-band-allow-temp-adjustment is specified
+		    for at least one of the CPR3 regulators.
+	Value type: <prop-encoded-array>
+	Definition: The temperature points in decidegrees Celsius which indicate
+		    the range of temperature bands supported. If t1, t2, and t3
+		    are the temperature points, then the temperature bands are:
+		    (-inf, t1], (t1, t2], (t2, t3], and (t3, inf). A maximum of
+		    three temperature points can be specified to define a total
+		    of four different temperature bands.
+
+- qcom,cpr-initial-temp-band
+	Usage:      required if qcom,corner-band-allow-temp-adjustment is specified
+		    for at least one of the CPR3 regulators.
+	Value type: <u32>
+	Definition: The initial temp band considering 0-based index at which
+		    the baseline target quotients are derived and fused.
+
+=================================================
+Second Level Nodes - CPR Threads for a Controller
+=================================================
+
+KBSS specific properties:
+N/A
+
+===============================================
+Third Level Nodes - CPR Regulators for a Thread
+===============================================
+
+KBSS specific properties:
+- qcom,cpr-fuse-corners
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the number of fuse corners.  This value must be 4
+		    for KBSS.  These fuse corners are: LowSVS, SVS, Nominal,
+		    and Turbo.
+
+- qcom,cpr-fuse-combos
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the number of fuse combinations being supported by
+		    the device.  This value is utilized by several other
+		    properties.  Supported values are 1 up to the maximum
+		    possible for a given regulator type.  For KBSS the maximum
+		    supported value is 8.  These combos correspond to CPR
+		    revision fuse values 0 to 7 in order.
+
+- qcom,allow-quotient-interpolation
+	Usage:      optional
+	Value type: <empty>
+	Definition: Boolean flag which indicates that it is acceptable to use
+		    interpolated CPR target quotient values.  These values are
+		    interpolated between the target quotient Fmax fuse values.
+
+- qcom,cpr-corner-bands
+	Usage:      required if qcom,corner-band-allow-core-count-adjustment
+		    or qcom,corner-band-allow-temp-adjustment is specified
+		    for this CPR3 regulator.
+	Value type: <prop-encoded-array>
+	Definition: A list of integers which defines how many corner bands
+		    exist for each fuse combination. Supported values are 1 to 4.
+		    The list must contain either qcom,cpr-fuse-combos number of
+		    elements in which case the corner band counts are applied to
+		    fuse combinations 1-to-1 or the list must contain exactly 1
+		    element which is used regardless of the fuse combination
+		    found on a given chip.
+
+- qcom,cpr-speed-bin-corner-bands
+	Usage:      required if qcom,cpr-speed-bins and
+		    qcom,corner-band-allow-core-count-adjustment or
+		    qcom,corner-band-allow-temp-adjustment are specified for
+		    this CPR3 regulator.
+	Value type: <prop-encded-array>
+	Definition: A list of integers which defines how many corner bands
+		    are to be used for each speed bin. The list must contain
+		    qcom,cpr-speed-bins number of elements.
+
+- qcom,corner-band-allow-core-count-adjustment
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the CPR core
+		    count adjustment feature enable state for each corner band
+		    in order from lowest to highest. Each element in the tuple
+		    should be either 0 (per-core-count adjustment not allowed)
+		    or 1 (per-core-count adjustment allowed). A maximum of four
+		    corner bands may be used to partition the corner space into
+		    contiguous corner ranges. For all corners within a corner band,
+		    the same per-core-count adjustments are applied.
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+		    Each tuple must be of the length defined in the corresponding
+		    element of the qcom,cpr-corner-bands property.
+
+- qcom,max-core-count
+	Usage:      required if qcom,corner-band-allow-core-count-adjustment is
+		    specified for this CPR3 regulator.
+	Value type: <u32>
+	Definition: The maximum number of cores considered for core-count vmin
+		    adjustments specified for this regulator's corner bands.
+
+- qcom,corner-band-allow-temp-adjustment
+	Usage:      optional
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which each define the temperature
+		    adjustment feature enable state for each corner band
+		    in order from lowest to highest. Each element in the tuple
+		    should be either 0 (temperature adjustment not allowed)
+		    or 1 (temperature adjustment allowed). A maximum of four
+		    corner bands may be used to partition the corner space into
+		    contiguous corner ranges. For all corners within a corner band,
+		    the same temperature adjustments are applied.
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+		    Each tuple must be of the length defined in the corresponding
+		    element of the qcom,cpr-corner-bands property.
+
+- qcom,cpr-corner-band-map
+	Usage:      required if qcom,corner-band-allow-core-count-adjustment
+		    or qcom,corner-band-allow-temp-adjustment is specified
+		    for this CPR3 regulator.
+	Value type: <prop-encoded-array>
+	Definition: A list of integer tuples which correspond to corner numbers
+		    and define the corner bands to be used for temperature or
+		    per-core-count adjustments. The corner numbers must be specified
+		    in increasing order to result in partitioning the corner space
+		    into contiguous corner ranges. The supported tuple size is 1
+		    to 4 elements. For example, a tuple with corners defined as
+		    c1, c2, c3, c4 results in the following corner band mapping:
+
+		    [c1, c2) -> Corner Band 1
+		    [c2, c3) -> Corner Band 2
+		    [c3, c4) -> Corner Band 3
+		    [c4, inf)-> Corner Band 4
+
+		    Corners less than c1 will have no per-core-count or temperature
+		    adjustments. Adjustments associated with each corner band X are
+		    defined in the corresponding
+		    qcom,cpr-corner-bandX-temp-core-voltage-adjustment property.
+
+		    The list must contain qcom,cpr-fuse-combos number of tuples
+		    in which case the tuples are matched to fuse combinations
+		    1-to-1 or qcom,cpr-speed-bins number of tuples in which case
+		    the tuples are matched to speed bins 1-to-1 or exactly 1
+		    tuple which is used regardless of the fuse combination and
+		    speed bin found on a given chip.
+
+		    Each tuple must be of the length defined in the corresponding
+		    element of the qcom,cpr-corner-bands property.
+
+- qcom,cpr-corner-bandX-temp-core-voltage-adjustment
+	Usage:      required if qcom,corner-band-allow-core-count-adjustment
+		    is specified for this CPR3 regulator.
+	Value type: <prop-encoded-array>
+	Definition: A grouping of integer tuple lists for corner bandX. The possible
+		    values for X are 1 to 4. Each tuple defines the temperature based
+		    voltage adjustment in microvolts for each temperature band
+		    from lowest to highest for a given number of online cores. Each
+		    tuple must have a number of elements equal to either (the number
+		    of elements in qcom,cpr-temp-point-map + 1), if
+		    qcom,cpr-temp-point-map is specified, or 1.
+
+		    Each tuple list must contain a number of tuples equal to
+		    either qcom,max-core-count, if qcom,max-core-count is
+		    specified, or 1. The tuples should be ordered from lowest
+		    to highest core count.
+
+		    The tuple list grouping must contain qcom,cpr-fuse-combos
+		    number of tuple lists in which case the lists are matched to
+		    fuse combinations 1-to-1 or qcom,cpr-speed-bins number of
+		    tuple lists in which case the lists are matched to
+		    speed bins 1-to-1 or exactly 1 list which is used regardless
+		    of the fuse combination and speed bin found on a given chip.
+
+=======
+Example
+=======
+
+apc0_cpr: cprh-ctrl@179c8000 {
+	compatible = "qcom,cprh-msm8998-kbss-regulator";
+	reg = <0x179c8000 0x4000>, <0x00784000 0x1000>;
+	reg-names = "cpr_ctrl", "fuse_base";
+	clocks = <&clock_gcc clk_gcc_hmss_rbcpr_clk>;
+	clock-names = "core_clk";
+	qcom,cpr-ctrl-name = "apc0";
+	qcom,cpr-controller-id = <0>;
+
+	qcom,cpr-sensor-time = <1000>;
+	qcom,cpr-loop-time = <5000000>;
+	qcom,cpr-idle-cycles = <15>;
+	qcom,cpr-up-down-delay-time = <3000>;
+	qcom,cpr-step-quot-init-min = <11>;
+	qcom,cpr-step-quot-init-max = <13>;
+	qcom,cpr-count-mode = <2>;		/* Staggered */
+	qcom,cpr-down-error-step-limit = <1>;
+	qcom,cpr-up-error-step-limit = <1>;
+	qcom,cpr-corner-switch-delay-time = <1600>;
+	qcom,cpr-voltage-settling-time = <1600>;
+
+	qcom,apm-threshold-voltage = <800000>;
+	qcom,apm-hysteresis-voltage = <4000>;
+	qcom,voltage-step = <4000>;
+	qcom,voltage-base = <352000>;
+	qcom,cpr-saw-use-unit-mV;
+
+	qcom,cpr-enable;
+	qcom,cpr-hw-closed-loop;
+
+	qcom,cpr-initial-temp-band = <3>;
+	qcom,cpr-temp-point-map = <0 25 85>;
+
+	thread@0 {
+		qcom,cpr-thread-id = <0>;
+		qcom,cpr-consecutive-up = <2>;
+		qcom,cpr-consecutive-down = <2>;
+		qcom,cpr-up-threshold = <0>;
+		qcom,cpr-down-threshold = <0>;
+
+		apc0_pwrcl_vreg: regulator-pwrcl {
+			regulator-name = "apc0_pwrcl_corner";
+			regulator-min-microvolt = <1>;
+			regulator-max-microvolt = <24>;
+
+			qcom,cpr-fuse-corners = <4>;
+			qcom,cpr-fuse-combos = <1>;
+			qcom,cpr-corners = <23>;
+
+			qcom,cpr-corner-fmax-map = <7 10 17 23>;
+
+			qcom,cpr-voltage-ceiling =
+				<632000  632000  632000  632000  632000
+				 632000  632000  700000  700000  700000
+				 828000  828000  828000  828000  828000
+				 828000  828000 1024000 1024000 1024000
+				1024000 1024000 1024000>;
+
+			qcom,cpr-voltage-floor =
+				<572000  572000  572000  572000  572000
+				 572000  572000  568000  568000  568000
+				 684000  684000  684000  684000  684000
+				 684000  684000  856000  856000  856000
+				 856000  856000  856000>;
+
+			qcom,corner-frequencies =
+				<300000000  345600000  422400000
+				 499200000  576000000  633600000
+				 710400000  806400000  883200000
+				 960000000 1036800000 1113600000
+				1190400000 1248000000 1324800000
+				1401600000 1478400000 1497600000
+				1574400000 1651200000 1728000000
+				1804800000 1881600000>;
+			};
+
+			qcom,cpr-corner-bands = <4>;
+			qcom,corner-band-allow-core-count-adjustment = <1 1 1 1>;
+			qcom,corner-band-allow-temp-adjustment = <1 0 0 0>;
+			qcom,cpr-corner-band-map = <7 14 18 20>;
+			qcom,max-core-count = <4>;
+			qcom,cpr-corner-band1-temp-core-voltage-adjustment =
+				<(-24000) (-20000) (-20000) (-16000)>,
+				<(-16000) (-16000) (-12000) (-8000)>,
+				<(-8000)  (-8000)  (-4000)  (-4000)>,
+				<0     0     0     0>;
+			qcom,cpr-corner-band2-temp-core-voltage-adjustment =
+				<(-36000) 0 0 0>,
+				<(-32000) 0 0 0>,
+				<(-24000) 0 0 0>,
+				<    0 0 0 0>;
+			qcom,cpr-corner-band3-temp-core-voltage-adjustment =
+				<(-40000) 0 0 0>,
+				<(-36000) 0 0 0>,
+				<(-32000) 0 0 0>,
+				<    0 0 0 0>;
+			qcom,cpr-corner-band4-temp-core-voltage-adjustment =
+				<(-44000) 0 0 0>,
+				<(-32000) 0 0 0>,
+				<(-24000) 0 0 0>,
+				<    0 0 0 0>;
+		};
+	};
+}
diff --git a/Documentation/devicetree/bindings/regulator/kryo-regulator.txt b/Documentation/devicetree/bindings/regulator/kryo-regulator.txt
new file mode 100644
index 0000000..ad630ee
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/kryo-regulator.txt
@@ -0,0 +1,151 @@
+Qualcomm Technologies, Inc. Kryo Regulator
+
+The Kryo regulator device is designed for QTI's application processor cores
+that can draw power from a common power rail via a block head switch (BHS)
+or from a configurable LDO when certain power constraints are met. By using
+Kryo regulators, the CPU subsystem is capable of selecting LDO or BHS modes
+for each cluster.
+
+=================
+First Level Nodes
+=================
+
+- compatible
+	Usage:      required
+	Value type: <string>
+	Definition: must be "qcom,kryo-regulator"
+
+- reg
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: Specifies addresses and sizes for the memory mapped regions of the
+		    power gate and LDO registers per cluster and per shared power rail
+		    domain. The third address must correspond to the register space
+		    containing the CPU subsystem HW revision register.
+
+- reg-names
+	Usage:      required
+	Value type: <stringlist>
+	Definition: Identifies the reg property entries. Must contain the following
+		    strings: "pm-apc", "pm-apcc", and "apcs-csr".
+
+- qcom,ldo-default-voltage
+	Usage:      required
+	Value type: <u32>
+	Definition: The default value for LDO voltage in microvolts. Must be
+		    between 520000 uV and 865000 uV.
+
+- qcom,retention-voltage
+	Usage:      required
+	Value type: <u32>
+	Definition: The value for retention voltage in microvolts. Must be
+		    between 520000 and 865000 uV.
+
+- qcom,ldo-headroom-voltage
+	Usage:      required
+	Value type: <u32>
+	Definition: Voltage in microvolts required between the VDD_APCC voltage supply
+		    and the LDO output in order for the LDO to be operational.
+
+- qcom,vref-functional-step-voltage
+	Usage:      required
+	Value type: <u32>
+	Definition: The voltage change in microvolts for each step in the
+		    functional LDO set point.
+
+- qcom,vref-functional-min-voltage
+	Usage:      required
+	Value type: <u32>
+	Definition: The minimum configurable functional LDO voltage in microvolts.
+
+- qcom,vref-retention-step-voltage
+	Usage:      required
+	Value type: <u32>
+	Definition: The voltage change in microvolts for each step in the
+		    retention LDO set point.
+
+- qcom,vref-retention-min-voltage
+	Usage:      required
+	Value type: <u32>
+	Definition: The minimum configurable retention LDO voltage in microvolts.
+
+- qcom,ldo-config-init
+	Usage:      required
+	Value type: <u32>
+	Definition: Initialization value used to configure the Kryo LDO hardware.
+
+- qcom,apm-config-init
+	Usage:      required
+	Value type: <u32>
+	Definition: Initialization value used to configure the Kryo APM hardware.
+
+- qcom,cluster-num
+	Usage:      required
+	Value type: <u32>
+	Definition: Specifies the number of the cluster this regulator controls.
+
+==================
+Second Level Nodes
+==================
+The second level node represents a regulator which enables control of LDO retention
+mode per Kryo regulator device. This second level node is required.
+
+The following regulator framework properties must be specified for both first and
+second level nodes: regulator-name, regulator-min-microvolt, and regulator-max-microvolt.
+
+Additional core regulator framework properties may also be used. For a full list of
+supported bindings refer to Documentation/devicetree/bindings/regulator/regulator.txt.
+
+=======
+Example
+=======
+
+	kryo0_vreg: regulator@99a2000 {
+		compatible = "qcom,kryo-regulator";
+		regulator-name = "kryo0";
+		reg = <0x99a2000 0x1000>, <0x99e0000 0x1000>,
+		      <0x9820000 0x1000>;
+		reg-names = "pm-apc", "pm-apcc", "apcs-csr";
+		regulator-min-microvolt = <520000>;
+		regulator-max-microvolt = <865000>;
+		qcom,ldo-default-voltage = <750000>;
+		qcom,retention-voltage = <520000>;
+		qcom,ldo-headroom-voltage = <150000>;
+		qcom,vref-functional-step-voltage = <4100>;
+		qcom,vref-functional-min-voltage = <299000>;
+		qcom,vref-retention-step-voltage = <4554>;
+		qcom,vref-retention-min-voltage = <332000>;
+		qcom,ldo-config-init = <0xf1f0e471>;
+		qcom,apm-config-init = <0x0>;
+		qcom,cluster-num = <0>;
+		kryo0_retention_vreg: regulator {
+			regulator-name = "kryo0-retention";
+			regulator-min-microvolt = <332000>;
+			regulator-max-microvolt = <865000>;
+		};
+	};
+
+	kryo1_vreg: regulator@99d2000 {
+		compatible = "qcom,kryo-regulator";
+		regulator-name = "kryo1";
+		reg = <0x99d2000 0x1000>, <0x99e0000 0x1000>,
+		      <0x9820000 0x1000>;
+		reg-names = "pm-apc", "pm-apcc", "apcs-csr";
+		regulator-min-microvolt = <520000>;
+		regulator-max-microvolt = <865000>;
+		qcom,ldo-default-voltage = <750000>;
+		qcom,retention-voltage = <520000>;
+		qcom,ldo-headroom-voltage = <150000>;
+		qcom,vref-functional-step-voltage = <4063>;
+		qcom,vref-functional-min-voltage = <296000>;
+		qcom,vref-retention-step-voltage = <4554>;
+		qcom,vref-retention-min-voltage = <332000>;
+		qcom,ldo-config-init = <0xf1f0e471>;
+		qcom,apm-config-init = <0x0>;
+		qcom,cluster-num = <1>;
+		kryo1_retention_vreg: regulator {
+			regulator-name = "kryo1-retention";
+			regulator-min-microvolt = <332000>;
+			regulator-max-microvolt = <865000>;
+		};
+	};
diff --git a/Documentation/devicetree/bindings/regulator/mem-acc-regulator.txt b/Documentation/devicetree/bindings/regulator/mem-acc-regulator.txt
new file mode 100644
index 0000000..5515457
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/mem-acc-regulator.txt
@@ -0,0 +1,266 @@
+Qualcomm Technologies, Inc. Memory Accelerator
+
+Memory accelerator configures the power-mode (corner) for the
+accelerator.
+
+Required properties:
+- compatible:			Must be "qcom,mem-acc-regulator"
+- regulator-name:		A string used to describe the regulator
+- regulator-min-microvolt:	Minimum corner value as min constraint, which
+				should be 1 for SVS corner
+- regulator-max-microvolt:	Maximum corner value as max constraint, which
+				should be 4 for SUPER_TURBO or 3 for TURBO
+
+Optional properties:
+- reg:				Register addresses for acc-sel-l1, acc-sel-l2 control, acc-en,
+				MEM ACC eFuse address, acc-l1-custom , acc-l2-custom,
+				mem-acc-type1, mem-acc-type2, mem-acc-type3, mem-acc-type4,
+				mem-acc-type5 and mem-acc-type6.
+- reg-names:			Register names. Must be "acc-sel-l1",
+				"acc-sel-l2", "acc-en", "efuse_addr",
+				"acc-l1-custom", "acc-l2-custom", "mem-acc-type1",
+				"mem-acc-type2", "mem-acc-type3", "mem-acc-type4",
+				"mem-acc-type5", "mem-acc-type6".
+				A given mem-acc-regulator driver must have "acc-sel-l1" or
+				"acc-sel-l2" or "mem-acc-type*" reg-names property and
+				related register address property.
+- qcom,corner-acc-map		Array which maps the APC (application processor)
+				corner value to the accelerator corner. The number of elements
+				in this property defines the number of accelerator corners.
+				Either qcom,corner-acc-map property or qcom,cornerX-reg-config
+				properties should be specified.
+- qcom,acc-en-bit-pos		Array which specifies bit positions in the
+				'acc-en' register. Setting these bits forces the
+				the acclerator to use the corner value specified
+				in the 'acc-sel-l1' and 'acc-sel-l2' register.
+- qcom,acc-sel-l1-bit-size	Integer which specifies the number of bits in
+				the 'acc-sel-l1' register which define each L1
+				select parameter.  If this property is not
+				specified, then a default value of 2 is assumed.
+- qcom,acc-sel-l1-bit-pos	Array which specifies bit positions in the
+				'acc-sel-l1' register. Each element in this array
+				is the LSB of an N-bit value where 'N' is
+				defined by the qcom,acc-sel-l1-bit-size
+				property.  This N-bit value specifies the corner
+				value used by the accelerator for the L1 cache.
+- qcom,acc-sel-l2-bit-size	Integer which specifies the number of bits in
+				the 'acc-sel-l2' register which define each L2
+				select parameter.  If this property is not
+				specified, then a default value of 2 is assumed.
+- qcom,acc-sel-l2-bit-pos	Array which specifies bit positions in the
+				'acc-sel-l2' register. Each element in this array
+				is the LSB of an N-bit value where 'N' is
+				defined by the qcom,acc-sel-l2-bit-size
+				property.  This N-bit value specifies the corner
+				value used by the accelerator for the L2 cache.
+- qcom,l1-acc-custom-data:	Array which maps APC corner values to L1 ACC custom data values.
+				The corresponding custom data is written into the custom register
+				while switching between APC corners. The custom register address
+				is specified by "acc-11-custom" reg-property. The length of the array
+				should be equal to number of APC corners.
+- qcom,l2-acc-custom-data:	Array which maps APC corner values to L2 ACC custom data values.
+				The corresponding custom data is written into the custom register
+				while switching between APC corners. The custom register address
+				is specified by "acc-l2-custom" reg-property. The length of the array
+				should be equal to number of APC corners.
+- qcom,override-acc-fuse-sel:	Array of 4 elements which specify the way to read the override fuse.
+				The override fuse value is used by the qcom,override-fuse-version-map
+				to identify the correct set of override properties.
+				The 4 elements with index [0..4] are:
+				  [0] => the fuse row number of the selector
+				  [1] => LSB bit position of the bits
+				  [2] => number of bits
+				  [3] => fuse reading method, 0 for direct reading or 1 for SCM reading
+- qcom,override-fuse-version-map: Array of integers which each match to a override fuse value.
+				Any element in a tuple may use the value 0xffffffff as a wildcard.
+				The index of the first value (in the array) which matches the override fuse
+				is used to select the right tuples from the other override properties.
+- qcom,override-corner-acc-map:	Array of tuples which overrides the existing acc-corner map
+				(specified by qcom,corner-acc-map) with corner values selected
+				from this property. "qcom,override-corner-acc-map" must contain the
+				same number of tuples as "qcom,override-fuse-version-map". These tuples
+				are then mapped one-to-one in the order specified. If the
+				"qcom,override-fuse-version-map" property is not specified, then
+				"qcom,override-corner-acc-map" must contain a single tuple which is then
+				applied unconditionally.
+- qcom,override-l1-acc-custom-data:	Array of tuples of which overrides the existing l1-acc-custom data
+				(specified by qcom,l1-acc-custom-data), with values specified in this property.
+				The corresponding custom data is written into the custom register while
+				switching between APC corners. The custom register address is specified by
+				"acc-11-custom" reg-property. This property can only be specified if the
+				"qcom,l1-acc-custom-data" is already defined. If the
+				"qcom,override-fuse-version-map" property is specified, then
+				qcom,override-l1-acc-custom-data must contain the same number of tuples
+				as "qcom,override-fuse-version-map". These tuples are then mapped one-to-one
+				in the order specified. If the qcom,override-fuse-version-map property is
+				not specified, then "qcom,override-l1-acc-custom-data" must contain a single
+				tuple which is then applied unconditionally.
+- qcom,override-l2-acc-custom-data:	Array of tuples of which overrides the existing l1-acc-custom data
+				(specified by qcom,l2-acc-custom-data), with values specified in this property.
+				The corresponding custom data is written into the custom register while
+				switching between APC corners. The custom register address is specified by
+				"acc-12-custom" reg-property. This property can only be specified if the
+				"qcom,l2-acc-custom-data" is already defined. If the
+				"qcom,override-fuse-version-map" property is specified, then
+				"qcom,override-l2-acc-custom-data" must contain the same number of tuples
+				as "qcom,override-fuse-version-map". These tuples are then mapped one-to-one
+				in the order specified. If the qcom,override-fuse-version-map property is
+				not specified, then "qcom,override-l2-acc-custom-data" must contain a single
+				tuple which is then applied unconditionally.
+- qcom,mem-acc-type1:		Array which specifies the value to be written to the mem acc type1 register for each fuse
+				corner, from the lowest fuse corner to the highest fuse corner. The length of the array
+				must be equal to the number of APC fuse corners. This property must be present if reg names
+				specifies mem-acc-type1.
+- qcom,mem-acc-type2:		Same as qcom,mem-acc-type1 except for mem acc type2 register.
+- qcom,mem-acc-type3:		Same as qcom,mem-acc-type1 except for mem acc type3 register.
+- qcom,mem-acc-type4:		Same as qcom,mem-acc-type1 except for mem acc type4 register.
+- qcom,mem-acc-type5:		Same as qcom,mem-acc-type1 except for mem acc type5 register.
+- qcom,mem-acc-type6:		Same as qcom,mem-acc-type1 except for mem acc type6 register.
+- qcom,acc-reg-addr-list:	Array of register addresses which need to be programmed during any corner switch.
+				This property can be used when multi register configuration is needed during a corner switch.
+- qcom,acc-init-reg-config:	Array of tuples specify the multi register configuration sequence need to be programmed
+				one time during device boot.
+				The format of each tuple as below:
+					<register-address-index, value>
+				Where register-address-index is used as an index in to qcom,acc-reg-addr-list property
+				to get the required register address and the value is programmed in to the corresponding
+				mapped register address. This property is required if qcom,acc-corner-addr-val-map
+				property specified.
+- qcom,cornerX-reg-config:	Array of tuples specify the multi register configuration sequence need to be programmed
+				when switching from acc corner X to any other corner. The possible values for X are {1, N},
+				where N is the value defined in qcom,num-acc-corners.
+				The format of each tuple as below:
+					<register-address-index, value>
+				Where register-address-index is used as an index in to qcom,acc-reg-addr-list property
+				to get the required register address and the value is programmed in to the corresponding
+				mapped register address. Same index can be used multiple times when the register is
+				required to configure multiple times with different values in the sequence.
+				The number of register configuration sequences should be equal to N, where N is the
+				value specified in qcom,num-acc-corners property. Also, the number of tuples in each
+				register configuration sequence should be same and must be equal to the maximum required
+				register configurations in any sequence. The invalid register configuration can be
+				specified as <(-1) (-1)>.  This property can only be specified when qcom,acc-corner-addr-val-map
+				property already defined. Either this property or qcom,corner-acc-map should be specified.
+- qcom,num-acc-corners:		The number of acc corners supported. This property is required if qcom,cornerX-reg-config
+				property specified.
+- qcom,boot-acc-corner:		The acc corner used during device boot. This property is required if qcom,cornerX-reg-config
+				property specified.
+- qcom,override-cornerX-reg-config:	A grouping of register configuration sequence lists. Each list is same as
+				the qcom,cornerX-reg-config property. The possible values for X are {1, N} where N is
+				the value defined in qcom,num-acc-corners. This property is used to specify the different
+				register configuration sequence lists and select one list among them based on the selected
+				index in qcom,override-fuse-version-map property. The selected list overrides the existing
+				register configuration sequence list specified in "qcom,cornerX-reg-config". If the
+				"qcom,override-fuse-version-map" property is specified, then
+				"qcom,override-cornerX-reg-config" must contain the same number of register
+				configuration sequence lists as the number of tuples in "qcom,override-fuse-version-map".
+				These register configuration sequence lists are then mapped one-to-one
+				in the order specified. If the qcom,override-fuse-version-map property is
+				not specified, then "qcom,override-cornerX-reg-config" must contain a single
+				register configuration sequence list which is then applied unconditionally.
+				This property can only be specified if qcom,cornerX-reg-config property is already defined.
+
+mem_acc_vreg_corner: regulator@fd4aa044 {
+	compatible = "qcom,mem-acc-regulator";
+	reg = <0xfd4aa048 0x1>, <0xfd4aa044 0x1>, <0xfd4af000 0x1>,
+		<0x58000 0x1000>, <0x01942124 0x4>, <0xf900d084 1>,
+		<0xf900d088 1>, <0xf900d08c 1>, <0xf900d090 1>;
+	reg-names = "acc-en", "acc-sel-l1" , "acc-sel-l2",
+		"efuse_addr", "acc-l2-custom", "mem-acc-type1",
+		"mem-acc-type2", "mem-acc-type3", "mem-acc-type4";
+	regulator-name = "mem_acc_corner";
+	regulator-min-microvolt = <1>;
+	regulator-max-microvolt = <3>;
+
+	qcom,acc-en-bit-pos = <0>;
+	qcom,acc-sel-l1-bit-pos = <0>;
+	qcom,acc-sel-l2-bit-pos = <0>;
+	qcom,acc-sel-l1-bit-size = <2>;
+	qcom,acc-sel-l2-bit-size = <2>;
+	qcom,corner-acc-map = <0 1 3>;
+	qcom,l2-acc-custom-data = <0x0 0x3000 0x3000>;
+
+	qcom,override-acc-fuse-sel = <0 52 2 0>;
+	qcom,override-fuse-version-map = <0>,
+					 <2>,
+					 <(-1)>;
+	qcom,override-corner-acc-map =	<0 0 1>,
+					<0 1 2>,
+					<0 1 1>;
+	qcom,overide-l2-acc-custom-data = <0x0	0x0	0x3000>,
+					  <0x0	0x3000	0x3000>,
+					  <0x0	0x0	0x0>;
+	qcom,mem-acc-type1 = <0x02 0x02 0x00>;
+	qcom,mem-acc-type2 = <0x02 0x02 0x00>;
+	qcom,mem-acc-type3 = <0x02 0x02 0x00>;
+	qcom,mem-acc-type4 = <0x02 0x02 0x00>;
+
+	qcom,acc-reg-addr-list = <0x01942130 0x01942124 0x01942120>;
+	qcom,acc-init-reg-config = <1 0x55> <2 0x02>;
+
+	qcom,num-acc-corners = <3>;
+	qcom,boot-acc-corner = <2>;
+	qcom,corner1-reg-config =
+		<(-1) (-1)>, <(-1) (-1)>, <(-1) (-1)>, /* 1 -> 1 */
+		<  1 0x155>, <  2   0x0>, <  3 0x155>, /* 1 -> 2 */
+		<  1   0x0>, <  2 0x155>, <(-1) (-1)>; /* 1 -> 3 */
+
+	qcom,corner2-reg-config =
+		<  1 0x155>, <(-1) (-1)>, <(-1) (-1)>, /* 2 -> 1 */
+		<(-1) (-1)>, <(-1) (-1)>, <(-1) (-1)>, /* 2 -> 2 */
+		<  1 0x155>, <  2   0x0>, <  3 0x155>; /* 2 -> 3 */
+
+	qcom,corner3-reg-config =
+		<  1   0x0>, <  2 0x155>, <(-1) (-1)>, /* 3 -> 1 */
+		<  1 0x155>, <(-1) (-1)>, <(-1) (-1)>, /* 3 -> 2 */
+		<(-1) (-1)>, <(-1) (-1)>, <(-1) (-1)>; /* 3 -> 3 */
+
+	qcom,override-corner1-reg-config =
+		/* 1st fuse version tuple matched */
+		<(-1) (-1)>, <(-1) (-1)>, <(-1) (-1)>, /* 1 -> 1 */
+		<  1 0x155>, <  2   0x0>, <  3 0x155>, /* 1 -> 2 */
+		<  1   0x0>, <  2 0x155>, <(-1) (-1)>, /* 1 -> 3 */
+
+		/* 2nd fuse version tuple matched */
+		<(-1) (-1)>, <(-1) (-1)>, <(-1) (-1)>, /* 1 -> 1 */
+		<  1 0x155>, <  2   0x0>, <  3 0x155>, /* 1 -> 2 */
+		<  1   0x0>, <  2 0x155>, <(-1) (-1)>, /* 1 -> 3 */
+
+		/* 3rd fuse version tuple matched */
+		<(-1) (-1)>, <(-1) (-1)>, <(-1) (-1)>, /* 1 -> 1 */
+		<  1 0x155>, <  3  0x22>, <  3 0x155>, /* 1 -> 2 */
+		<  1   0x0>, <  2 0x155>, <  3 0x144>; /* 1 -> 3 */
+
+	qcom,override-corner2-reg-config =
+		/* 1st fuse version tuple matched */
+		<  1 0x144>, <  1  0x11>, <(-1) (-1)>, /* 2 -> 1 */
+		<(-1) (-1)>, <(-1) (-1)>, <(-1) (-1)>, /* 2 -> 2 */
+		<  1 0x155>, <  2   0x0>, <  3 0x155>, /* 2 -> 3 */
+
+		/* 2nd fuse version tuple matched */
+		<  1 0x144>, <  2 0x133>, <(-1) (-1)>, /* 2 -> 1 */
+		<(-1) (-1)>, <  1  0x33>, <(-1) (-1)>, /* 2 -> 2 */
+		<  1 0x133>, <  2   0x0>, <  3 0x155>, /* 2 -> 3 */
+
+		/* 3rd fuse version tuple matched */
+		<  1 0x144>, <  1  0x11>, <(-1) (-1)>, /* 2 -> 1 */
+		<(-1) (-1)>, <(-1) (-1)>, <(-1) (-1)>, /* 2 -> 2 */
+		<  1 0x155>, <  2  0x22>, <  3 0x155>; /* 2 -> 3 */
+
+
+	qcom,override-corner3-reg-config =
+		/* 1st fuse version tuple matched */
+		<  1   0x0>, <  2 0x155>, <(-1) (-1)>, /* 3 -> 1 */
+		<  1 0x155>, <(-1) (-1)>, <(-1) (-1)>, /* 3 -> 2 */
+		<(-1) (-1)>, <(-1) (-1)>, <(-1) (-1)>, /* 3 -> 3 */
+
+		/* 2nd fuse version tuple matched */
+		<  1   0x0>, <  2 0x155>, <(-1) (-1)>, /* 3 -> 1 */
+		<  1 0x155>, <(-1) (-1)>, <(-1) (-1)>, /* 3 -> 2 */
+		<(-1) (-1)>, <(-1) (-1)>, <(-1) (-1)>, /* 3 -> 3 */
+
+		/* 3rd fuse version tuple matched */
+		<  1   0x0>, <  2 0x155>, <(-1) (-1)>, /* 3 -> 1 */
+		<  1 0x155>, <  3  0x11>, <(-1) (-1)>, /* 3 -> 2 */
+		<(-1) (-1)>, <(-1) (-1)>, <(-1) (-1)>; /* 3 -> 3 */
+};
diff --git a/Documentation/devicetree/bindings/regulator/msm_gfx_ldo.txt b/Documentation/devicetree/bindings/regulator/msm_gfx_ldo.txt
new file mode 100644
index 0000000..dcbb120
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/msm_gfx_ldo.txt
@@ -0,0 +1,148 @@
+Qualcomm Technologies, Inc. GFX LDO for Graphics
+
+The GPU core on MSM 8953 can be powered by an internal (on-die)
+MSM LDO or BHS based on its operating corner.
+
+This document describes the bindings that apply for the GFX LDO regulator.
+
+- compatible
+	Usage:      required
+	Value type: <string>
+	Definition: should be "qcom,msm8953-gfx-ldo" for MSM8953 and
+		    "qcom,sdm660-gfx-ldo" for SDM660
+
+- reg
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: Addresses and sizes for the memory of the GFX ldo
+
+- reg-names
+	Usage:      required
+	Value type: <stringlist>
+	Definition: Address names. "ldo_addr", "efuse_addr". Must be
+		    specified in the same order as the corresponding addresses
+		    are specified in the reg property.
+
+- regulator-name
+	Usage:      required
+	Value type: <string>
+	Definition: A string used to describe the regulator.
+
+- regulator-min-microvolt
+	Usage:      required
+	Value type: <u32>
+	Definition: Minimum corner value which should be 1 to represent the
+		    lowest supported corner.
+
+- regulator-max-microvolt
+	Usage:      required
+	Value type: <u32>
+	Definition: Maximum corner value which should be equal to qcom,num-corners.
+
+- qcom,num-corners
+	Usage:      required
+	Value type: <u32>
+	Definition: Number of voltage corners present. Many other
+		    properties are sized based upon this value.
+
+- qcom,num-ldo-corners
+	Usage:      required
+	Value type: <u32>
+	Definition: Number of voltage corners defined for the ldo. It is a
+		    subset of qcom,num-corners (i.e. 1 to qcom,num-ldo-corners
+		    are the corners for ldo operation)
+
+- qcom,init-corner
+	Usage:      required
+	Value type: <u32>
+	Definition: The initial-corner at which the GFX rail is powered on.
+
+- qcom,ldo-enable-corner-map
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: Integer values ( / 0) which indicate the GFX corners in which
+		    ldo is to enabled. The length of this property
+		    should be equal to qcom,num-corners.
+
+- qcom,ldo-voltage-ceiling
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: Array of ceiling voltages in microvolts for voltage corners
+		    ordered from lowest voltage corner to highest voltage corner.
+		    This property must be of length defined by qcom,num-ldo-corners.
+
+- qcom,ldo-voltage-floor
+	Usage:      required
+	Value type: <prop-encoded-array>
+	Definition: Array of floor voltages in microvolts for voltage corners
+		    ordered from lowest voltage corner to highest voltage corner.
+		    This property must be of length defined by qcom,num-ldo-corners.
+
+- vdd-cx-supply
+	Usage:      optional
+	Value type: <phandle>
+	Definition: Parent regulator supply to the ldo.
+
+- qcom,vdd-cx-corner-map
+	Usage:      required if vdd-cx-supply is specified.
+	Value type: <prop-encoded-array>
+	Definition: Array of integers which define the mapping of the VDD_CX corner
+		    to the corresponding GFX voltage corner. The elements in
+		    the array are ordered from lowest voltage corner to highest
+		    voltage corner.  The length of this property must be equal to
+		    the value defined by qcom,num-corners.
+- mem-acc-supply
+	Usage:      optional
+	Value type: <phandle>
+	Definition: Regulator to vote for the memory accelerator configuration.
+		    Not Present: memory accelerator configuration not supported.
+
+- qcom,mem-acc-corner-map:
+	Usage:      optional
+	Value type: <prop-encoded-aray>
+	Definition: Array of integer which defines the mapping from mem-acc
+		    corner value for each gfx corner. The elements in the array
+		    are ordered from lowest voltage corner to highest voltage corner.
+
+- qcom,ldo-init-voltage-adjustment
+	Usage:      optional
+	Value type: <prop-encoded-aray>
+	Definition: Array of voltages in microvolts which indicate the static
+		    adjustment to be applied to the open-loop voltages for the
+		    LDO supported corners. The length of this property must be
+		    equal to qcom,num-ldo-corners.
+
+=======
+Example
+=======
+
+	gfx_vreg_corner: ldo@0185f000 {
+		compatible = "qcom,msm8953-gfx-ldo";
+		reg = <0x0185f000 0x30>, <0xa0000 0x1000>;
+		reg-names = "ldo_addr", "efuse_addr";
+
+		regulator-name = "msm_gfx_ldo";
+		regulator-min-microvolt = <1>;
+		regulator-max-microvolt = <7>;
+
+		qcom,ldo-voltage-ceiling = <500000 700000 900000>;
+		qcom,ldo-voltage-floor = <400000 600000 800000>;
+
+		qcom,num-corners = <7>;
+		qcom,num-ldo-corners = <3>;
+		qcom,ldo-enable-corner-map = <1 1 1 0 0 0 0>;
+		qcom,init-corner = <5>;
+
+		vdd-cx-supply = <&pm8953_s2_level>;
+		qcom,vdd-cx-corner-map = <RPM_SMD_REGULATOR_LEVEL_LOW_SVS>,
+					<RPM_SMD_REGULATOR_LEVEL_LOW_SVS>,
+					<RPM_SMD_REGULATOR_LEVEL_LOW_SVS>,
+					<RPM_SMD_REGULATOR_LEVEL_SVS>,
+					<RPM_SMD_REGULATOR_LEVEL_NOM>,
+					<RPM_SMD_REGULATOR_LEVEL_NOM_PLUS>,
+					<RPM_SMD_REGULATOR_LEVEL_TURBO>;
+
+		mem-acc-supply = <&gfx_mem_acc>;
+		qcom,mem-acc-corner-map = <1 1 2 2 2 2 2>;
+		qcom,ldo-init-voltage-adjustment = <10000 20000 30000>;
+	};
diff --git a/Documentation/devicetree/bindings/regulator/qpnp-regulator.txt b/Documentation/devicetree/bindings/regulator/qpnp-regulator.txt
new file mode 100644
index 0000000..601903b
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/qpnp-regulator.txt
@@ -0,0 +1,151 @@
+Qualcomm Technologies, Inc. QPNP Regulators
+
+qpnp-regulator is a regulator driver which supports regulators inside of PMICs
+that utilize the MSM SPMI implementation.
+
+Required properties:
+- compatible:      Must be "qcom,qpnp-regulator"
+- reg:             Specifies the SPMI address and size for this regulator device
+		   Note, this is the only property which can be used within a
+		   subnode.
+- regulator-name:  A string used as a descriptive name for regulator outputs
+- parent-supply:   phandle to the parent supply/regulator node
+
+Required structure:
+- A qcom,qpnp-regulator node must be a child of an spmi_device node.
+
+Optional properties:
+- interrupts:                  List of interrupts used by the regulator.
+- interrupt-names:             List of strings defining the names of the
+				interrupts in the 'interrupts' property 1-to-1.
+				Supported values are "ocp" for voltage switch
+				type regulators.  If an OCP interrupt is
+				specified, then the voltage switch will be
+				toggled off and back on when OCP triggers in
+				order to handle high in-rush current.
+- qcom,system-load:            Load in uA present on regulator that is not
+				captured by any consumer request
+- qcom,enable-time:            Time in us to delay after enabling the regulator
+- qcom,auto-mode-enable:       1 = Enable automatic hardware selection of
+				regulator mode (HPM vs LPM); not available on
+				boost type regulators
+			       0 = Disable auto mode selection
+- qcom,bypass-mode-enable:     1 = Enable bypass mode for an LDO type regulator
+				so that it acts like a switch and simply outputs
+				its input voltage
+			       0 = Do not enable bypass mode
+- qcom,ocp-enable:             1 = Allow over current protection (OCP) to be
+				enabled for voltage switch type regulators so
+				that they latch off automatically when over
+				current is detected.  OCP is enabled when in
+				HPM or auto mode.
+			       0 = Disable OCP
+- qcom,ocp-max-retries:        Maximum number of times to try toggling a voltage
+				switch off and back on as a result of
+				consecutive over current events.
+- qcom,ocp-retry-delay:        Time to delay in milliseconds between each
+				voltage switch toggle after an over current
+				event takes place.
+- qcom,pull-down-enable:       1 = Enable output pull down resistor when the
+				regulator is disabled
+			       0 = Disable pull down resistor
+- qcom,soft-start-enable:      1 = Enable soft start for LDO and voltage switch
+				type regulators so that output voltage slowly
+				ramps up when the regulator is enabled
+			       0 = Disable soft start
+- qcom,boost-current-limit:    This property sets the current limit of boost
+				type regulators; supported values are:
+					0 =  300 mA
+					1 =  600 mA
+					2 =  900 mA
+					3 = 1200 mA
+					4 = 1500 mA
+					5 = 1800 mA
+					6 = 2100 mA
+					7 = 2400 mA
+- qcom,pin-ctrl-enable:        Bit mask specifying which hardware pins should be
+				used to enable the regulator, if any; supported
+				bits are:
+					0 = ignore all hardware enable signals
+					BIT(0) = follow HW0_EN signal
+					BIT(1) = follow HW1_EN signal
+					BIT(2) = follow HW2_EN signal
+					BIT(3) = follow HW3_EN signal
+- qcom,pin-ctrl-hpm:           Bit mask specifying which hardware pins should be
+				used to force the regulator into high power
+				mode, if any; supported bits are:
+					0 = ignore all hardware enable signals
+					BIT(0) = follow HW0_EN signal
+					BIT(1) = follow HW1_EN signal
+					BIT(2) = follow HW2_EN signal
+					BIT(3) = follow HW3_EN signal
+					BIT(4) = follow PMIC awake state
+- qcom,vs-soft-start-strength: This property sets the soft start strength for
+				voltage switch type regulators; supported values
+				are:
+					0 = 0.05 uA
+					1 = 0.25 uA
+					2 = 0.55 uA
+					3 = 0.75 uA
+- qcom,hpm-enable:             1 = Enable high power mode (HPM), also referred
+				to as NPM.  HPM consumes more ground current
+				than LPM, but it can source significantly higher
+				load current.  HPM is not available on boost
+				type regulators.  For voltage switch type
+				regulators, HPM implies that over current
+				protection and soft start are active all the
+				time.  This configuration can be overwritten
+				by changing the regulator's mode dynamically.
+			       0 = Do not enable HPM
+- qcom,force-type: 	       Override the type and subtype register values. Useful for some
+				regulators that have invalid types advertised by the hardware.
+				The format is two unsigned integers of the form <type subtype>.
+
+Note, if a given optional qcom,* binding is not present, then the qpnp-regulator
+driver will leave that feature in the default hardware state.
+
+All properties specified within the core regulator framework can also be used.
+These bindings can be found in regulator.txt.
+
+Example:
+	qcom,spmi@fc4c0000 {
+		#address-cells = <1>;
+		#size-cells = <0>;
+		interrupt-controller;
+		#interrupt-cells = <3>;
+
+		qcom,pm8941@1 {
+			reg = <0x1>;
+			#address-cells = <1>;
+			#size-cells = <1>;
+
+			regulator@1400 {
+				regulator-name = "8941_s1";
+				#address-cells = <1>;
+				#size-cells = <1>;
+				compatible = "qcom,qpnp-regulator";
+				reg = <0x1400 0x300>;
+				regulator-min-microvolt = <1300000>;
+				regulator-max-microvolt = <1400000>;
+
+				qcom,ctl@1400 {
+					reg = <0x1400 0x100>;
+				};
+				qcom,ps@1500 {
+					reg = <0x1500 0x100>;
+				};
+				qcom,freq@1600 {
+					reg = <0x1600 0x100>;
+				};
+			};
+
+			regulator@4000 {
+				regulator-name = "8941_l1";
+				reg = <0x4000 0x100>;
+				compatible = "qcom,qpnp-regulator";
+				regulator-min-microvolt = <1225000>;
+				regulator-max-microvolt = <1300000>;
+				qcom,pull-down-enable = <1>;
+			};
+		};
+	};
diff --git a/drivers/power/Kconfig b/drivers/power/Kconfig
index 63454b5..b5d3f08 100644
--- a/drivers/power/Kconfig
+++ b/drivers/power/Kconfig
@@ -1,3 +1,4 @@
 source "drivers/power/avs/Kconfig"
 source "drivers/power/reset/Kconfig"
 source "drivers/power/supply/Kconfig"
+source "drivers/power/qcom/Kconfig"
diff --git a/drivers/power/Makefile b/drivers/power/Makefile
index ff35c71..b0cafa9 100644
--- a/drivers/power/Makefile
+++ b/drivers/power/Makefile
@@ -1,3 +1,4 @@
 obj-$(CONFIG_POWER_AVS)		+= avs/
 obj-$(CONFIG_POWER_RESET)	+= reset/
 obj-$(CONFIG_POWER_SUPPLY)	+= supply/
+obj-$(CONFIG_ARCH_QCOM)		+= qcom/
diff --git a/drivers/power/qcom/Kconfig b/drivers/power/qcom/Kconfig
new file mode 100644
index 0000000..8625aa8
--- /dev/null
+++ b/drivers/power/qcom/Kconfig
@@ -0,0 +1,11 @@
+menu "Miscellaneous Qualcomm Technologies, Inc. power support"
+
+config MSM_APM
+	bool "Qualcomm Technologies, Inc. platform specific APM driver"
+	help
+	  Platform specific driver to manage the power source of
+	  memory arrays. Interfaces with regulator drivers to ensure
+	  SRAM Vmin requirements are met across different performance
+	  levels.
+
+endmenu
diff --git a/drivers/power/qcom/Makefile b/drivers/power/qcom/Makefile
new file mode 100644
index 0000000..818179c
--- /dev/null
+++ b/drivers/power/qcom/Makefile
@@ -0,0 +1 @@
+obj-$(CONFIG_MSM_APM)		+= apm.o
diff --git a/drivers/power/qcom/apm.c b/drivers/power/qcom/apm.c
new file mode 100644
index 0000000..3dfb439
--- /dev/null
+++ b/drivers/power/qcom/apm.c
@@ -0,0 +1,1062 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/arm-smccc.h>
+#include <linux/debugfs.h>
+#include <linux/delay.h>
+#include <linux/of_device.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/power/qcom/apm.h>
+#include <soc/qcom/scm.h>
+
+/*
+ *        VDD_APCC
+ * =============================================================
+ *       |      VDD_MX                  |                    |
+ *       |    ==========================|=============       |
+ *    ___|___   ___|___    ___|___   ___|___    ___|___   ___|___
+ *   |       | |       |  |       | |       |  |       | |       |
+ *   | APCC  | | MX HS |  | MX HS | | APCC  |  | MX HS | | APCC  |
+ *   |  HS   | |       |  |       | |  HS   |  |       | |  HS   |
+ *   |_______| |_______|  |_______| |_______|  |_______| |_______|
+ *       |_________|          |_________|         |__________|
+ *            |                    |                    |
+ *      ______|_____         ______|_____        _______|_____
+ *     |            |       |            |      |             |
+ *     |            |       |            |      |             |
+ *     |  CPU MEM   |       |   L2 MEM   |      |    L3 MEM   |
+ *     |   Arrays   |       |   Arrays   |      |    Arrays   |
+ *     |            |       |            |      |             |
+ *     |____________|       |____________|      |_____________|
+ *
+ */
+
+/* Register value definitions */
+#define APCS_GFMUXA_SEL_VAL            0x13
+#define APCS_GFMUXA_DESEL_VAL          0x03
+#define MSM_APM_MX_MODE_VAL            0x00
+#define MSM_APM_APCC_MODE_VAL          0x10
+#define MSM_APM_MX_DONE_VAL            0x00
+#define MSM_APM_APCC_DONE_VAL          0x03
+#define MSM_APM_OVERRIDE_SEL_VAL       0xb0
+#define MSM_APM_SEC_CLK_SEL_VAL        0x30
+#define SPM_EVENT_SET_VAL              0x01
+#define SPM_EVENT_CLEAR_VAL            0x00
+
+/* Register bit mask definitions */
+#define MSM_APM_CTL_STS_MASK            0x0f
+
+/* Register offset definitions */
+#define APCC_APM_MODE              0x00000098
+#define APCC_APM_CTL_STS           0x000000a8
+#define APCS_SPARE                 0x00000068
+#define APCS_VERSION               0x00000fd0
+
+#define HMSS_VERSION_1P2           0x10020000
+
+#define MSM_APM_SWITCH_TIMEOUT_US  10
+#define SPM_WAKEUP_DELAY_US        2
+#define SPM_EVENT_NUM              6
+
+#define MSM_APM_DRIVER_NAME        "qcom,msm-apm"
+
+enum {
+	CLOCK_ASSERT_ENABLE,
+	CLOCK_ASSERT_DISABLE,
+	CLOCK_ASSERT_TOGGLE,
+};
+
+enum {
+	MSM8996_ID,
+	MSM8996PRO_ID,
+	MSM8953_ID,
+};
+
+struct msm_apm_ctrl_dev {
+	struct list_head	list;
+	struct device		*dev;
+	enum msm_apm_supply	supply;
+	spinlock_t		lock;
+	void __iomem		*reg_base;
+	void __iomem		*apcs_csr_base;
+	void __iomem		**apcs_spm_events_addr;
+	void __iomem		*apc0_pll_ctl_addr;
+	void __iomem		*apc1_pll_ctl_addr;
+	bool			clk_src_override;
+	u32			version;
+	struct dentry		*debugfs;
+	u32			msm_id;
+};
+
+#if defined(CONFIG_DEBUG_FS)
+static struct dentry *apm_debugfs_base;
+#endif
+
+static DEFINE_MUTEX(apm_ctrl_list_mutex);
+static LIST_HEAD(apm_ctrl_list);
+
+static unsigned long __invoke_psci_fn_smc(unsigned long a, unsigned long b,
+					  unsigned long c, unsigned long d)
+{
+	struct arm_smccc_res res;
+
+	arm_smccc_smc(a, b, c, d, 0, 0, 0, 0, &res);
+
+	return res.a0;
+}
+
+/*
+ * Get the resources associated with the APM controller from device tree
+ * and remap all I/O addresses that are relevant to this HW revision.
+ */
+static int msm_apm_ctrl_devm_ioremap(struct platform_device *pdev,
+				     struct msm_apm_ctrl_dev *ctrl)
+{
+	struct device *dev = &pdev->dev;
+	struct resource *res;
+	static const char *res_name[SPM_EVENT_NUM] = {
+		"apc0-l2-spm",
+		"apc1-l2-spm",
+		"apc0-cpu0-spm",
+		"apc0-cpu1-spm",
+		"apc1-cpu0-spm",
+		"apc1-cpu1-spm"
+	};
+	int i, ret = 0;
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pm-apcc-glb");
+	if (!res) {
+		dev_err(dev, "Missing PM APCC Global register physical address");
+		return -EINVAL;
+	}
+	ctrl->reg_base = devm_ioremap(dev, res->start, resource_size(res));
+	if (!ctrl->reg_base) {
+		dev_err(dev, "Failed to map PM APCC Global registers\n");
+		return -ENOMEM;
+	}
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "apcs-csr");
+	if (!res) {
+		dev_err(dev, "Missing APCS CSR physical base address");
+		return -EINVAL;
+	}
+	ctrl->apcs_csr_base = devm_ioremap(dev, res->start, resource_size(res));
+	if (!ctrl->apcs_csr_base) {
+		dev_err(dev, "Failed to map APCS CSR registers\n");
+		return -ENOMEM;
+	}
+
+	ctrl->clk_src_override = of_property_read_bool(dev->of_node,
+					       "qcom,clock-source-override");
+
+	if (ctrl->clk_src_override)
+		dev_info(dev, "overriding clock sources across APM switch\n");
+
+	ctrl->version = readl_relaxed(ctrl->apcs_csr_base + APCS_VERSION);
+
+	if (ctrl->version >= HMSS_VERSION_1P2)
+		return ret;
+
+	ctrl->apcs_spm_events_addr = devm_kzalloc(&pdev->dev,
+						  SPM_EVENT_NUM
+						  * sizeof(void __iomem *),
+						  GFP_KERNEL);
+	if (!ctrl->apcs_spm_events_addr) {
+		dev_err(dev, "Failed to allocate memory for APCS SPM event registers\n");
+		return -ENOMEM;
+	}
+
+	for (i = 0; i < SPM_EVENT_NUM; i++) {
+		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+						   res_name[i]);
+		if (!res) {
+			dev_err(dev, "Missing address for %s\n", res_name[i]);
+			ret = -EINVAL;
+			goto free_events;
+		}
+
+		ctrl->apcs_spm_events_addr[i] = devm_ioremap(dev, res->start,
+						resource_size(res));
+		if (!ctrl->apcs_spm_events_addr[i]) {
+			dev_err(dev, "Failed to map %s\n", res_name[i]);
+			ret = -ENOMEM;
+			goto free_events;
+		}
+
+		dev_dbg(dev, "%s event phys: %pa virt:0x%p\n", res_name[i],
+			&res->start, ctrl->apcs_spm_events_addr[i]);
+	}
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+					   "apc0-pll-ctl");
+	if (!res) {
+		dev_err(dev, "Missing APC0 PLL CTL physical address\n");
+		ret = -EINVAL;
+		goto free_events;
+	}
+
+	ctrl->apc0_pll_ctl_addr = devm_ioremap(dev,
+					   res->start,
+					   resource_size(res));
+	if (!ctrl->apc0_pll_ctl_addr) {
+		dev_err(dev, "Failed to map APC0 PLL CTL register\n");
+		ret = -ENOMEM;
+		goto free_events;
+	}
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+					   "apc1-pll-ctl");
+	if (!res) {
+		dev_err(dev, "Missing APC1 PLL CTL physical address\n");
+		ret = -EINVAL;
+		goto free_events;
+	}
+
+	ctrl->apc1_pll_ctl_addr = devm_ioremap(dev,
+					   res->start,
+					   resource_size(res));
+	if (!ctrl->apc1_pll_ctl_addr) {
+		dev_err(dev, "Failed to map APC1 PLL CTL register\n");
+		ret = -ENOMEM;
+		goto free_events;
+	}
+
+	return ret;
+
+free_events:
+	devm_kfree(dev, ctrl->apcs_spm_events_addr);
+	return ret;
+}
+
+/* MSM8953 register offset definition */
+#define MSM8953_APM_DLY_CNTR		0x2ac
+
+/* Register field shift definitions */
+#define APM_CTL_SEL_SWITCH_DLY_SHIFT	0
+#define APM_CTL_RESUME_CLK_DLY_SHIFT	8
+#define APM_CTL_HALT_CLK_DLY_SHIFT	16
+#define APM_CTL_POST_HALT_DLY_SHIFT	24
+
+/* Register field mask definitions */
+#define APM_CTL_SEL_SWITCH_DLY_MASK	GENMASK(7, 0)
+#define APM_CTL_RESUME_CLK_DLY_MASK	GENMASK(15, 8)
+#define APM_CTL_HALT_CLK_DLY_MASK	GENMASK(23, 16)
+#define APM_CTL_POST_HALT_DLY_MASK	GENMASK(31, 24)
+
+/*
+ * Get the resources associated with the MSM8953 APM controller from
+ * device tree, remap all I/O addresses, and program the initial
+ * register configuration required for the MSM8953 APM controller device.
+ */
+static int msm8953_apm_ctrl_init(struct platform_device *pdev,
+				 struct msm_apm_ctrl_dev *ctrl)
+{
+	struct device *dev = &pdev->dev;
+	struct resource *res;
+	u32 delay_counter, val = 0, regval = 0;
+	int rc = 0;
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pm-apcc-glb");
+	if (!res) {
+		dev_err(dev, "Missing PM APCC Global register physical address\n");
+		return -ENODEV;
+	}
+	ctrl->reg_base = devm_ioremap(dev, res->start, resource_size(res));
+	if (!ctrl->reg_base) {
+		dev_err(dev, "Failed to map PM APCC Global registers\n");
+		return -ENOMEM;
+	}
+
+	/*
+	 * Initial APM register configuration required before starting
+	 * APM HW controller.
+	 */
+	regval = readl_relaxed(ctrl->reg_base + MSM8953_APM_DLY_CNTR);
+	val = regval;
+
+	if (of_find_property(dev->of_node, "qcom,apm-post-halt-delay", NULL)) {
+		rc = of_property_read_u32(dev->of_node,
+				"qcom,apm-post-halt-delay", &delay_counter);
+		if (rc < 0) {
+			dev_err(dev, "apm-post-halt-delay read failed, rc = %d",
+				rc);
+			return rc;
+		}
+
+		val &= ~APM_CTL_POST_HALT_DLY_MASK;
+		val |= (delay_counter << APM_CTL_POST_HALT_DLY_SHIFT)
+			& APM_CTL_POST_HALT_DLY_MASK;
+	}
+
+	if (of_find_property(dev->of_node, "qcom,apm-halt-clk-delay", NULL)) {
+		rc = of_property_read_u32(dev->of_node,
+				"qcom,apm-halt-clk-delay", &delay_counter);
+		if (rc < 0) {
+			dev_err(dev, "apm-halt-clk-delay read failed, rc = %d",
+				rc);
+			return rc;
+		}
+
+		val &= ~APM_CTL_HALT_CLK_DLY_MASK;
+		val |= (delay_counter << APM_CTL_HALT_CLK_DLY_SHIFT)
+			& APM_CTL_HALT_CLK_DLY_MASK;
+	}
+
+	if (of_find_property(dev->of_node, "qcom,apm-resume-clk-delay", NULL)) {
+		rc = of_property_read_u32(dev->of_node,
+				"qcom,apm-resume-clk-delay", &delay_counter);
+		if (rc < 0) {
+			dev_err(dev, "apm-resume-clk-delay read failed, rc = %d",
+				rc);
+			return rc;
+		}
+
+		val &= ~APM_CTL_RESUME_CLK_DLY_MASK;
+		val |= (delay_counter << APM_CTL_RESUME_CLK_DLY_SHIFT)
+			& APM_CTL_RESUME_CLK_DLY_MASK;
+	}
+
+	if (of_find_property(dev->of_node, "qcom,apm-sel-switch-delay", NULL)) {
+		rc = of_property_read_u32(dev->of_node,
+				"qcom,apm-sel-switch-delay", &delay_counter);
+		if (rc < 0) {
+			dev_err(dev, "apm-sel-switch-delay read failed, rc = %d",
+				rc);
+			return rc;
+		}
+
+		val &= ~APM_CTL_SEL_SWITCH_DLY_MASK;
+		val |= (delay_counter << APM_CTL_SEL_SWITCH_DLY_SHIFT)
+			& APM_CTL_SEL_SWITCH_DLY_MASK;
+	}
+
+	if (val != regval) {
+		writel_relaxed(val, ctrl->reg_base + MSM8953_APM_DLY_CNTR);
+		/* make sure write completes before return */
+		mb();
+	}
+
+	return rc;
+}
+
+static int msm_apm_secure_clock_source_override(
+			struct msm_apm_ctrl_dev *ctrl_dev, bool enable)
+{
+	int ret;
+
+	if (ctrl_dev->clk_src_override) {
+		ret = __invoke_psci_fn_smc(0xC4000020, 3, enable ?
+					   CLOCK_ASSERT_ENABLE :
+					   CLOCK_ASSERT_DISABLE, 0);
+		if (ret)
+			dev_err(ctrl_dev->dev, "PSCI request to switch to %s clock source failed\n",
+				enable ? "GPLL0" : "original");
+	}
+
+	return 0;
+}
+
+static int msm8996_apm_wait_for_switch(struct msm_apm_ctrl_dev *ctrl_dev,
+					u32 done_val)
+{
+	int timeout = MSM_APM_SWITCH_TIMEOUT_US;
+	u32 regval;
+
+	while (timeout > 0) {
+		regval = readl_relaxed(ctrl_dev->reg_base + APCC_APM_CTL_STS);
+		if ((regval & MSM_APM_CTL_STS_MASK) == done_val)
+			break;
+
+		udelay(1);
+		timeout--;
+	}
+
+	if (timeout == 0) {
+		dev_err(ctrl_dev->dev, "%s switch timed out. APCC_APM_CTL_STS=0x%x\n",
+			done_val == MSM_APM_MX_DONE_VAL
+				? "APCC to MX" : "MX to APCC",
+			regval);
+		return -ETIMEDOUT;
+	}
+
+	return 0;
+}
+
+static int msm8996_apm_switch_to_mx(struct msm_apm_ctrl_dev *ctrl_dev)
+{
+	unsigned long flags;
+	int i, ret;
+
+	mutex_lock(&scm_lmh_lock);
+	spin_lock_irqsave(&ctrl_dev->lock, flags);
+
+	ret = msm_apm_secure_clock_source_override(ctrl_dev, true);
+	if (ret)
+		goto done;
+
+	/* Perform revision-specific programming steps */
+	if (ctrl_dev->version < HMSS_VERSION_1P2) {
+		/* Clear SPM events */
+		for (i = 0; i < SPM_EVENT_NUM; i++)
+			writel_relaxed(SPM_EVENT_CLEAR_VAL,
+				       ctrl_dev->apcs_spm_events_addr[i]);
+
+		udelay(SPM_WAKEUP_DELAY_US);
+
+		/* Switch APC/CBF to GPLL0 clock */
+		writel_relaxed(APCS_GFMUXA_SEL_VAL,
+			       ctrl_dev->apcs_csr_base + APCS_SPARE);
+		ndelay(200);
+		writel_relaxed(MSM_APM_OVERRIDE_SEL_VAL,
+			       ctrl_dev->apc0_pll_ctl_addr);
+		ndelay(200);
+		writel_relaxed(MSM_APM_OVERRIDE_SEL_VAL,
+			       ctrl_dev->apc1_pll_ctl_addr);
+
+		/* Ensure writes complete before proceeding */
+		mb();
+	}
+
+	/* Switch arrays to MX supply and wait for its completion */
+	writel_relaxed(MSM_APM_MX_MODE_VAL, ctrl_dev->reg_base +
+		       APCC_APM_MODE);
+
+	/* Ensure write above completes before delaying */
+	mb();
+
+	ret = msm8996_apm_wait_for_switch(ctrl_dev, MSM_APM_MX_DONE_VAL);
+
+	/* Perform revision-specific programming steps */
+	if (ctrl_dev->version < HMSS_VERSION_1P2) {
+		/* Switch APC/CBF clocks to original source */
+		writel_relaxed(APCS_GFMUXA_DESEL_VAL,
+			       ctrl_dev->apcs_csr_base + APCS_SPARE);
+		ndelay(200);
+		writel_relaxed(MSM_APM_SEC_CLK_SEL_VAL,
+			       ctrl_dev->apc0_pll_ctl_addr);
+		ndelay(200);
+		writel_relaxed(MSM_APM_SEC_CLK_SEL_VAL,
+			       ctrl_dev->apc1_pll_ctl_addr);
+
+		/* Complete clock source switch before SPM event sequence */
+		mb();
+
+		/* Set SPM events */
+		for (i = 0; i < SPM_EVENT_NUM; i++)
+			writel_relaxed(SPM_EVENT_SET_VAL,
+				       ctrl_dev->apcs_spm_events_addr[i]);
+	}
+
+	/*
+	 * Ensure that HMSS v1.0/v1.1 register writes are completed before
+	 * bailing out in the case of a switching time out.
+	 */
+	if (ret)
+		goto done;
+
+	ret = msm_apm_secure_clock_source_override(ctrl_dev, false);
+	if (ret)
+		goto done;
+
+	ctrl_dev->supply = MSM_APM_SUPPLY_MX;
+	dev_dbg(ctrl_dev->dev, "APM supply switched to MX\n");
+
+done:
+	spin_unlock_irqrestore(&ctrl_dev->lock, flags);
+	mutex_unlock(&scm_lmh_lock);
+
+	return ret;
+}
+
+static int msm8996_apm_switch_to_apcc(struct msm_apm_ctrl_dev *ctrl_dev)
+{
+	unsigned long flags;
+	int i, ret;
+
+	mutex_lock(&scm_lmh_lock);
+	spin_lock_irqsave(&ctrl_dev->lock, flags);
+
+	ret = msm_apm_secure_clock_source_override(ctrl_dev, true);
+	if (ret)
+		goto done;
+
+	/* Perform revision-specific programming steps */
+	if (ctrl_dev->version < HMSS_VERSION_1P2) {
+		/* Clear SPM events */
+		for (i = 0; i < SPM_EVENT_NUM; i++)
+			writel_relaxed(SPM_EVENT_CLEAR_VAL,
+				       ctrl_dev->apcs_spm_events_addr[i]);
+
+		udelay(SPM_WAKEUP_DELAY_US);
+
+		/* Switch APC/CBF to GPLL0 clock */
+		writel_relaxed(APCS_GFMUXA_SEL_VAL,
+			       ctrl_dev->apcs_csr_base + APCS_SPARE);
+		ndelay(200);
+		writel_relaxed(MSM_APM_OVERRIDE_SEL_VAL,
+			       ctrl_dev->apc0_pll_ctl_addr);
+		ndelay(200);
+		writel_relaxed(MSM_APM_OVERRIDE_SEL_VAL,
+			       ctrl_dev->apc1_pll_ctl_addr);
+
+		/* Ensure previous writes complete before proceeding */
+		mb();
+	}
+
+	/* Switch arrays to APCC supply and wait for its completion */
+	writel_relaxed(MSM_APM_APCC_MODE_VAL, ctrl_dev->reg_base +
+		       APCC_APM_MODE);
+
+	/* Ensure write above completes before delaying */
+	mb();
+
+	ret = msm8996_apm_wait_for_switch(ctrl_dev, MSM_APM_APCC_DONE_VAL);
+
+	/* Perform revision-specific programming steps */
+	if (ctrl_dev->version < HMSS_VERSION_1P2) {
+		/* Set SPM events */
+		for (i = 0; i < SPM_EVENT_NUM; i++)
+			writel_relaxed(SPM_EVENT_SET_VAL,
+				       ctrl_dev->apcs_spm_events_addr[i]);
+
+		/* Complete SPM event sequence before clock source switch */
+		mb();
+
+		/* Switch APC/CBF clocks to original source */
+		writel_relaxed(APCS_GFMUXA_DESEL_VAL,
+			       ctrl_dev->apcs_csr_base + APCS_SPARE);
+		ndelay(200);
+		writel_relaxed(MSM_APM_SEC_CLK_SEL_VAL,
+			       ctrl_dev->apc0_pll_ctl_addr);
+		ndelay(200);
+		writel_relaxed(MSM_APM_SEC_CLK_SEL_VAL,
+			       ctrl_dev->apc1_pll_ctl_addr);
+	}
+
+	/*
+	 * Ensure that HMSS v1.0/v1.1 register writes are completed before
+	 * bailing out in the case of a switching time out.
+	 */
+	if (ret)
+		goto done;
+
+	ret = msm_apm_secure_clock_source_override(ctrl_dev, false);
+	if (ret)
+		goto done;
+
+	ctrl_dev->supply = MSM_APM_SUPPLY_APCC;
+	dev_dbg(ctrl_dev->dev, "APM supply switched to APCC\n");
+
+done:
+	spin_unlock_irqrestore(&ctrl_dev->lock, flags);
+	mutex_unlock(&scm_lmh_lock);
+
+	return ret;
+}
+
+static int msm8996pro_apm_switch_to_mx(struct msm_apm_ctrl_dev *ctrl_dev)
+{
+	unsigned long flags;
+	int ret;
+
+	spin_lock_irqsave(&ctrl_dev->lock, flags);
+
+	/* Switch arrays to MX supply and wait for its completion */
+	writel_relaxed(MSM_APM_MX_MODE_VAL, ctrl_dev->reg_base +
+		       APCC_APM_MODE);
+
+	/* Ensure write above completes before delaying */
+	mb();
+
+	ret = msm8996_apm_wait_for_switch(ctrl_dev, MSM_APM_MX_DONE_VAL);
+	if (ret)
+		goto done;
+
+	ctrl_dev->supply = MSM_APM_SUPPLY_MX;
+	dev_dbg(ctrl_dev->dev, "APM supply switched to MX\n");
+
+done:
+	spin_unlock_irqrestore(&ctrl_dev->lock, flags);
+
+	return ret;
+}
+
+static int msm8996pro_apm_switch_to_apcc(struct msm_apm_ctrl_dev *ctrl_dev)
+{
+	unsigned long flags;
+	int ret;
+
+	spin_lock_irqsave(&ctrl_dev->lock, flags);
+
+	/* Switch arrays to APCC supply and wait for its completion */
+	writel_relaxed(MSM_APM_APCC_MODE_VAL, ctrl_dev->reg_base +
+		       APCC_APM_MODE);
+
+	/* Ensure write above completes before delaying */
+	mb();
+
+	ret = msm8996_apm_wait_for_switch(ctrl_dev, MSM_APM_APCC_DONE_VAL);
+	if (ret)
+		goto done;
+
+	ctrl_dev->supply = MSM_APM_SUPPLY_APCC;
+	dev_dbg(ctrl_dev->dev, "APM supply switched to APCC\n");
+
+done:
+	spin_unlock_irqrestore(&ctrl_dev->lock, flags);
+
+	return ret;
+}
+
+/* MSM8953 register value definitions */
+#define MSM8953_APM_MX_MODE_VAL            0x00
+#define MSM8953_APM_APCC_MODE_VAL          0x02
+#define MSM8953_APM_MX_DONE_VAL            0x00
+#define MSM8953_APM_APCC_DONE_VAL          0x03
+
+/* MSM8953 register offset definitions */
+#define MSM8953_APCC_APM_MODE              0x000002a8
+#define MSM8953_APCC_APM_CTL_STS           0x000002b0
+
+static int msm8953_apm_switch_to_mx(struct msm_apm_ctrl_dev *ctrl_dev)
+{
+	int timeout = MSM_APM_SWITCH_TIMEOUT_US;
+	u32 regval;
+	int ret = 0;
+	unsigned long flags;
+
+	spin_lock_irqsave(&ctrl_dev->lock, flags);
+
+	/* Switch arrays to MX supply and wait for its completion */
+	writel_relaxed(MSM8953_APM_MX_MODE_VAL, ctrl_dev->reg_base +
+		       MSM8953_APCC_APM_MODE);
+
+	/* Ensure write above completes before delaying */
+	mb();
+
+	while (timeout > 0) {
+		regval = readl_relaxed(ctrl_dev->reg_base +
+					MSM8953_APCC_APM_CTL_STS);
+		if ((regval & MSM_APM_CTL_STS_MASK) ==
+				MSM8953_APM_MX_DONE_VAL)
+			break;
+
+		udelay(1);
+		timeout--;
+	}
+
+	if (timeout == 0) {
+		ret = -ETIMEDOUT;
+		dev_err(ctrl_dev->dev, "APCC to MX APM switch timed out. APCC_APM_CTL_STS=0x%x\n",
+			regval);
+	} else {
+		ctrl_dev->supply = MSM_APM_SUPPLY_MX;
+		dev_dbg(ctrl_dev->dev, "APM supply switched to MX\n");
+	}
+
+	spin_unlock_irqrestore(&ctrl_dev->lock, flags);
+
+	return ret;
+}
+
+static int msm8953_apm_switch_to_apcc(struct msm_apm_ctrl_dev *ctrl_dev)
+{
+	int timeout = MSM_APM_SWITCH_TIMEOUT_US;
+	u32 regval;
+	int ret = 0;
+	unsigned long flags;
+
+	spin_lock_irqsave(&ctrl_dev->lock, flags);
+
+	/* Switch arrays to APCC supply and wait for its completion */
+	writel_relaxed(MSM8953_APM_APCC_MODE_VAL, ctrl_dev->reg_base +
+		       MSM8953_APCC_APM_MODE);
+
+	/* Ensure write above completes before delaying */
+	mb();
+
+	while (timeout > 0) {
+		regval = readl_relaxed(ctrl_dev->reg_base +
+					MSM8953_APCC_APM_CTL_STS);
+		if ((regval & MSM_APM_CTL_STS_MASK) ==
+				MSM8953_APM_APCC_DONE_VAL)
+			break;
+
+		udelay(1);
+		timeout--;
+	}
+
+	if (timeout == 0) {
+		ret = -ETIMEDOUT;
+		dev_err(ctrl_dev->dev, "MX to APCC APM switch timed out. APCC_APM_CTL_STS=0x%x\n",
+			regval);
+	} else {
+		ctrl_dev->supply = MSM_APM_SUPPLY_APCC;
+		dev_dbg(ctrl_dev->dev, "APM supply switched to APCC\n");
+	}
+
+	spin_unlock_irqrestore(&ctrl_dev->lock, flags);
+
+	return ret;
+}
+
+static int msm_apm_switch_to_mx(struct msm_apm_ctrl_dev *ctrl_dev)
+{
+	int ret = 0;
+
+	switch (ctrl_dev->msm_id) {
+	case MSM8996_ID:
+		ret = msm8996_apm_switch_to_mx(ctrl_dev);
+		break;
+	case MSM8996PRO_ID:
+		ret = msm8996pro_apm_switch_to_mx(ctrl_dev);
+		break;
+	case MSM8953_ID:
+		ret = msm8953_apm_switch_to_mx(ctrl_dev);
+		break;
+	}
+
+	return ret;
+}
+
+static int msm_apm_switch_to_apcc(struct msm_apm_ctrl_dev *ctrl_dev)
+{
+	int ret = 0;
+
+	switch (ctrl_dev->msm_id) {
+	case MSM8996_ID:
+		ret = msm8996_apm_switch_to_apcc(ctrl_dev);
+		break;
+	case MSM8996PRO_ID:
+		ret = msm8996pro_apm_switch_to_apcc(ctrl_dev);
+		break;
+	case MSM8953_ID:
+		ret = msm8953_apm_switch_to_apcc(ctrl_dev);
+		break;
+	}
+
+	return ret;
+}
+
+/**
+ * msm_apm_get_supply() - Returns the supply that is currently
+ *			powering the memory arrays
+ * @ctrl_dev:                   Pointer to an MSM APM controller device
+ *
+ * Returns the supply currently selected by the APM.
+ */
+int msm_apm_get_supply(struct msm_apm_ctrl_dev *ctrl_dev)
+{
+	return ctrl_dev->supply;
+}
+EXPORT_SYMBOL(msm_apm_get_supply);
+
+/**
+ * msm_apm_set_supply() - Perform the necessary steps to switch the voltage
+ *                        source of the memory arrays to a given supply
+ * @ctrl_dev:                   Pointer to an MSM APM controller device
+ * @supply:                     Power rail to use as supply for the memory
+ *                              arrays
+ *
+ * Returns 0 on success, -ETIMEDOUT on APM switch timeout, or -EPERM if
+ * the supply is not supported.
+ */
+int msm_apm_set_supply(struct msm_apm_ctrl_dev *ctrl_dev,
+		       enum msm_apm_supply supply)
+{
+	int ret;
+
+	switch (supply) {
+	case MSM_APM_SUPPLY_APCC:
+		ret = msm_apm_switch_to_apcc(ctrl_dev);
+		break;
+	case MSM_APM_SUPPLY_MX:
+		ret = msm_apm_switch_to_mx(ctrl_dev);
+		break;
+	default:
+		ret = -EPERM;
+		break;
+	}
+
+	return ret;
+}
+EXPORT_SYMBOL(msm_apm_set_supply);
+
+/**
+ * msm_apm_ctrl_dev_get() - get a handle to the MSM APM controller linked to
+ *                          the device in device tree
+ * @dev:                    Pointer to the device
+ *
+ * The device must specify "qcom,apm-ctrl" property in its device tree
+ * node which points to an MSM APM controller device node.
+ *
+ * Returns an MSM APM controller handle if successful or ERR_PTR on any error.
+ * If the APM controller device hasn't probed yet, ERR_PTR(-EPROBE_DEFER) is
+ * returned.
+ */
+struct msm_apm_ctrl_dev *msm_apm_ctrl_dev_get(struct device *dev)
+{
+	struct msm_apm_ctrl_dev *ctrl_dev = NULL;
+	struct msm_apm_ctrl_dev *dev_found = ERR_PTR(-EPROBE_DEFER);
+	struct device_node *ctrl_node;
+
+	if (!dev || !dev->of_node) {
+		pr_err("Invalid device node\n");
+		return ERR_PTR(-EINVAL);
+	}
+
+	ctrl_node = of_parse_phandle(dev->of_node, "qcom,apm-ctrl", 0);
+	if (!ctrl_node) {
+		pr_err("Could not find qcom,apm-ctrl property in %s\n",
+		       dev->of_node->full_name);
+		return ERR_PTR(-ENXIO);
+	}
+
+	mutex_lock(&apm_ctrl_list_mutex);
+	list_for_each_entry(ctrl_dev, &apm_ctrl_list, list) {
+		if (ctrl_dev->dev && ctrl_dev->dev->of_node == ctrl_node) {
+			dev_found = ctrl_dev;
+			break;
+		}
+	}
+	mutex_unlock(&apm_ctrl_list_mutex);
+
+	of_node_put(ctrl_node);
+	return dev_found;
+}
+EXPORT_SYMBOL(msm_apm_ctrl_dev_get);
+
+#if defined(CONFIG_DEBUG_FS)
+
+static int apm_supply_dbg_open(struct inode *inode, struct file *filep)
+{
+	filep->private_data = inode->i_private;
+
+	return 0;
+}
+
+static ssize_t apm_supply_dbg_read(struct file *filep, char __user *ubuf,
+				   size_t count, loff_t *ppos)
+{
+	struct msm_apm_ctrl_dev *ctrl_dev = filep->private_data;
+	char buf[10];
+	int len;
+
+	if (!ctrl_dev) {
+		pr_err("invalid apm ctrl handle\n");
+		return -ENODEV;
+	}
+
+	if (ctrl_dev->supply == MSM_APM_SUPPLY_APCC)
+		len = snprintf(buf, sizeof(buf), "APCC\n");
+	else if (ctrl_dev->supply == MSM_APM_SUPPLY_MX)
+		len = snprintf(buf, sizeof(buf), "MX\n");
+	else
+		len = snprintf(buf, sizeof(buf), "ERR\n");
+
+	return simple_read_from_buffer(ubuf, count, ppos, buf, len);
+}
+
+static const struct file_operations apm_supply_fops = {
+	.open = apm_supply_dbg_open,
+	.read = apm_supply_dbg_read,
+};
+
+static void apm_debugfs_base_init(void)
+{
+	apm_debugfs_base = debugfs_create_dir("msm-apm", NULL);
+
+	if (IS_ERR_OR_NULL(apm_debugfs_base))
+		pr_err("msm-apm debugfs base directory creation failed\n");
+}
+
+static void apm_debugfs_init(struct msm_apm_ctrl_dev *ctrl_dev)
+{
+	struct dentry *temp;
+
+	if (IS_ERR_OR_NULL(apm_debugfs_base)) {
+		pr_err("Base directory missing, cannot create apm debugfs nodes\n");
+		return;
+	}
+
+	ctrl_dev->debugfs = debugfs_create_dir(dev_name(ctrl_dev->dev),
+					       apm_debugfs_base);
+	if (IS_ERR_OR_NULL(ctrl_dev->debugfs)) {
+		pr_err("%s debugfs directory creation failed\n",
+		       dev_name(ctrl_dev->dev));
+		return;
+	}
+
+	temp = debugfs_create_file("supply", 0444, ctrl_dev->debugfs,
+				   ctrl_dev, &apm_supply_fops);
+	if (IS_ERR_OR_NULL(temp)) {
+		pr_err("supply mode creation failed\n");
+		return;
+	}
+}
+
+static void apm_debugfs_deinit(struct msm_apm_ctrl_dev *ctrl_dev)
+{
+	if (!IS_ERR_OR_NULL(ctrl_dev->debugfs))
+		debugfs_remove_recursive(ctrl_dev->debugfs);
+}
+
+static void apm_debugfs_base_remove(void)
+{
+	debugfs_remove_recursive(apm_debugfs_base);
+}
+#else
+
+static void apm_debugfs_base_init(void)
+{}
+
+static void apm_debugfs_init(struct msm_apm_ctrl_dev *ctrl_dev)
+{}
+
+static void apm_debugfs_deinit(struct msm_apm_ctrl_dev *ctrl_dev)
+{}
+
+static void apm_debugfs_base_remove(void)
+{}
+
+#endif
+
+static const struct of_device_id msm_apm_match_table[] = {
+	{
+		.compatible = "qcom,msm-apm",
+		.data = (void *)(uintptr_t)MSM8996_ID,
+	},
+	{
+		.compatible = "qcom,msm8996pro-apm",
+		.data = (void *)(uintptr_t)MSM8996PRO_ID,
+	},
+	{
+		.compatible = "qcom,msm8953-apm",
+		.data = (void *)(uintptr_t)MSM8953_ID,
+	},
+	{}
+};
+
+static int msm_apm_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct msm_apm_ctrl_dev *ctrl;
+	const struct of_device_id *match;
+	int ret = 0;
+
+	dev_dbg(dev, "probing MSM Array Power Mux driver\n");
+
+	if (!dev->of_node) {
+		dev_err(dev, "Device tree node is missing\n");
+		return -ENODEV;
+	}
+
+	match = of_match_device(msm_apm_match_table, dev);
+	if (!match)
+		return -ENODEV;
+
+	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
+	if (!ctrl)
+		return -ENOMEM;
+
+	INIT_LIST_HEAD(&ctrl->list);
+	spin_lock_init(&ctrl->lock);
+	ctrl->dev = dev;
+	ctrl->msm_id = (uintptr_t)match->data;
+	platform_set_drvdata(pdev, ctrl);
+
+	switch (ctrl->msm_id) {
+	case MSM8996_ID:
+	case MSM8996PRO_ID:
+		ret = msm_apm_ctrl_devm_ioremap(pdev, ctrl);
+		if (ret) {
+			dev_err(dev, "Failed to add APM controller device\n");
+			return ret;
+		}
+		break;
+	case MSM8953_ID:
+		ret = msm8953_apm_ctrl_init(pdev, ctrl);
+		if (ret) {
+			dev_err(dev, "Failed to initialize APM controller device: ret=%d\n",
+				ret);
+			return ret;
+		}
+		break;
+	default:
+		dev_err(dev, "unable to add APM controller device for msm_id:%d\n",
+			ctrl->msm_id);
+		return -ENODEV;
+	}
+
+	apm_debugfs_init(ctrl);
+	mutex_lock(&apm_ctrl_list_mutex);
+	list_add_tail(&ctrl->list, &apm_ctrl_list);
+	mutex_unlock(&apm_ctrl_list_mutex);
+
+	dev_dbg(dev, "MSM Array Power Mux driver probe successful");
+
+	return ret;
+}
+
+static int msm_apm_remove(struct platform_device *pdev)
+{
+	struct msm_apm_ctrl_dev *ctrl_dev;
+
+	ctrl_dev = platform_get_drvdata(pdev);
+	if (ctrl_dev) {
+		mutex_lock(&apm_ctrl_list_mutex);
+		list_del(&ctrl_dev->list);
+		mutex_unlock(&apm_ctrl_list_mutex);
+		apm_debugfs_deinit(ctrl_dev);
+	}
+
+	return 0;
+}
+
+static struct platform_driver msm_apm_driver = {
+	.driver		= {
+		.name		= MSM_APM_DRIVER_NAME,
+		.of_match_table	= msm_apm_match_table,
+		.owner		= THIS_MODULE,
+	},
+	.probe		= msm_apm_probe,
+	.remove		= msm_apm_remove,
+};
+
+static int __init msm_apm_init(void)
+{
+	apm_debugfs_base_init();
+	return platform_driver_register(&msm_apm_driver);
+}
+
+static void __exit msm_apm_exit(void)
+{
+	platform_driver_unregister(&msm_apm_driver);
+	apm_debugfs_base_remove();
+}
+
+arch_initcall(msm_apm_init);
+module_exit(msm_apm_exit);
+
+MODULE_DESCRIPTION("MSM Array Power Mux driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/regulator/Kconfig b/drivers/regulator/Kconfig
index f4ce22d..96a816d 100644
--- a/drivers/regulator/Kconfig
+++ b/drivers/regulator/Kconfig
@@ -888,6 +888,116 @@
 	  This driver provides support for the voltage regulators on the
 	  WM8994 CODEC.
 
+config REGULATOR_CPR3
+	bool "CPR3 regulator core support"
+	help
+	  This driver supports Core Power Reduction (CPR) version 3 controllers
+	  which are used by some Qualcomm Technologies, Inc. (QTI) SoCs to
+	  manage important voltage regulators.  CPR3 controllers are capable of
+	  monitoring several ring oscillator sensing loops simultaneously.  The
+	  CPR3 controller informs software when the silicon conditions require
+	  the supply voltage to be increased or decreased.  On certain supply
+	  rails, the CPR3 controller is able to propagate the voltage increase
+	  or decrease requests all the way to the PMIC without software
+	  involvement.
+
+config REGULATOR_CPR3_HMSS
+	bool "CPR3 regulator for HMSS"
+	depends on OF
+	select REGULATOR_CPR3
+	help
+	  This driver supports Qualcomm Technologies, Inc. HMSS application
+	  processor specific features including memory array power mux (APM)
+	  switching, two CPR3 threads which monitor the two HMSS clusters that
+	  are both powered by a shared supply, and hardware closed-loop auto
+	  voltage stepping.  This driver reads both initial voltage and CPR
+	  target quotient values out of hardware fuses.
+
+config REGULATOR_CPR3_MMSS
+	bool "RBCPR3 regulator for MMSS"
+	depends on OF
+	select REGULATOR_CPR3
+	help
+	  This driver supports Qualcomm Technologies, Inc. MMSS graphics
+	  processor specific features.  The MMSS CPR3 controller only uses one
+	  thread to monitor the MMSS voltage requirements.  This driver reads
+	  initial voltage values out of hardware fuses and CPR target quotient
+	  values out of device tree.
+
+config REGULATOR_CPR4_APSS
+	bool "CPR4 regulator for APSS"
+	depends on OF
+	select REGULATOR_CPR3
+	help
+	  This driver supports Qualcomm Technologies, Inc. APSS application
+	  processor specific features including memory array power mux (APM)
+	  switching, one CPR4 thread which monitor the two APSS clusters that
+	  are both powered by a shared supply, hardware closed-loop auto
+	  voltage stepping, voltage adjustments based on online core count,
+	  voltage adjustments based on temperature readings, and voltage
+	  adjustments for performance boost mode. This driver reads both initial
+	  voltage and CPR target quotient values out of hardware fuses.
+
+config REGULATOR_CPR4_MMSS_LDO
+	bool "RBCPR3 regulator for MMSS LDO"
+	depends on OF
+	select REGULATOR_CPR3
+	help
+	  This driver supports Qualcomm Technologies, Inc. MMSS graphics
+	  processor specific features.  The MMSS CPR3 controller only uses one
+	  thread to monitor the MMSS LDO voltage requirements. This driver reads
+	  initial voltage values out of hardware fuses and CPR target quotient
+	  values out of device tree.
+
+config REGULATOR_CPRH_KBSS
+	bool "CPRH regulator for KBSS"
+	depends on OF
+	select REGULATOR_CPR3
+	help
+	  This driver supports Qualcomm Technologies, Inc. KBSS application
+	  processor specific features including CPR hardening (CPRh) and two
+	  CPRh controllers which monitor the two KBSS clusters each powered by
+	  independent voltage supplies. This driver reads both initial voltage
+	  and CPR target quotient values out of hardware fuses.
+
+config REGULATOR_KRYO
+	bool "Kryo regulator driver"
+	depends on OF
+	help
+	  Some MSM designs have CPUs that can be directly powered from a common
+	  voltage rail via a Block Head Switch (BHS) or an LDO whose output
+	  voltage can be configured for use when certain power constraints are
+	  met.  Say yes to support management of LDO and BHS modes for the
+	  clusters in the CPU subsystem.
+
+config REGULATOR_MEM_ACC
+	tristate "QTI Memory accelerator regulator driver"
+	help
+	  Say y here to enable the memory accelerator driver for Qualcomm
+	  Technologies, Inc. (QTI) chips. The accelerator controls delays
+	  applied for memory accesses.  This driver configures the power-mode
+	  (corner) for the memory accelerator.
+
+config REGULATOR_MSM_GFX_LDO
+	tristate "MSM GFX LDO Regulator"
+	depends on OF
+	help
+	  This driver supports the MSM GFX (Graphics) LDO regulator. The
+	  GFU core is either powered by an internal MSM LDO or by BHS.
+	  Typically the lower voltage corners are powered by LDO and
+	  the higher ones by BHS. This driver allows for configuration of
+	  the rail between the LDO/BHS as well as the LDO voltage.
+
+config REGULATOR_QPNP
+	tristate "Qualcomm Technologies, Inc. QPNP regulator support"
+	depends on SPMI
+	help
+	  This driver supports voltage regulators in Qualcomm Technologies, Inc.
+	  PMIC chips which comply with QPNP.  QPNP is a SPMI based PMIC
+	  implementation.  These chips provide several different varieties of
+	  LDO and switching regulators.  They also provide voltage switches and
+	  boost regulators.
+
 config REGULATOR_RPMH
 	tristate "Qualcomm Technologies, Inc. RPMh regulator driver"
 	depends on OF
diff --git a/drivers/regulator/Makefile b/drivers/regulator/Makefile
index 2e466b1..1a96c07 100644
--- a/drivers/regulator/Makefile
+++ b/drivers/regulator/Makefile
@@ -114,6 +114,16 @@
 obj-$(CONFIG_REGULATOR_WM8400) += wm8400-regulator.o
 obj-$(CONFIG_REGULATOR_WM8994) += wm8994-regulator.o
 
+obj-$(CONFIG_REGULATOR_CPR3) += cpr3-regulator.o cpr3-util.o
+obj-$(CONFIG_REGULATOR_CPR3_HMSS) += cpr3-hmss-regulator.o
+obj-$(CONFIG_REGULATOR_CPR3_MMSS) += cpr3-mmss-regulator.o
+obj-$(CONFIG_REGULATOR_CPR4_APSS) += cpr4-apss-regulator.o
+obj-$(CONFIG_REGULATOR_CPR4_MMSS_LDO) += cpr4-mmss-ldo-regulator.o
+obj-$(CONFIG_REGULATOR_CPRH_KBSS) += cprh-kbss-regulator.o
+obj-$(CONFIG_REGULATOR_KRYO) += kryo-regulator.o
+obj-$(CONFIG_REGULATOR_MEM_ACC) += mem-acc-regulator.o
+obj-$(CONFIG_REGULATOR_MSM_GFX_LDO) += msm_gfx_ldo.o
+obj-$(CONFIG_REGULATOR_QPNP) += qpnp-regulator.o
 obj-$(CONFIG_REGULATOR_RPMH) += rpmh-regulator.o
 obj-$(CONFIG_REGULATOR_STUB) += stub-regulator.o
 
diff --git a/drivers/regulator/cpr3-hmss-regulator.c b/drivers/regulator/cpr3-hmss-regulator.c
new file mode 100644
index 0000000..77e8bf4b
--- /dev/null
+++ b/drivers/regulator/cpr3-hmss-regulator.c
@@ -0,0 +1,1829 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/bitops.h>
+#include <linux/debugfs.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_opp.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/regulator/of_regulator.h>
+#include <linux/regulator/msm-ldo-regulator.h>
+
+#include "cpr3-regulator.h"
+
+#define MSM8996_HMSS_FUSE_CORNERS	5
+
+/**
+ * struct cpr3_msm8996_hmss_fuses - HMSS specific fuse data for MSM8996
+ * @ro_sel:		Ring oscillator select fuse parameter value for each
+ *			fuse corner
+ * @init_voltage:	Initial (i.e. open-loop) voltage fuse parameter value
+ *			for each fuse corner (raw, not converted to a voltage)
+ * @target_quot:	CPR target quotient fuse parameter value for each fuse
+ *			corner
+ * @quot_offset:	CPR target quotient offset fuse parameter value for each
+ *			fuse corner (raw, not unpacked) used for target quotient
+ *			interpolation
+ * @speed_bin:		Application processor speed bin fuse parameter value for
+ *			the given chip
+ * @cbf_voltage_offset:	Voltage margin offset for the CBF regulator used on
+ *			MSM8996-Pro chips.
+ * @cpr_fusing_rev:	CPR fusing revision fuse parameter value
+ * @redundant_fusing:	Redundant fusing select fuse parameter value
+ * @limitation:		CPR limitation select fuse parameter value
+ * @partial_binning:	Chip partial binning fuse parameter value which defines
+ *			limitations found on a given chip
+ * @vdd_mx_ret_fuse:	Defines the logic retention voltage of VDD_MX
+ * @vdd_apcc_ret_fuse:	Defines the logic retention voltage of VDD_APCC
+ * @aging_init_quot_diff:	Initial quotient difference between CPR aging
+ *			min and max sensors measured at time of manufacturing
+ *
+ * This struct holds the values for all of the fuses read from memory.  The
+ * values for ro_sel, init_voltage, target_quot, and quot_offset come from
+ * either the primary or redundant fuse locations depending upon the value of
+ * redundant_fusing.
+ */
+struct cpr3_msm8996_hmss_fuses {
+	u64	ro_sel[MSM8996_HMSS_FUSE_CORNERS];
+	u64	init_voltage[MSM8996_HMSS_FUSE_CORNERS];
+	u64	target_quot[MSM8996_HMSS_FUSE_CORNERS];
+	u64	quot_offset[MSM8996_HMSS_FUSE_CORNERS];
+	u64	cbf_voltage_offset[MSM8996_HMSS_FUSE_CORNERS];
+	u64	speed_bin;
+	u64	cpr_fusing_rev;
+	u64	redundant_fusing;
+	u64	limitation;
+	u64	partial_binning;
+	u64	vdd_mx_ret_fuse;
+	u64	vdd_apcc_ret_fuse;
+	u64	aging_init_quot_diff;
+};
+
+/*
+ * Fuse combos 0 -  7 map to CPR fusing revision 0 - 7 with speed bin fuse = 0.
+ * Fuse combos 8 - 15 map to CPR fusing revision 0 - 7 with speed bin fuse = 1.
+ */
+#define CPR3_MSM8996_HMSS_FUSE_COMBO_COUNT	16
+
+/*
+ * Constants which define the name of each fuse corner.  Note that no actual
+ * fuses are defined for LowSVS.  However, a mapping from corner to LowSVS
+ * is required in order to perform target quotient interpolation properly.
+ */
+enum cpr3_msm8996_hmss_fuse_corner {
+	CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS	= 0,
+	CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS	= 1,
+	CPR3_MSM8996_HMSS_FUSE_CORNER_SVS	= 2,
+	CPR3_MSM8996_HMSS_FUSE_CORNER_NOM	= 3,
+	CPR3_MSM8996_HMSS_FUSE_CORNER_TURBO	= 4,
+};
+
+static const char * const cpr3_msm8996_hmss_fuse_corner_name[] = {
+	[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS]	= "MinSVS",
+	[CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS]	= "LowSVS",
+	[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]	= "SVS",
+	[CPR3_MSM8996_HMSS_FUSE_CORNER_NOM]	= "NOM",
+	[CPR3_MSM8996_HMSS_FUSE_CORNER_TURBO]	= "TURBO",
+};
+
+/* CPR3 hardware thread IDs */
+#define MSM8996_HMSS_POWER_CLUSTER_THREAD_ID		0
+#define MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID	1
+
+/*
+ * MSM8996 HMSS fuse parameter locations:
+ *
+ * Structs are organized with the following dimensions:
+ *	Outer:  0 or 1 for power or performance cluster
+ *	Middle: 0 to 3 for fuse corners from lowest to highest corner
+ *	Inner:  large enough to hold the longest set of parameter segments which
+ *		fully defines a fuse parameter, +1 (for NULL termination).
+ *		Each segment corresponds to a contiguous group of bits from a
+ *		single fuse row.  These segments are concatentated together in
+ *		order to form the full fuse parameter value.  The segments for
+ *		a given parameter may correspond to different fuse rows.
+ *
+ * Note that there are only physically 4 sets of fuse parameters which
+ * correspond to the MinSVS, SVS, NOM, and TURBO fuse corners.  However, the SVS
+ * quotient offset fuse is used to define the target quotient for the LowSVS
+ * fuse corner.  In order to utilize LowSVS, it must be treated as if it were a
+ * real fully defined fuse corner.  Thus, LowSVS fuse parameter locations are
+ * specified.  These locations duplicate the SVS values in order to simplify
+ * interpolation logic.
+ */
+static const struct cpr3_fuse_param
+msm8996_hmss_ro_sel_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = {
+	[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
+		{{66, 38, 41}, {} },
+		{{66, 38, 41}, {} },
+		{{66, 38, 41}, {} },
+		{{66, 34, 37}, {} },
+		{{66, 30, 33}, {} },
+	},
+	[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
+		{{64, 54, 57}, {} },
+		{{64, 54, 57}, {} },
+		{{64, 54, 57}, {} },
+		{{64, 50, 53}, {} },
+		{{64, 46, 49}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param
+msm8996_hmss_init_voltage_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = {
+	[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
+		{{67,  0,  5}, {} },
+		{{66, 58, 63}, {} },
+		{{66, 58, 63}, {} },
+		{{66, 52, 57}, {} },
+		{{66, 46, 51}, {} },
+	},
+	[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
+		{{65, 16, 21}, {} },
+		{{65, 10, 15}, {} },
+		{{65, 10, 15}, {} },
+		{{65,  4,  9}, {} },
+		{{64, 62, 63}, {65,  0,  3}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param
+msm8996_hmss_target_quot_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = {
+	[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
+		{{67, 42, 53}, {} },
+		{{67, 30, 41}, {} },
+		{{67, 30, 41}, {} },
+		{{67, 18, 29}, {} },
+		{{67,  6, 17}, {} },
+	},
+	[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
+		{{65, 58, 63}, {66,  0,  5}, {} },
+		{{65, 46, 57}, {} },
+		{{65, 46, 57}, {} },
+		{{65, 34, 45}, {} },
+		{{65, 22, 33}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param
+msm8996_hmss_quot_offset_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = {
+	[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
+		{{} },
+		{{} },
+		{{68,  6, 13}, {} },
+		{{67, 62, 63}, {68, 0, 5}, {} },
+		{{67, 54, 61}, {} },
+	},
+	[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
+		{{} },
+		{{} },
+		{{66, 22, 29}, {} },
+		{{66, 14, 21}, {} },
+		{{66,  6, 13}, {} },
+	},
+};
+
+/*
+ * This fuse is used to define if the redundant set of fuses should be used for
+ * any particular feature.  CPR is one such feature.  The redundant CPR fuses
+ * should be used if this fuse parameter has a value of 1.
+ */
+static const struct cpr3_fuse_param msm8996_redundant_fusing_param[] = {
+	{73, 61, 63},
+	{},
+};
+#define MSM8996_CPR_REDUNDANT_FUSING 1
+
+static const struct cpr3_fuse_param
+msm8996_hmss_redun_ro_sel_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = {
+	[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
+		{{76, 36, 39}, {} },
+		{{76, 32, 35}, {} },
+		{{76, 32, 35}, {} },
+		{{76, 28, 31}, {} },
+		{{76, 24, 27}, {} },
+	},
+	[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
+		{{74, 52, 55}, {} },
+		{{74, 48, 51}, {} },
+		{{74, 48, 51}, {} },
+		{{74, 44, 47}, {} },
+		{{74, 40, 43}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param
+msm8996_hmss_redun_init_voltage_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = {
+	[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
+		{{76, 58, 63}, {} },
+		{{76, 52, 57}, {} },
+		{{76, 52, 57}, {} },
+		{{76, 46, 51}, {} },
+		{{76, 40, 45}, {} },
+	},
+	[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
+		{{75, 10, 15}, {} },
+		{{75,  4,  9}, {} },
+		{{75,  4,  9}, {} },
+		{{74, 62, 63}, {75,  0,  3}, {} },
+		{{74, 56, 61}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param
+msm8996_hmss_redun_target_quot_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = {
+	[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
+		{{77, 36, 47}, {} },
+		{{77, 24, 35}, {} },
+		{{77, 24, 35}, {} },
+		{{77, 12, 23}, {} },
+		{{77,  0, 11}, {} },
+	},
+	[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
+		{{75, 52, 63}, {} },
+		{{75, 40, 51}, {} },
+		{{75, 40, 51}, {} },
+		{{75, 28, 39}, {} },
+		{{75, 16, 27}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param
+msm8996_hmss_redun_quot_offset_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = {
+	[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
+		{{} },
+		{{} },
+		{{68, 11, 18}, {} },
+		{{77, 56, 63}, {} },
+		{{77, 48, 55}, {} },
+	},
+	[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
+		{{} },
+		{{} },
+		{{76, 16, 23}, {} },
+		{{76,  8, 15}, {} },
+		{{76,  0,  7}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param msm8996_cpr_fusing_rev_param[] = {
+	{39, 51, 53},
+	{},
+};
+
+static const struct cpr3_fuse_param msm8996_hmss_speed_bin_param[] = {
+	{38, 29, 31},
+	{},
+};
+
+static const struct cpr3_fuse_param msm8996_cpr_limitation_param[] = {
+	{41, 31, 32},
+	{},
+};
+
+static const struct cpr3_fuse_param msm8996_vdd_mx_ret_param[] = {
+	{41, 2, 4},
+	{},
+};
+
+static const struct cpr3_fuse_param msm8996_vdd_apcc_ret_param[] = {
+	{41, 52, 54},
+	{},
+};
+
+static const struct cpr3_fuse_param msm8996_cpr_partial_binning_param[] = {
+	{39, 55, 59},
+	{},
+};
+
+static const struct cpr3_fuse_param
+msm8996_hmss_aging_init_quot_diff_param[] = {
+	{68, 14, 19},
+	{},
+};
+
+static const struct cpr3_fuse_param
+msm8996pro_hmss_voltage_offset_param[MSM8996_HMSS_FUSE_CORNERS][4] = {
+	{{68, 50, 52}, {41, 63, 63}, {} },
+	{{62, 30, 31}, {62, 63, 63}, {66, 45, 45}, {} },
+	{{61, 35, 36}, {61, 62, 63}, {} },
+	{{61, 26, 26}, {61, 32, 34}, {} },
+	{{61, 22, 25}, {} },
+};
+
+#define MSM8996PRO_SOC_ID			4
+
+/*
+ * Some initial msm8996 parts cannot be used in a meaningful way by software.
+ * Other parts can only be used when operating with CPR disabled (i.e. at the
+ * fused open-loop voltage) when no voltage interpolation is applied.  A fuse
+ * parameter is provided so that software can properly handle these limitations.
+ */
+enum msm8996_cpr_limitation {
+	MSM8996_CPR_LIMITATION_NONE = 0,
+	MSM8996_CPR_LIMITATION_UNSUPPORTED = 2,
+	MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION = 3,
+};
+
+/*
+ * Some initial msm8996 parts cannot be operated at low voltages.  A fuse
+ * parameter is provided so that software can properly handle these limitations.
+ */
+enum msm8996_cpr_partial_binning {
+	MSM8996_CPR_PARTIAL_BINNING_SVS = 11,
+	MSM8996_CPR_PARTIAL_BINNING_NOM = 12,
+};
+
+/* Additional MSM8996 specific data: */
+
+/* Open loop voltage fuse reference voltages in microvolts for MSM8996 v1/v2 */
+static const int msm8996_v1_v2_hmss_fuse_ref_volt[MSM8996_HMSS_FUSE_CORNERS] = {
+	605000,
+	745000, /* Place holder entry for LowSVS */
+	745000,
+	905000,
+	1015000,
+};
+
+/* Open loop voltage fuse reference voltages in microvolts for MSM8996 v3 */
+static const int msm8996_v3_hmss_fuse_ref_volt[MSM8996_HMSS_FUSE_CORNERS] = {
+	605000,
+	745000, /* Place holder entry for LowSVS */
+	745000,
+	905000,
+	1140000,
+};
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for MSM8996 v3 with
+ * speed_bin == 1 and cpr_fusing_rev >= 5.
+ */
+static const int msm8996_v3_speed_bin1_rev5_hmss_fuse_ref_volt[
+						MSM8996_HMSS_FUSE_CORNERS] = {
+	605000,
+	745000, /* Place holder entry for LowSVS */
+	745000,
+	905000,
+	1040000,
+};
+
+/* Defines mapping from retention fuse values to voltages in microvolts */
+static const int msm8996_vdd_apcc_fuse_ret_volt[] = {
+	600000, 550000, 500000, 450000, 400000, 350000, 300000, 600000,
+};
+
+static const int msm8996_vdd_mx_fuse_ret_volt[] = {
+	700000, 650000, 580000, 550000, 490000, 490000, 490000, 490000,
+};
+
+#define MSM8996_HMSS_FUSE_STEP_VOLT		10000
+#define MSM8996_HMSS_VOLTAGE_FUSE_SIZE		6
+#define MSM8996PRO_HMSS_CBF_FUSE_STEP_VOLT	10000
+#define MSM8996PRO_HMSS_CBF_VOLTAGE_FUSE_SIZE	4
+#define MSM8996_HMSS_QUOT_OFFSET_SCALE		5
+#define MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SCALE	2
+#define MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SIZE	6
+
+#define MSM8996_HMSS_CPR_SENSOR_COUNT		25
+#define MSM8996_HMSS_THREAD0_SENSOR_MIN		0
+#define MSM8996_HMSS_THREAD0_SENSOR_MAX		14
+#define MSM8996_HMSS_THREAD1_SENSOR_MIN		15
+#define MSM8996_HMSS_THREAD1_SENSOR_MAX		24
+
+#define MSM8996_HMSS_CPR_CLOCK_RATE		19200000
+
+#define MSM8996_HMSS_AGING_SENSOR_ID		11
+#define MSM8996_HMSS_AGING_BYPASS_MASK0		(GENMASK(7, 0) & ~BIT(3))
+
+/**
+ * cpr3_msm8996_hmss_use_voltage_offset_fuse() - return if this part utilizes
+ *		voltage offset fuses or not
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: true if this part utilizes voltage offset fuses, else false
+ */
+static inline bool cpr3_msm8996_hmss_use_voltage_offset_fuse(
+					struct cpr3_regulator *vreg)
+{
+	struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses;
+
+	return vreg->thread->ctrl->soc_revision == MSM8996PRO_SOC_ID
+	       && fuse->cpr_fusing_rev >= 1
+	       && of_property_read_bool(vreg->of_node, "qcom,is-cbf-regulator");
+}
+
+/**
+ * cpr3_msm8996_hmss_read_fuse_data() - load HMSS specific fuse parameter values
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function allocates a cpr3_msm8996_hmss_fuses struct, fills it with
+ * values read out of hardware fuses, and finally copies common fuse values
+ * into the CPR3 regulator struct.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_msm8996_hmss_read_fuse_data(struct cpr3_regulator *vreg)
+{
+	void __iomem *base = vreg->thread->ctrl->fuse_base;
+	struct cpr3_msm8996_hmss_fuses *fuse;
+	bool redundant;
+	int i, id, rc;
+
+	fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
+	if (!fuse)
+		return -ENOMEM;
+
+	rc = cpr3_read_fuse_param(base, msm8996_hmss_speed_bin_param,
+				&fuse->speed_bin);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc);
+		return rc;
+	}
+	cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin);
+
+	rc = cpr3_read_fuse_param(base, msm8996_cpr_fusing_rev_param,
+				&fuse->cpr_fusing_rev);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+	cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
+
+	rc = cpr3_read_fuse_param(base, msm8996_redundant_fusing_param,
+				&fuse->redundant_fusing);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read redundant fusing config fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	redundant = (fuse->redundant_fusing == MSM8996_CPR_REDUNDANT_FUSING);
+	cpr3_info(vreg, "using redundant fuses = %c\n",
+		redundant ? 'Y' : 'N');
+
+	rc = cpr3_read_fuse_param(base, msm8996_cpr_limitation_param,
+				&fuse->limitation);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read CPR limitation fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+	cpr3_info(vreg, "CPR limitation = %s\n",
+		fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED
+		? "unsupported chip" : fuse->limitation
+			  == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION
+		? "CPR disabled and no interpolation" : "none");
+
+	rc = cpr3_read_fuse_param(base, msm8996_cpr_partial_binning_param,
+				&fuse->partial_binning);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read partial binning fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+	cpr3_info(vreg, "CPR partial binning limitation = %s\n",
+		fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_SVS
+			? "SVS min voltage"
+		: fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_NOM
+			? "NOM min voltage"
+		: "none");
+
+	rc = cpr3_read_fuse_param(base, msm8996_vdd_mx_ret_param,
+				&fuse->vdd_mx_ret_fuse);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read VDD_MX retention fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_read_fuse_param(base, msm8996_vdd_apcc_ret_param,
+				&fuse->vdd_apcc_ret_fuse);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read VDD_APCC retention fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	cpr3_info(vreg, "Retention voltage fuses: VDD_MX = %llu, VDD_APCC = %llu\n",
+		  fuse->vdd_mx_ret_fuse, fuse->vdd_apcc_ret_fuse);
+
+	rc = cpr3_read_fuse_param(base, msm8996_hmss_aging_init_quot_diff_param,
+				&fuse->aging_init_quot_diff);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	id = vreg->thread->thread_id;
+
+	for (i = 0; i < MSM8996_HMSS_FUSE_CORNERS; i++) {
+		rc = cpr3_read_fuse_param(base,
+			redundant
+			    ? msm8996_hmss_redun_init_voltage_param[id][i]
+			    : msm8996_hmss_init_voltage_param[id][i],
+			&fuse->init_voltage[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+			redundant
+			    ? msm8996_hmss_redun_target_quot_param[id][i]
+			    : msm8996_hmss_target_quot_param[id][i],
+			&fuse->target_quot[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+			redundant
+			    ? msm8996_hmss_redun_ro_sel_param[id][i]
+			    : msm8996_hmss_ro_sel_param[id][i],
+			&fuse->ro_sel[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+			redundant
+			    ? msm8996_hmss_redun_quot_offset_param[id][i]
+			    : msm8996_hmss_quot_offset_param[id][i],
+			&fuse->quot_offset[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+	}
+
+	vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
+	if (vreg->fuse_combo >= CPR3_MSM8996_HMSS_FUSE_COMBO_COUNT) {
+		cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
+			vreg->fuse_combo);
+		return -EINVAL;
+	}
+
+	vreg->speed_bin_fuse	= fuse->speed_bin;
+	vreg->cpr_rev_fuse	= fuse->cpr_fusing_rev;
+	vreg->fuse_corner_count	= MSM8996_HMSS_FUSE_CORNERS;
+	vreg->platform_fuses	= fuse;
+
+	if (cpr3_msm8996_hmss_use_voltage_offset_fuse(vreg)) {
+		for (i = 0; i < MSM8996_HMSS_FUSE_CORNERS; i++) {
+			rc = cpr3_read_fuse_param(base,
+				msm8996pro_hmss_voltage_offset_param[i],
+				&fuse->cbf_voltage_offset[i]);
+			if (rc) {
+				cpr3_err(vreg, "Unable to read fuse-corner %d CBF voltage offset fuse, rc=%d\n",
+					i, rc);
+				return rc;
+			}
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_hmss_apply_fused_voltage_offset() - adjust the fused voltages for each
+ *		fuse corner according to voltage offset fuse values
+ * @vreg:		Pointer to the CPR3 regulator
+ * @fuse_volt:		Pointer to an array of the fused voltage values; must
+ *			have length equal to vreg->fuse_corner_count
+ *
+ * Voltage values in fuse_volt are modified in place.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_hmss_apply_fused_voltage_offset(struct cpr3_regulator *vreg,
+		int *fuse_volt)
+{
+	struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses;
+	int i;
+
+	if (!cpr3_msm8996_hmss_use_voltage_offset_fuse(vreg))
+		return 0;
+
+	for (i = 0; i < vreg->fuse_corner_count; i++)
+		fuse_volt[i] += cpr3_convert_open_loop_voltage_fuse(
+					0,
+					MSM8996PRO_HMSS_CBF_FUSE_STEP_VOLT,
+					fuse->cbf_voltage_offset[i],
+					MSM8996PRO_HMSS_CBF_VOLTAGE_FUSE_SIZE);
+
+	return 0;
+}
+
+/**
+ * cpr3_hmss_parse_corner_data() - parse HMSS corner data from device tree
+ *		properties of the CPR3 regulator's device node
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_hmss_parse_corner_data(struct cpr3_regulator *vreg)
+{
+	int rc;
+
+	rc = cpr3_parse_common_corner_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
+		return rc;
+	}
+
+	return rc;
+}
+
+/**
+ * cpr3_msm8996_hmss_calculate_open_loop_voltages() - calculate the open-loop
+ *		voltage for each corner of a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * If open-loop voltage interpolation is allowed in both device tree and in
+ * hardware fuses, then this function calculates the open-loop voltage for a
+ * given corner using linear interpolation.  This interpolation is performed
+ * using the processor frequencies of the lower and higher Fmax corners along
+ * with their fused open-loop voltages.
+ *
+ * If open-loop voltage interpolation is not allowed, then this function uses
+ * the Fmax fused open-loop voltage for all of the corners associated with a
+ * given fuse corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_msm8996_hmss_calculate_open_loop_voltages(
+			struct cpr3_regulator *vreg)
+{
+	struct device_node *node = vreg->of_node;
+	struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses;
+	int rc = 0;
+	bool allow_interpolation;
+	u64 freq_low, volt_low, freq_high, volt_high;
+	int i, j, soc_revision;
+	const int *ref_volt;
+	int *fuse_volt;
+	int *fmax_corner;
+
+	fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
+				GFP_KERNEL);
+	fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
+				GFP_KERNEL);
+	if (!fuse_volt || !fmax_corner) {
+		rc = -ENOMEM;
+		goto done;
+	}
+
+	soc_revision = vreg->thread->ctrl->soc_revision;
+	if (soc_revision == 1 || soc_revision == 2)
+		ref_volt = msm8996_v1_v2_hmss_fuse_ref_volt;
+	else if (soc_revision == 3 && fuse->speed_bin == 1
+				   && fuse->cpr_fusing_rev >= 5)
+		ref_volt = msm8996_v3_speed_bin1_rev5_hmss_fuse_ref_volt;
+	else
+		ref_volt = msm8996_v3_hmss_fuse_ref_volt;
+
+	for (i = 0; i < vreg->fuse_corner_count; i++) {
+		fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(
+			ref_volt[i],
+			MSM8996_HMSS_FUSE_STEP_VOLT, fuse->init_voltage[i],
+			MSM8996_HMSS_VOLTAGE_FUSE_SIZE);
+
+		/* Log fused open-loop voltage values for debugging purposes. */
+		if (i != CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS)
+			cpr3_info(vreg, "fused %6s: open-loop=%7d uV\n",
+				cpr3_msm8996_hmss_fuse_corner_name[i],
+				fuse_volt[i]);
+	}
+
+	if (cpr3_msm8996_hmss_use_voltage_offset_fuse(vreg)) {
+		rc = cpr3_hmss_apply_fused_voltage_offset(vreg, fuse_volt);
+		if (rc) {
+			cpr3_err(vreg, "could not apply CBF voltage offsets, rc=%d\n",
+				rc);
+			goto done;
+		}
+
+		for (i = 0; i < vreg->fuse_corner_count; i++)
+			cpr3_info(vreg, "fused %6s: CBF offset open-loop=%7d uV\n",
+					cpr3_msm8996_hmss_fuse_corner_name[i],
+					fuse_volt[i]);
+	}
+
+	rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
+	if (rc) {
+		cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
+			rc);
+		goto done;
+	}
+
+	allow_interpolation = of_property_read_bool(node,
+				"qcom,allow-voltage-interpolation");
+
+	/*
+	 * No LowSVS open-loop voltage fuse exists.  Instead, intermediate
+	 * voltages are interpolated between MinSVS and SVS.  Set the LowSVS
+	 * voltage to be equal to the adjusted SVS voltage in order to avoid
+	 * triggering an incorrect condition violation in the following loop.
+	 */
+	fuse_volt[CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS]
+		= fuse_volt[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS];
+
+	for (i = 1; i < vreg->fuse_corner_count; i++) {
+		if (fuse_volt[i] < fuse_volt[i - 1]) {
+			cpr3_debug(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
+				i, fuse_volt[i], i - 1, fuse_volt[i - 1],
+				i, fuse_volt[i - 1]);
+			fuse_volt[i] = fuse_volt[i - 1];
+		}
+	}
+
+	if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION)
+		allow_interpolation = false;
+
+	if (!allow_interpolation) {
+		/* Use fused open-loop voltage for lower frequencies. */
+		for (i = 0; i < vreg->corner_count; i++)
+			vreg->corner[i].open_loop_volt
+				= fuse_volt[vreg->corner[i].cpr_fuse_corner];
+		goto done;
+	}
+
+	for (i = 0; i < vreg->fuse_corner_count; i++)
+		fmax_corner[i] = vreg->fuse_corner_map[i];
+
+	/*
+	 * Interpolation is not possible for corners mapped to the lowest fuse
+	 * corner so use the fuse corner value directly.
+	 */
+	for (i = 0; i <= fmax_corner[0]; i++)
+		vreg->corner[i].open_loop_volt = fuse_volt[0];
+
+	/*
+	 * Interpolation is not possible for corners mapped above the highest
+	 * fuse corner so use the fuse corner value directly.
+	 */
+	j = vreg->fuse_corner_count - 1;
+	for (i = fmax_corner[j] + 1; i < vreg->corner_count; i++)
+		vreg->corner[i].open_loop_volt = fuse_volt[j];
+
+	/*
+	 * Corner LowSVS should be skipped for voltage interpolation
+	 * since no fuse exists for it.  Instead, the lowest interpolation
+	 * should be between MinSVS and SVS.
+	 */
+	for (i = CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS;
+	     i < vreg->fuse_corner_count - 1; i++) {
+		fmax_corner[i] = fmax_corner[i + 1];
+		fuse_volt[i] = fuse_volt[i + 1];
+	}
+
+	/* Interpolate voltages for the higher fuse corners. */
+	for (i = 1; i < vreg->fuse_corner_count - 1; i++) {
+		freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
+		volt_low = fuse_volt[i - 1];
+		freq_high = vreg->corner[fmax_corner[i]].proc_freq;
+		volt_high = fuse_volt[i];
+
+		for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
+			vreg->corner[j].open_loop_volt = cpr3_interpolate(
+				freq_low, volt_low, freq_high, volt_high,
+				vreg->corner[j].proc_freq);
+	}
+
+done:
+	if (rc == 0) {
+		cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
+		for (i = 0; i < vreg->corner_count; i++)
+			cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
+				vreg->corner[i].open_loop_volt);
+
+		rc = cpr3_adjust_open_loop_voltages(vreg);
+		if (rc)
+			cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
+				rc);
+	}
+
+	kfree(fuse_volt);
+	kfree(fmax_corner);
+	return rc;
+}
+
+/**
+ * cpr3_msm8996_hmss_set_no_interpolation_quotients() - use the fused target
+ *		quotient values for lower frequencies.
+ * @vreg:		Pointer to the CPR3 regulator
+ * @volt_adjust:	Pointer to array of per-corner closed-loop adjustment
+ *			voltages
+ * @volt_adjust_fuse:	Pointer to array of per-fuse-corner closed-loop
+ *			adjustment voltages
+ * @ro_scale:		Pointer to array of per-fuse-corner RO scaling factor
+ *			values with units of QUOT/V
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_msm8996_hmss_set_no_interpolation_quotients(
+			struct cpr3_regulator *vreg, int *volt_adjust,
+			int *volt_adjust_fuse, int *ro_scale)
+{
+	struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses;
+	u32 quot, ro;
+	int quot_adjust;
+	int i, fuse_corner;
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		fuse_corner = vreg->corner[i].cpr_fuse_corner;
+		quot = fuse->target_quot[fuse_corner];
+		quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
+				volt_adjust_fuse[fuse_corner] + volt_adjust[i]);
+		ro = fuse->ro_sel[fuse_corner];
+		vreg->corner[i].target_quot[ro] = quot + quot_adjust;
+		if (quot_adjust)
+			cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %u --> %u (%d uV)\n",
+				i, ro, quot, vreg->corner[i].target_quot[ro],
+				volt_adjust_fuse[fuse_corner] + volt_adjust[i]);
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_msm8996_hmss_calculate_target_quotients() - calculate the CPR target
+ *		quotient for each corner of a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * If target quotient interpolation is allowed in both device tree and in
+ * hardware fuses, then this function calculates the target quotient for a
+ * given corner using linear interpolation.  This interpolation is performed
+ * using the processor frequencies of the lower and higher Fmax corners along
+ * with the fused target quotient and quotient offset of the higher Fmax corner.
+ *
+ * If target quotient interpolation is not allowed, then this function uses
+ * the Fmax fused target quotient for all of the corners associated with a
+ * given fuse corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_msm8996_hmss_calculate_target_quotients(
+			struct cpr3_regulator *vreg)
+{
+	struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses;
+	int rc;
+	bool allow_interpolation;
+	u64 freq_low, freq_high, prev_quot;
+	u64 *quot_low;
+	u64 *quot_high;
+	u32 quot, ro;
+	int i, j, fuse_corner, quot_adjust;
+	int *fmax_corner;
+	int *volt_adjust, *volt_adjust_fuse, *ro_scale;
+
+	/* Log fused quotient values for debugging purposes. */
+	cpr3_info(vreg, "fused MinSVS: quot[%2llu]=%4llu\n",
+		fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS],
+		fuse->target_quot[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS]);
+	for (i = CPR3_MSM8996_HMSS_FUSE_CORNER_SVS;
+	     i <= CPR3_MSM8996_HMSS_FUSE_CORNER_TURBO; i++)
+		cpr3_info(vreg, "fused %6s: quot[%2llu]=%4llu, quot_offset[%2llu]=%4llu\n",
+			cpr3_msm8996_hmss_fuse_corner_name[i],
+			fuse->ro_sel[i], fuse->target_quot[i], fuse->ro_sel[i],
+			fuse->quot_offset[i] * MSM8996_HMSS_QUOT_OFFSET_SCALE);
+
+	allow_interpolation = of_property_read_bool(vreg->of_node,
+					"qcom,allow-quotient-interpolation");
+
+	if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION)
+		allow_interpolation = false;
+
+	volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
+					GFP_KERNEL);
+	volt_adjust_fuse = kcalloc(vreg->fuse_corner_count,
+					sizeof(*volt_adjust_fuse), GFP_KERNEL);
+	ro_scale = kcalloc(vreg->fuse_corner_count, sizeof(*ro_scale),
+					GFP_KERNEL);
+	fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
+					GFP_KERNEL);
+	quot_low = kcalloc(vreg->fuse_corner_count, sizeof(*quot_low),
+					GFP_KERNEL);
+	quot_high = kcalloc(vreg->fuse_corner_count, sizeof(*quot_high),
+					GFP_KERNEL);
+	if (!volt_adjust || !volt_adjust_fuse || !ro_scale ||
+	    !fmax_corner || !quot_low || !quot_high) {
+		rc = -ENOMEM;
+		goto done;
+	}
+
+	rc = cpr3_parse_closed_loop_voltage_adjustments(vreg, &fuse->ro_sel[0],
+				volt_adjust, volt_adjust_fuse, ro_scale);
+	if (rc) {
+		cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
+			rc);
+		goto done;
+	}
+
+	rc = cpr3_hmss_apply_fused_voltage_offset(vreg, volt_adjust_fuse);
+	if (rc) {
+		cpr3_err(vreg, "could not apply CBF voltage offsets, rc=%d\n",
+			rc);
+		goto done;
+	}
+
+	if (!allow_interpolation) {
+		/* Use fused target quotients for lower frequencies. */
+		return cpr3_msm8996_hmss_set_no_interpolation_quotients(vreg,
+				volt_adjust, volt_adjust_fuse, ro_scale);
+	}
+
+	for (i = 0; i < vreg->fuse_corner_count; i++)
+		fmax_corner[i] = vreg->fuse_corner_map[i];
+
+	/*
+	 * Interpolation is not possible for corners mapped to the lowest fuse
+	 * corner so use the fuse corner value directly.
+	 */
+	i = CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS;
+	quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]);
+	quot = fuse->target_quot[i] + quot_adjust;
+	quot_high[i] = quot;
+	ro = fuse->ro_sel[i];
+	if (quot_adjust)
+		cpr3_debug(vreg, "adjusted fuse corner %d RO%u target quot: %llu --> %u (%d uV)\n",
+			i, ro, fuse->target_quot[i], quot, volt_adjust_fuse[i]);
+	for (i = 0; i <= fmax_corner[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS]; i++)
+		vreg->corner[i].target_quot[ro] = quot;
+
+	/*
+	 * Interpolation is not possible for corners mapped above the highest
+	 * fuse corner so use the fuse corner value directly.
+	 */
+	j = vreg->fuse_corner_count - 1;
+	quot_adjust = cpr3_quot_adjustment(ro_scale[j], volt_adjust_fuse[j]);
+	quot = fuse->target_quot[j] + quot_adjust;
+	ro = fuse->ro_sel[j];
+	for (i = fmax_corner[j] + 1; i < vreg->corner_count; i++)
+		vreg->corner[i].target_quot[ro] = quot;
+
+	/*
+	 * The LowSVS target quotient is defined as:
+	 *	(SVS target quotient) - (the unpacked SVS quotient offset)
+	 * MinSVS, LowSVS, and SVS fuse corners all share the same RO so it is
+	 * possible to interpolate between their target quotient values.
+	 */
+	i = CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS;
+	quot_high[i] = fuse->target_quot[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]
+			- fuse->quot_offset[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]
+				* MSM8996_HMSS_QUOT_OFFSET_SCALE;
+	quot_low[i] = fuse->target_quot[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS];
+	if (quot_high[i] < quot_low[i]) {
+		cpr3_info(vreg, "quot_lowsvs=%llu < quot_minsvs=%llu; overriding: quot_lowsvs=%llu\n",
+			quot_high[i], quot_low[i], quot_low[i]);
+		quot_high[i] = quot_low[i];
+	}
+	if (fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS]
+	    != fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]) {
+		cpr3_info(vreg, "MinSVS RO=%llu != SVS RO=%llu; disabling LowSVS interpolation\n",
+			fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS],
+			fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]);
+		quot_low[i] = quot_high[i];
+	}
+
+	for (i = CPR3_MSM8996_HMSS_FUSE_CORNER_SVS;
+	     i < vreg->fuse_corner_count; i++) {
+		quot_high[i] = fuse->target_quot[i];
+		if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
+			quot_low[i] = quot_high[i - 1];
+		else
+			quot_low[i] = quot_high[i]
+					- fuse->quot_offset[i]
+					  * MSM8996_HMSS_QUOT_OFFSET_SCALE;
+		if (quot_high[i] < quot_low[i]) {
+			cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu; overriding: quot_high[%d]=%llu\n",
+				i, quot_high[i], i, quot_low[i],
+				i, quot_low[i]);
+			quot_high[i] = quot_low[i];
+		}
+	}
+
+	/* Perform per-fuse-corner target quotient adjustment */
+	for (i = 1; i < vreg->fuse_corner_count; i++) {
+		quot_adjust = cpr3_quot_adjustment(ro_scale[i],
+						   volt_adjust_fuse[i]);
+		if (quot_adjust) {
+			prev_quot = quot_high[i];
+			quot_high[i] += quot_adjust;
+			cpr3_debug(vreg, "adjusted fuse corner %d RO%llu target quot: %llu --> %llu (%d uV)\n",
+				i, fuse->ro_sel[i], prev_quot, quot_high[i],
+				volt_adjust_fuse[i]);
+		}
+
+		if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
+			quot_low[i] = quot_high[i - 1];
+		else
+			quot_low[i] += cpr3_quot_adjustment(ro_scale[i],
+						    volt_adjust_fuse[i - 1]);
+
+		if (quot_high[i] < quot_low[i]) {
+			cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu after adjustment; overriding: quot_high[%d]=%llu\n",
+				i, quot_high[i], i, quot_low[i],
+				i, quot_low[i]);
+			quot_high[i] = quot_low[i];
+		}
+	}
+
+	/* Interpolate voltages for the higher fuse corners. */
+	for (i = 1; i < vreg->fuse_corner_count; i++) {
+		freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
+		freq_high = vreg->corner[fmax_corner[i]].proc_freq;
+
+		ro = fuse->ro_sel[i];
+		for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
+			vreg->corner[j].target_quot[ro] = cpr3_interpolate(
+				freq_low, quot_low[i], freq_high, quot_high[i],
+				vreg->corner[j].proc_freq);
+	}
+
+	/* Perform per-corner target quotient adjustment */
+	for (i = 0; i < vreg->corner_count; i++) {
+		fuse_corner = vreg->corner[i].cpr_fuse_corner;
+		ro = fuse->ro_sel[fuse_corner];
+		quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
+						   volt_adjust[i]);
+		if (quot_adjust) {
+			prev_quot = vreg->corner[i].target_quot[ro];
+			vreg->corner[i].target_quot[ro] += quot_adjust;
+			cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %llu --> %u (%d uV)\n",
+				i, ro, prev_quot,
+				vreg->corner[i].target_quot[ro],
+				volt_adjust[i]);
+		}
+	}
+
+	/* Ensure that target quotients increase monotonically */
+	for (i = 1; i < vreg->corner_count; i++) {
+		ro = fuse->ro_sel[vreg->corner[i].cpr_fuse_corner];
+		if (fuse->ro_sel[vreg->corner[i - 1].cpr_fuse_corner] == ro
+		    && vreg->corner[i].target_quot[ro]
+				< vreg->corner[i - 1].target_quot[ro]) {
+			cpr3_debug(vreg, "adjusted corner %d RO%u target quot=%u < adjusted corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
+				i, ro, vreg->corner[i].target_quot[ro],
+				i - 1, ro, vreg->corner[i - 1].target_quot[ro],
+				i, ro, vreg->corner[i - 1].target_quot[ro]);
+			vreg->corner[i].target_quot[ro]
+				= vreg->corner[i - 1].target_quot[ro];
+		}
+	}
+
+done:
+	kfree(volt_adjust);
+	kfree(volt_adjust_fuse);
+	kfree(ro_scale);
+	kfree(fmax_corner);
+	kfree(quot_low);
+	kfree(quot_high);
+	return rc;
+}
+
+/**
+ * cpr3_msm8996_partial_binning_override() - override the voltage and quotient
+ *		settings for low corners based upon the value of the partial
+ *		binning fuse
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Some parts are not able to operate at low voltages.  The partial binning
+ * fuse specifies if a given part has such limitations.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_msm8996_partial_binning_override(struct cpr3_regulator *vreg)
+{
+	struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses;
+	int i, fuse_corner, fmax_corner;
+
+	if (fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_SVS)
+		fuse_corner = CPR3_MSM8996_HMSS_FUSE_CORNER_SVS;
+	else if (fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_NOM)
+		fuse_corner = CPR3_MSM8996_HMSS_FUSE_CORNER_NOM;
+	else
+		return 0;
+
+	cpr3_info(vreg, "overriding voltages and quotients for all corners below %s Fmax\n",
+		cpr3_msm8996_hmss_fuse_corner_name[fuse_corner]);
+
+	fmax_corner = -1;
+	for (i = vreg->corner_count - 1; i >= 0; i--) {
+		if (vreg->corner[i].cpr_fuse_corner == fuse_corner) {
+			fmax_corner = i;
+			break;
+		}
+	}
+	if (fmax_corner < 0) {
+		cpr3_err(vreg, "could not find %s Fmax corner\n",
+			cpr3_msm8996_hmss_fuse_corner_name[fuse_corner]);
+		return -EINVAL;
+	}
+
+	for (i = 0; i < fmax_corner; i++)
+		vreg->corner[i] = vreg->corner[fmax_corner];
+
+	return 0;
+}
+
+/**
+ * cpr3_hmss_print_settings() - print out HMSS CPR configuration settings into
+ *		the kernel log for debugging purposes
+ * @vreg:		Pointer to the CPR3 regulator
+ */
+static void cpr3_hmss_print_settings(struct cpr3_regulator *vreg)
+{
+	struct cpr3_corner *corner;
+	int i;
+
+	cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
+	for (i = 0; i < vreg->corner_count; i++) {
+		corner = &vreg->corner[i];
+		cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
+			i, corner->proc_freq, corner->cpr_fuse_corner,
+			corner->floor_volt, corner->open_loop_volt,
+			corner->ceiling_volt);
+	}
+
+	if (vreg->thread->ctrl->apm)
+		cpr3_debug(vreg, "APM threshold = %d uV, APM adjust = %d uV\n",
+			vreg->thread->ctrl->apm_threshold_volt,
+			vreg->thread->ctrl->apm_adj_volt);
+}
+
+/**
+ * cpr3_hmss_init_thread() - perform steps necessary to initialize the
+ *		configuration data for a CPR3 thread
+ * @thread:		Pointer to the CPR3 thread
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_hmss_init_thread(struct cpr3_thread *thread)
+{
+	int rc;
+
+	rc = cpr3_parse_common_thread_data(thread);
+	if (rc) {
+		cpr3_err(thread->ctrl, "thread %u unable to read CPR thread data from device tree, rc=%d\n",
+			thread->thread_id, rc);
+		return rc;
+	}
+
+	return 0;
+}
+
+#define MAX_VREG_NAME_SIZE 25
+/**
+ * cpr3_hmss_kvreg_init() - initialize HMSS Kryo Regulator data for a CPR3
+ *		regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function loads Kryo Regulator data from device tree if it is present
+ * and requests a handle to the appropriate Kryo regulator device. In addition,
+ * it initializes Kryo Regulator data originating from hardware fuses, such as
+ * the LDO retention voltage, and requests the Kryo retention regulator to
+ * be configured to that value.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_hmss_kvreg_init(struct cpr3_regulator *vreg)
+{
+	struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses;
+	struct device_node *node = vreg->of_node;
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	int id = vreg->thread->thread_id;
+	char kvreg_name_buf[MAX_VREG_NAME_SIZE];
+	int rc;
+
+	scnprintf(kvreg_name_buf, MAX_VREG_NAME_SIZE,
+		"vdd-thread%d-ldo-supply", id);
+
+	if (!of_find_property(ctrl->dev->of_node, kvreg_name_buf, NULL))
+		return 0;
+	else if (!of_find_property(node, "qcom,ldo-min-headroom-voltage", NULL))
+		return 0;
+
+	scnprintf(kvreg_name_buf, MAX_VREG_NAME_SIZE, "vdd-thread%d-ldo", id);
+
+	vreg->ldo_regulator = devm_regulator_get(ctrl->dev, kvreg_name_buf);
+	if (IS_ERR(vreg->ldo_regulator)) {
+		rc = PTR_ERR(vreg->ldo_regulator);
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(vreg, "unable to request %s regulator, rc=%d\n",
+				 kvreg_name_buf, rc);
+		return rc;
+	}
+
+	vreg->ldo_regulator_bypass = BHS_MODE;
+
+	scnprintf(kvreg_name_buf, MAX_VREG_NAME_SIZE, "vdd-thread%d-ldo-ret",
+		  id);
+
+	vreg->ldo_ret_regulator = devm_regulator_get(ctrl->dev, kvreg_name_buf);
+	if (IS_ERR(vreg->ldo_ret_regulator)) {
+		rc = PTR_ERR(vreg->ldo_ret_regulator);
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(vreg, "unable to request %s regulator, rc=%d\n",
+				 kvreg_name_buf, rc);
+		return rc;
+	}
+
+	if (!ctrl->system_supply_max_volt) {
+		cpr3_err(ctrl, "system-supply max voltage must be specified\n");
+		return -EINVAL;
+	}
+
+	rc = of_property_read_u32(node, "qcom,ldo-min-headroom-voltage",
+				&vreg->ldo_min_headroom_volt);
+	if (rc) {
+		cpr3_err(vreg, "error reading qcom,ldo-min-headroom-voltage, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(node, "qcom,ldo-max-headroom-voltage",
+				  &vreg->ldo_max_headroom_volt);
+	if (rc) {
+		cpr3_err(vreg, "error reading qcom,ldo-max-headroom-voltage, rc=%d\n",
+			 rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(node, "qcom,ldo-max-voltage",
+				&vreg->ldo_max_volt);
+	if (rc) {
+		cpr3_err(vreg, "error reading qcom,ldo-max-voltage, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	/* Determine the CPU retention voltage based on fused data */
+	vreg->ldo_ret_volt =
+		max(msm8996_vdd_apcc_fuse_ret_volt[fuse->vdd_apcc_ret_fuse],
+		    msm8996_vdd_mx_fuse_ret_volt[fuse->vdd_mx_ret_fuse]);
+
+	rc = regulator_set_voltage(vreg->ldo_ret_regulator, vreg->ldo_ret_volt,
+				   INT_MAX);
+	if (rc < 0) {
+		cpr3_err(vreg, "regulator_set_voltage(ldo_ret) == %d failed, rc=%d\n",
+			 vreg->ldo_ret_volt, rc);
+		return rc;
+	}
+
+	/* optional properties, do not error out if missing */
+	of_property_read_u32(node, "qcom,ldo-adjust-voltage",
+			     &vreg->ldo_adjust_volt);
+
+	vreg->ldo_mode_allowed = !of_property_read_bool(node,
+							"qcom,ldo-disable");
+
+	cpr3_info(vreg, "LDO min headroom=%d uV, LDO max headroom=%d uV, LDO adj=%d uV, LDO mode=%s, LDO retention=%d uV\n",
+		  vreg->ldo_min_headroom_volt,
+		  vreg->ldo_max_headroom_volt,
+		  vreg->ldo_adjust_volt,
+		  vreg->ldo_mode_allowed ? "allowed" : "disallowed",
+		  vreg->ldo_ret_volt);
+
+	return 0;
+}
+
+/**
+ * cpr3_hmss_mem_acc_init() - initialize mem-acc regulator data for
+ *		a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function loads mem-acc data from device tree to enable
+ * the control of mem-acc settings based upon the CPR3 regulator
+ * output voltage.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_hmss_mem_acc_init(struct cpr3_regulator *vreg)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	int id = vreg->thread->thread_id;
+	char mem_acc_vreg_name_buf[MAX_VREG_NAME_SIZE];
+	int rc;
+
+	scnprintf(mem_acc_vreg_name_buf, MAX_VREG_NAME_SIZE,
+		  "mem-acc-thread%d-supply", id);
+
+	if (!of_find_property(ctrl->dev->of_node, mem_acc_vreg_name_buf,
+			      NULL)) {
+		cpr3_debug(vreg, "not using memory accelerator regulator\n");
+		return 0;
+	} else if (!of_property_read_bool(vreg->of_node, "qcom,uses-mem-acc")) {
+		return 0;
+	}
+
+	scnprintf(mem_acc_vreg_name_buf, MAX_VREG_NAME_SIZE,
+		  "mem-acc-thread%d", id);
+
+	vreg->mem_acc_regulator = devm_regulator_get(ctrl->dev,
+						     mem_acc_vreg_name_buf);
+	if (IS_ERR(vreg->mem_acc_regulator)) {
+		rc = PTR_ERR(vreg->mem_acc_regulator);
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(vreg, "unable to request %s regulator, rc=%d\n",
+				 mem_acc_vreg_name_buf, rc);
+		return rc;
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_hmss_init_regulator() - perform all steps necessary to initialize the
+ *		configuration data for a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_hmss_init_regulator(struct cpr3_regulator *vreg)
+{
+	struct cpr3_msm8996_hmss_fuses *fuse;
+	int rc;
+
+	rc = cpr3_msm8996_hmss_read_fuse_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = cpr3_hmss_kvreg_init(vreg);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(vreg, "unable to initialize Kryo Regulator settings, rc=%d\n",
+				 rc);
+		return rc;
+	}
+
+	rc = cpr3_hmss_mem_acc_init(vreg);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(vreg, "unable to initialize mem-acc regulator settings, rc=%d\n",
+				 rc);
+		return rc;
+	}
+
+	fuse = vreg->platform_fuses;
+	if (fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED) {
+		cpr3_err(vreg, "this chip requires an unsupported voltage\n");
+		return -EPERM;
+	} else if (fuse->limitation
+			== MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) {
+		vreg->thread->ctrl->cpr_allowed_hw = false;
+	}
+
+	rc = of_property_read_u32(vreg->of_node, "qcom,cpr-pd-bypass-mask",
+				&vreg->pd_bypass_mask);
+	if (rc) {
+		cpr3_err(vreg, "error reading qcom,cpr-pd-bypass-mask, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_hmss_parse_corner_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	if (of_find_property(vreg->of_node, "qcom,cpr-dynamic-floor-corner",
+				NULL)) {
+		rc = cpr3_parse_array_property(vreg,
+			"qcom,cpr-dynamic-floor-corner",
+			1, &vreg->dynamic_floor_corner);
+		if (rc) {
+			cpr3_err(vreg, "error reading qcom,cpr-dynamic-floor-corner, rc=%d\n",
+				rc);
+			return rc;
+		}
+
+		if (vreg->dynamic_floor_corner <= 0) {
+			vreg->uses_dynamic_floor = false;
+		} else if (vreg->dynamic_floor_corner < CPR3_CORNER_OFFSET
+			   || vreg->dynamic_floor_corner
+				> vreg->corner_count - 1 + CPR3_CORNER_OFFSET) {
+			cpr3_err(vreg, "dynamic floor corner=%d not in range [%d, %d]\n",
+				vreg->dynamic_floor_corner, CPR3_CORNER_OFFSET,
+				vreg->corner_count - 1 + CPR3_CORNER_OFFSET);
+			return -EINVAL;
+		}
+
+		vreg->dynamic_floor_corner -= CPR3_CORNER_OFFSET;
+		vreg->uses_dynamic_floor = true;
+	}
+
+	rc = cpr3_msm8996_hmss_calculate_open_loop_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_limit_open_loop_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	cpr3_open_loop_voltage_as_ceiling(vreg);
+
+	rc = cpr3_limit_floor_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = cpr3_msm8996_hmss_calculate_target_quotients(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to calculate target quotients, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_msm8996_partial_binning_override(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to override voltages and quotients based on partial binning fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	cpr3_hmss_print_settings(vreg);
+
+	return 0;
+}
+
+/**
+ * cpr3_hmss_init_aging() - perform HMSS CPR3 controller specific
+ *		aging initializations
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_hmss_init_aging(struct cpr3_controller *ctrl)
+{
+	struct cpr3_msm8996_hmss_fuses *fuse = NULL;
+	struct cpr3_regulator *vreg;
+	u32 aging_ro_scale;
+	int i, j, rc;
+
+	for (i = 0; i < ctrl->thread_count; i++) {
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+			if (ctrl->thread[i].vreg[j].aging_allowed) {
+				ctrl->aging_required = true;
+				vreg = &ctrl->thread[i].vreg[j];
+				fuse = vreg->platform_fuses;
+				break;
+			}
+		}
+	}
+
+	if (!ctrl->aging_required || !fuse || !vreg)
+		return 0;
+
+	rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ro-scaling-factor",
+					1, &aging_ro_scale);
+	if (rc)
+		return rc;
+
+	if (aging_ro_scale == 0) {
+		cpr3_err(ctrl, "aging RO scaling factor is invalid: %u\n",
+			aging_ro_scale);
+		return -EINVAL;
+	}
+
+	ctrl->aging_vdd_mode = REGULATOR_MODE_NORMAL;
+	ctrl->aging_complete_vdd_mode = REGULATOR_MODE_IDLE;
+
+	ctrl->aging_sensor_count = 1;
+	ctrl->aging_sensor = kzalloc(sizeof(*ctrl->aging_sensor), GFP_KERNEL);
+	if (!ctrl->aging_sensor)
+		return -ENOMEM;
+
+	ctrl->aging_sensor->sensor_id = MSM8996_HMSS_AGING_SENSOR_ID;
+	ctrl->aging_sensor->bypass_mask[0] = MSM8996_HMSS_AGING_BYPASS_MASK0;
+	ctrl->aging_sensor->ro_scale = aging_ro_scale;
+
+	ctrl->aging_sensor->init_quot_diff
+		= cpr3_convert_open_loop_voltage_fuse(0,
+			MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SCALE,
+			fuse->aging_init_quot_diff,
+			MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SIZE);
+
+	cpr3_debug(ctrl, "sensor %u aging init quotient diff = %d, aging RO scale = %u QUOT/V\n",
+		ctrl->aging_sensor->sensor_id,
+		ctrl->aging_sensor->init_quot_diff,
+		ctrl->aging_sensor->ro_scale);
+
+	return 0;
+}
+
+/**
+ * cpr3_hmss_init_controller() - perform HMSS CPR3 controller specific
+ *		initializations
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_hmss_init_controller(struct cpr3_controller *ctrl)
+{
+	int i, rc;
+
+	rc = cpr3_parse_common_ctrl_data(ctrl);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	ctrl->vdd_limit_regulator = devm_regulator_get(ctrl->dev, "vdd-limit");
+	if (IS_ERR(ctrl->vdd_limit_regulator)) {
+		rc = PTR_ERR(ctrl->vdd_limit_regulator);
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "unable to request vdd-supply regulator, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(ctrl->dev->of_node,
+			"qcom,cpr-up-down-delay-time",
+			&ctrl->up_down_delay_time);
+	if (rc) {
+		cpr3_err(ctrl, "error reading property qcom,cpr-up-down-delay-time, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	/* No error check since this is an optional property. */
+	of_property_read_u32(ctrl->dev->of_node,
+			     "qcom,system-supply-max-voltage",
+			     &ctrl->system_supply_max_volt);
+
+	/* No error check since this is an optional property. */
+	of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-clock-throttling",
+			&ctrl->proc_clock_throttle);
+
+	rc = cpr3_apm_init(ctrl);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "unable to initialize APM settings, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	ctrl->sensor_count = MSM8996_HMSS_CPR_SENSOR_COUNT;
+
+	ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
+		sizeof(*ctrl->sensor_owner), GFP_KERNEL);
+	if (!ctrl->sensor_owner)
+		return -ENOMEM;
+
+	/* Specify sensor ownership */
+	for (i = MSM8996_HMSS_THREAD0_SENSOR_MIN;
+	     i <= MSM8996_HMSS_THREAD0_SENSOR_MAX; i++)
+		ctrl->sensor_owner[i] = 0;
+	for (i = MSM8996_HMSS_THREAD1_SENSOR_MIN;
+	     i <= MSM8996_HMSS_THREAD1_SENSOR_MAX; i++)
+		ctrl->sensor_owner[i] = 1;
+
+	ctrl->cpr_clock_rate = MSM8996_HMSS_CPR_CLOCK_RATE;
+	ctrl->ctrl_type = CPR_CTRL_TYPE_CPR3;
+	ctrl->supports_hw_closed_loop = true;
+	ctrl->use_hw_closed_loop = of_property_read_bool(ctrl->dev->of_node,
+						"qcom,cpr-hw-closed-loop");
+
+	if (ctrl->mem_acc_regulator) {
+		rc = of_property_read_u32(ctrl->dev->of_node,
+					  "qcom,mem-acc-supply-threshold-voltage",
+					  &ctrl->mem_acc_threshold_volt);
+		if (rc) {
+			cpr3_err(ctrl, "error reading property qcom,mem-acc-supply-threshold-voltage, rc=%d\n",
+				 rc);
+			return rc;
+		}
+
+		ctrl->mem_acc_threshold_volt =
+			CPR3_ROUND(ctrl->mem_acc_threshold_volt,
+				   ctrl->step_volt);
+
+		rc = of_property_read_u32_array(ctrl->dev->of_node,
+			"qcom,mem-acc-supply-corner-map",
+			&ctrl->mem_acc_corner_map[CPR3_MEM_ACC_LOW_CORNER],
+			CPR3_MEM_ACC_CORNERS);
+		if (rc) {
+			cpr3_err(ctrl, "error reading qcom,mem-acc-supply-corner-map, rc=%d\n",
+				 rc);
+			return rc;
+		}
+	}
+
+	return 0;
+}
+
+static int cpr3_hmss_regulator_suspend(struct platform_device *pdev,
+				pm_message_t state)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_suspend(ctrl);
+}
+
+static int cpr3_hmss_regulator_resume(struct platform_device *pdev)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_resume(ctrl);
+}
+
+/* Data corresponds to the SoC revision */
+static const struct of_device_id cpr_regulator_match_table[] = {
+	{
+		.compatible = "qcom,cpr3-msm8996-v1-hmss-regulator",
+		.data = (void *)(uintptr_t)1
+	},
+	{
+		.compatible = "qcom,cpr3-msm8996-v2-hmss-regulator",
+		.data = (void *)(uintptr_t)2
+	},
+	{
+		.compatible = "qcom,cpr3-msm8996-v3-hmss-regulator",
+		.data = (void *)(uintptr_t)3
+	},
+	{
+		.compatible = "qcom,cpr3-msm8996-hmss-regulator",
+		.data = (void *)(uintptr_t)3
+	},
+	{
+		.compatible = "qcom,cpr3-msm8996pro-hmss-regulator",
+		.data = (void *)(uintptr_t)MSM8996PRO_SOC_ID,
+	},
+	{}
+};
+
+static int cpr3_hmss_regulator_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	const struct of_device_id *match;
+	struct cpr3_controller *ctrl;
+	struct cpr3_regulator *vreg;
+	int i, j, rc;
+
+	if (!dev->of_node) {
+		dev_err(dev, "Device tree node is missing\n");
+		return -EINVAL;
+	}
+
+	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
+	if (!ctrl)
+		return -ENOMEM;
+
+	ctrl->dev = dev;
+	/* Set to false later if anything precludes CPR operation. */
+	ctrl->cpr_allowed_hw = true;
+
+	rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
+					&ctrl->name);
+	if (rc) {
+		cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	match = of_match_node(cpr_regulator_match_table, dev->of_node);
+	if (match)
+		ctrl->soc_revision = (uintptr_t)match->data;
+	else
+		cpr3_err(ctrl, "could not find compatible string match\n");
+
+	rc = cpr3_map_fuse_base(ctrl, pdev);
+	if (rc) {
+		cpr3_err(ctrl, "could not map fuse base address\n");
+		return rc;
+	}
+
+	rc = cpr3_allocate_threads(ctrl, MSM8996_HMSS_POWER_CLUSTER_THREAD_ID,
+		MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID);
+	if (rc) {
+		cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	if (ctrl->thread_count < 1) {
+		cpr3_err(ctrl, "thread nodes are missing\n");
+		return -EINVAL;
+	}
+
+	rc = cpr3_hmss_init_controller(ctrl);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	for (i = 0; i < ctrl->thread_count; i++) {
+		rc = cpr3_hmss_init_thread(&ctrl->thread[i]);
+		if (rc) {
+			cpr3_err(ctrl, "thread %u initialization failed, rc=%d\n",
+				ctrl->thread[i].thread_id, rc);
+			return rc;
+		}
+
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+			vreg = &ctrl->thread[i].vreg[j];
+
+			rc = cpr3_hmss_init_regulator(vreg);
+			if (rc) {
+				cpr3_err(vreg, "regulator initialization failed, rc=%d\n",
+					rc);
+				return rc;
+			}
+		}
+	}
+
+	rc = cpr3_hmss_init_aging(ctrl);
+	if (rc) {
+		cpr3_err(ctrl, "failed to initialize aging configurations, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	platform_set_drvdata(pdev, ctrl);
+
+	return cpr3_regulator_register(pdev, ctrl);
+}
+
+static int cpr3_hmss_regulator_remove(struct platform_device *pdev)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_unregister(ctrl);
+}
+
+static struct platform_driver cpr3_hmss_regulator_driver = {
+	.driver		= {
+		.name		= "qcom,cpr3-hmss-regulator",
+		.of_match_table	= cpr_regulator_match_table,
+		.owner		= THIS_MODULE,
+	},
+	.probe		= cpr3_hmss_regulator_probe,
+	.remove		= cpr3_hmss_regulator_remove,
+	.suspend	= cpr3_hmss_regulator_suspend,
+	.resume		= cpr3_hmss_regulator_resume,
+};
+
+static int cpr_regulator_init(void)
+{
+	return platform_driver_register(&cpr3_hmss_regulator_driver);
+}
+
+static void cpr_regulator_exit(void)
+{
+	platform_driver_unregister(&cpr3_hmss_regulator_driver);
+}
+
+MODULE_DESCRIPTION("CPR3 HMSS regulator driver");
+MODULE_LICENSE("GPL v2");
+
+arch_initcall(cpr_regulator_init);
+module_exit(cpr_regulator_exit);
diff --git a/drivers/regulator/cpr3-mmss-regulator.c b/drivers/regulator/cpr3-mmss-regulator.c
new file mode 100644
index 0000000..41032dd
--- /dev/null
+++ b/drivers/regulator/cpr3-mmss-regulator.c
@@ -0,0 +1,1251 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/bitops.h>
+#include <linux/debugfs.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_opp.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/regulator/of_regulator.h>
+
+#include "cpr3-regulator.h"
+
+#define MSM8996_MMSS_FUSE_CORNERS	4
+
+/**
+ * struct cpr3_msm8996_mmss_fuses - MMSS specific fuse data for MSM8996
+ * @init_voltage:	Initial (i.e. open-loop) voltage fuse parameter value
+ *			for each fuse corner (raw, not converted to a voltage)
+ * @offset_voltage:	The closed-loop voltage margin adjustment fuse parameter
+ *			value for each fuse corner (raw, not converted to a
+ *			voltage)
+ * @speed_bin:		Graphics processor speed bin fuse parameter value for
+ *			the given chip
+ * @cpr_fusing_rev:	CPR fusing revision fuse parameter value
+ * @limitation:		CPR limitation select fuse parameter value
+ * @aging_init_quot_diff:	Initial quotient difference between CPR aging
+ *			min and max sensors measured at time of manufacturing
+ * @force_highest_corner:	Flag indicating that all corners must operate
+ *			at the voltage of the highest corner.  This is
+ *			applicable to MSM8998 only.
+ *
+ * This struct holds the values for all of the fuses read from memory.
+ */
+struct cpr3_msm8996_mmss_fuses {
+	u64	init_voltage[MSM8996_MMSS_FUSE_CORNERS];
+	u64	offset_voltage[MSM8996_MMSS_FUSE_CORNERS];
+	u64	speed_bin;
+	u64	cpr_fusing_rev;
+	u64	limitation;
+	u64	aging_init_quot_diff;
+	u64	force_highest_corner;
+};
+
+/* Fuse combos 0 -  7 map to CPR fusing revision 0 - 7 */
+#define CPR3_MSM8996_MMSS_FUSE_COMBO_COUNT	8
+
+/*
+ * Fuse combos 0 -  7 map to CPR fusing revision 0 - 7 with speed bin fuse = 0.
+ * Fuse combos 8 - 15 map to CPR fusing revision 0 - 7 with speed bin fuse = 1.
+ */
+#define CPR3_MSM8996PRO_MMSS_FUSE_COMBO_COUNT	16
+
+/* Fuse combos 0 -  7 map to CPR fusing revision 0 - 7 */
+#define CPR3_MSM8998_MMSS_FUSE_COMBO_COUNT	8
+
+/*
+ * MSM8996 MMSS fuse parameter locations:
+ *
+ * Structs are organized with the following dimensions:
+ *	Outer: 0 to 3 for fuse corners from lowest to highest corner
+ *	Inner: large enough to hold the longest set of parameter segments which
+ *		fully defines a fuse parameter, +1 (for NULL termination).
+ *		Each segment corresponds to a contiguous group of bits from a
+ *		single fuse row.  These segments are concatentated together in
+ *		order to form the full fuse parameter value.  The segments for
+ *		a given parameter may correspond to different fuse rows.
+ */
+static const struct cpr3_fuse_param
+msm8996_mmss_init_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = {
+	{{63, 55, 59}, {} },
+	{{63, 50, 54}, {} },
+	{{63, 45, 49}, {} },
+	{{63, 40, 44}, {} },
+};
+
+static const struct cpr3_fuse_param msm8996_cpr_fusing_rev_param[] = {
+	{39, 48, 50},
+	{},
+};
+
+static const struct cpr3_fuse_param msm8996_cpr_limitation_param[] = {
+	{41, 31, 32},
+	{},
+};
+
+static const struct cpr3_fuse_param
+msm8996_mmss_aging_init_quot_diff_param[] = {
+	{68, 26, 31},
+	{},
+};
+
+/* Offset voltages are defined for SVS and Turbo fuse corners only */
+static const struct cpr3_fuse_param
+msm8996_mmss_offset_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = {
+	{{} },
+	{{66, 42, 44}, {} },
+	{{} },
+	{{64, 58, 61}, {} },
+};
+
+static const struct cpr3_fuse_param msm8996pro_mmss_speed_bin_param[] = {
+	{39, 60, 61},
+	{},
+};
+
+/* MSM8998 MMSS fuse parameter locations: */
+static const struct cpr3_fuse_param
+msm8998_mmss_init_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = {
+	{{65, 39, 43}, {} },
+	{{65, 34, 38}, {} },
+	{{65, 29, 33}, {} },
+	{{65, 24, 28}, {} },
+};
+
+static const struct cpr3_fuse_param msm8998_cpr_fusing_rev_param[] = {
+	{39, 48, 50},
+	{},
+};
+
+static const struct cpr3_fuse_param msm8998_cpr_limitation_param[] = {
+	{41, 46, 47},
+	{},
+};
+
+static const struct cpr3_fuse_param
+msm8998_mmss_aging_init_quot_diff_param[] = {
+	{65, 60, 63},
+	{66, 0, 3},
+	{},
+};
+
+static const struct cpr3_fuse_param
+msm8998_mmss_offset_voltage_param[MSM8996_MMSS_FUSE_CORNERS][2] = {
+	{{65, 56, 59}, {} },
+	{{65, 52, 55}, {} },
+	{{65, 48, 51}, {} },
+	{{65, 44, 47}, {} },
+};
+
+static const struct cpr3_fuse_param
+msm8998_cpr_force_highest_corner_param[] = {
+	{100, 45, 45},
+	{},
+};
+
+#define MSM8996PRO_SOC_ID			4
+#define MSM8998_V1_SOC_ID			5
+#define MSM8998_V2_SOC_ID			6
+
+/*
+ * Some initial msm8996 parts cannot be used in a meaningful way by software.
+ * Other parts can only be used when operating with CPR disabled (i.e. at the
+ * fused open-loop voltage) when no voltage interpolation is applied.  A fuse
+ * parameter is provided so that software can properly handle these limitations.
+ */
+enum msm8996_cpr_limitation {
+	MSM8996_CPR_LIMITATION_NONE = 0,
+	MSM8996_CPR_LIMITATION_UNSUPPORTED = 2,
+	MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION = 3,
+};
+
+/* Additional MSM8996 specific data: */
+
+/* Open loop voltage fuse reference voltages in microvolts */
+static const int msm8996_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
+	670000,
+	745000,
+	905000,
+	1015000,
+};
+
+static const int msm8996pro_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
+	670000,
+	745000,
+	905000,
+	1065000,
+};
+
+static const int msm8998_v1_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
+	528000,
+	656000,
+	812000,
+	932000,
+};
+
+static const int
+msm8998_v1_rev0_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
+	632000,
+	768000,
+	896000,
+	1032000,
+};
+
+static const int msm8998_v2_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
+	516000,
+	628000,
+	752000,
+	924000,
+};
+
+static const int
+msm8998_v2_rev0_mmss_fuse_ref_volt[MSM8996_MMSS_FUSE_CORNERS] = {
+	616000,
+	740000,
+	828000,
+	1024000,
+};
+
+#define MSM8996_MMSS_FUSE_STEP_VOLT		10000
+#define MSM8996_MMSS_OFFSET_FUSE_STEP_VOLT	10000
+#define MSM8996_MMSS_VOLTAGE_FUSE_SIZE		5
+#define MSM8996_MMSS_MIN_VOLTAGE_FUSE_VAL	0x1F
+#define MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SCALE	2
+#define MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SIZE	6
+
+#define MSM8996_MMSS_CPR_SENSOR_COUNT		35
+
+#define MSM8996_MMSS_CPR_CLOCK_RATE		19200000
+
+#define MSM8996_MMSS_AGING_SENSOR_ID		29
+#define MSM8996_MMSS_AGING_BYPASS_MASK0		(GENMASK(23, 0))
+
+#define MSM8998_MMSS_AGING_INIT_QUOT_DIFF_SCALE	1
+#define MSM8998_MMSS_AGING_INIT_QUOT_DIFF_SIZE	8
+
+#define MSM8998_MMSS_CPR_SENSOR_COUNT			35
+
+#define MSM8998_MMSS_AGING_SENSOR_ID			29
+#define MSM8998_MMSS_AGING_BYPASS_MASK0		(GENMASK(23, 0))
+
+#define MSM8998_MMSS_MAX_TEMP_POINTS			3
+#define MSM8998_MMSS_TEMP_SENSOR_ID_START		12
+#define MSM8998_MMSS_TEMP_SENSOR_ID_END		13
+
+/*
+ * Some initial msm8998 parts cannot be operated at low voltages.  The
+ * open-loop voltage fuses are reused to identify these parts so that software
+ * can properly handle the limitation.  0xF means that the next higher fuse
+ * corner should be used.  0xE means that the next higher fuse corner which
+ * does not have a voltage limitation should be used.
+ */
+enum msm8998_cpr_partial_binning {
+	MSM8998_CPR_PARTIAL_BINNING_NEXT_CORNER = 0xF,
+	MSM8998_CPR_PARTIAL_BINNING_SAFE_CORNER = 0xE,
+};
+
+/*
+ * The partial binning open-loop voltage fuse values only apply to the lowest
+ * two fuse corners (0 and 1, i.e. MinSVS and SVS).
+ */
+#define MSM8998_CPR_PARTIAL_BINNING_MAX_FUSE_CORNER	1
+
+static inline bool cpr3_ctrl_is_msm8998(const struct cpr3_controller *ctrl)
+{
+	return ctrl->soc_revision == MSM8998_V1_SOC_ID ||
+		ctrl->soc_revision == MSM8998_V2_SOC_ID;
+}
+
+/**
+ * cpr3_msm8996_mmss_read_fuse_data() - load MMSS specific fuse parameter values
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function allocates a cpr3_msm8996_mmss_fuses struct, fills it with
+ * values read out of hardware fuses, and finally copies common fuse values
+ * into the regulator struct.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_msm8996_mmss_read_fuse_data(struct cpr3_regulator *vreg)
+{
+	void __iomem *base = vreg->thread->ctrl->fuse_base;
+	struct cpr3_msm8996_mmss_fuses *fuse;
+	int i, rc, combo_max;
+
+	fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
+	if (!fuse)
+		return -ENOMEM;
+
+	if (vreg->thread->ctrl->soc_revision == MSM8996PRO_SOC_ID) {
+		rc = cpr3_read_fuse_param(base, msm8996pro_mmss_speed_bin_param,
+					&fuse->speed_bin);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n",
+				rc);
+			return rc;
+		}
+		cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin);
+	}
+
+	rc = cpr3_read_fuse_param(base,
+			cpr3_ctrl_is_msm8998(vreg->thread->ctrl)
+				? msm8998_cpr_fusing_rev_param
+				: msm8996_cpr_fusing_rev_param,
+			&fuse->cpr_fusing_rev);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+	cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
+
+	rc = cpr3_read_fuse_param(base,
+			cpr3_ctrl_is_msm8998(vreg->thread->ctrl)
+				? msm8998_cpr_limitation_param
+				: msm8996_cpr_limitation_param,
+			&fuse->limitation);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read CPR limitation fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+	cpr3_info(vreg, "CPR limitation = %s\n",
+		fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED
+		? "unsupported chip" : fuse->limitation
+			  == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION
+		? "CPR disabled and no interpolation" : "none");
+
+	rc = cpr3_read_fuse_param(base,
+			cpr3_ctrl_is_msm8998(vreg->thread->ctrl)
+				? msm8998_mmss_aging_init_quot_diff_param
+				: msm8996_mmss_aging_init_quot_diff_param,
+			&fuse->aging_init_quot_diff);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	for (i = 0; i < MSM8996_MMSS_FUSE_CORNERS; i++) {
+		rc = cpr3_read_fuse_param(base,
+			cpr3_ctrl_is_msm8998(vreg->thread->ctrl)
+				? msm8998_mmss_init_voltage_param[i]
+				: msm8996_mmss_init_voltage_param[i],
+			&fuse->init_voltage[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+			cpr3_ctrl_is_msm8998(vreg->thread->ctrl)
+				? msm8998_mmss_offset_voltage_param[i]
+				: msm8996_mmss_offset_voltage_param[i],
+			&fuse->offset_voltage[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d offset voltage fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+	}
+
+	if (cpr3_ctrl_is_msm8998(vreg->thread->ctrl)) {
+		rc = cpr3_read_fuse_param(base,
+			msm8998_cpr_force_highest_corner_param,
+			&fuse->force_highest_corner);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read CPR force highest corner fuse, rc=%d\n",
+				rc);
+			return rc;
+		}
+		if (fuse->force_highest_corner)
+			cpr3_info(vreg, "Fusing requires all operation at the highest corner\n");
+	}
+
+	if (cpr3_ctrl_is_msm8998(vreg->thread->ctrl)) {
+		combo_max = CPR3_MSM8998_MMSS_FUSE_COMBO_COUNT;
+		vreg->fuse_combo = fuse->cpr_fusing_rev;
+	} else if (vreg->thread->ctrl->soc_revision == MSM8996PRO_SOC_ID) {
+		combo_max = CPR3_MSM8996PRO_MMSS_FUSE_COMBO_COUNT;
+		vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
+	} else {
+		combo_max = CPR3_MSM8996_MMSS_FUSE_COMBO_COUNT;
+		vreg->fuse_combo = fuse->cpr_fusing_rev;
+	}
+
+	if (vreg->fuse_combo >= combo_max) {
+		cpr3_err(vreg, "invalid CPR fuse combo = %d found, not in range 0 - %d\n",
+			vreg->fuse_combo, combo_max - 1);
+		return -EINVAL;
+	}
+
+	vreg->speed_bin_fuse	= fuse->speed_bin;
+	vreg->cpr_rev_fuse	= fuse->cpr_fusing_rev;
+	vreg->fuse_corner_count	= MSM8996_MMSS_FUSE_CORNERS;
+	vreg->platform_fuses	= fuse;
+
+	return 0;
+}
+
+/**
+ * cpr3_mmss_parse_corner_data() - parse MMSS corner data from device tree
+ *		properties of the regulator's device node
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_mmss_parse_corner_data(struct cpr3_regulator *vreg)
+{
+	int i, rc;
+	u32 *temp;
+
+	rc = cpr3_parse_common_corner_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
+		return rc;
+	}
+
+	temp = kcalloc(vreg->corner_count * CPR3_RO_COUNT, sizeof(*temp),
+			GFP_KERNEL);
+	if (!temp)
+		return -ENOMEM;
+
+	rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-target-quotients",
+			CPR3_RO_COUNT, temp);
+	if (rc) {
+		cpr3_err(vreg, "could not load target quotients, rc=%d\n", rc);
+		goto done;
+	}
+
+	for (i = 0; i < vreg->corner_count; i++)
+		memcpy(vreg->corner[i].target_quot, &temp[i * CPR3_RO_COUNT],
+			sizeof(*temp) * CPR3_RO_COUNT);
+
+done:
+	kfree(temp);
+	return rc;
+}
+
+/**
+ * cpr3_msm8996_mmss_adjust_target_quotients() - adjust the target quotients
+ *		for each corner according to device tree values and fuse values
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_msm8996_mmss_adjust_target_quotients(
+			struct cpr3_regulator *vreg)
+{
+	struct cpr3_msm8996_mmss_fuses *fuse = vreg->platform_fuses;
+	const struct cpr3_fuse_param (*offset_param)[2];
+	int *volt_offset;
+	int i, fuse_len, rc = 0;
+
+	volt_offset = kcalloc(vreg->fuse_corner_count, sizeof(*volt_offset),
+				GFP_KERNEL);
+	if (!volt_offset)
+		return -ENOMEM;
+
+	offset_param = cpr3_ctrl_is_msm8998(vreg->thread->ctrl)
+			? msm8998_mmss_offset_voltage_param
+			: msm8996_mmss_offset_voltage_param;
+	for (i = 0; i < vreg->fuse_corner_count; i++) {
+		fuse_len = offset_param[i][0].bit_end + 1
+			   - offset_param[i][0].bit_start;
+		volt_offset[i] = cpr3_convert_open_loop_voltage_fuse(
+			0, MSM8996_MMSS_OFFSET_FUSE_STEP_VOLT,
+			fuse->offset_voltage[i], fuse_len);
+		if (volt_offset[i])
+			cpr3_info(vreg, "fuse_corner[%d] offset=%7d uV\n",
+				i, volt_offset[i]);
+	}
+
+	rc = cpr3_adjust_target_quotients(vreg, volt_offset);
+	if (rc)
+		cpr3_err(vreg, "adjust target quotients failed, rc=%d\n", rc);
+
+	kfree(volt_offset);
+	return rc;
+}
+
+/**
+ * cpr3_msm8996_mmss_calculate_open_loop_voltages() - calculate the open-loop
+ *		voltage for each corner of a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * If open-loop voltage interpolation is allowed in both device tree and in
+ * hardware fuses, then this function calculates the open-loop voltage for a
+ * given corner using linear interpolation.  This interpolation is performed
+ * using the processor frequencies of the lower and higher Fmax corners along
+ * with their fused open-loop voltages.
+ *
+ * If open-loop voltage interpolation is not allowed, then this function uses
+ * the Fmax fused open-loop voltage for all of the corners associated with a
+ * given fuse corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_msm8996_mmss_calculate_open_loop_voltages(
+			struct cpr3_regulator *vreg)
+{
+	struct device_node *node = vreg->of_node;
+	struct cpr3_msm8996_mmss_fuses *fuse = vreg->platform_fuses;
+	bool is_msm8998 = cpr3_ctrl_is_msm8998(vreg->thread->ctrl);
+	int rc = 0;
+	bool allow_interpolation;
+	u64 freq_low, volt_low, freq_high, volt_high, volt_init;
+	int i, j;
+	const int *ref_volt;
+	int *fuse_volt;
+	int *fmax_corner;
+
+	fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
+				GFP_KERNEL);
+	fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
+				GFP_KERNEL);
+	if (!fuse_volt || !fmax_corner) {
+		rc = -ENOMEM;
+		goto done;
+	}
+
+	if (vreg->thread->ctrl->soc_revision == MSM8998_V2_SOC_ID
+	    && fuse->cpr_fusing_rev == 0)
+		ref_volt = msm8998_v2_rev0_mmss_fuse_ref_volt;
+	else if (vreg->thread->ctrl->soc_revision == MSM8998_V2_SOC_ID)
+		ref_volt = msm8998_v2_mmss_fuse_ref_volt;
+	else if (vreg->thread->ctrl->soc_revision == MSM8998_V1_SOC_ID
+	    && fuse->cpr_fusing_rev == 0)
+		ref_volt = msm8998_v1_rev0_mmss_fuse_ref_volt;
+	else if (vreg->thread->ctrl->soc_revision == MSM8998_V1_SOC_ID)
+		ref_volt = msm8998_v1_mmss_fuse_ref_volt;
+	else if (vreg->thread->ctrl->soc_revision == MSM8996PRO_SOC_ID)
+		ref_volt = msm8996pro_mmss_fuse_ref_volt;
+	else
+		ref_volt = msm8996_mmss_fuse_ref_volt;
+
+	for (i = 0; i < vreg->fuse_corner_count; i++) {
+		volt_init = fuse->init_voltage[i];
+		/*
+		 * Handle partial binning on MSM8998 where the initial voltage
+		 * fuse is reused as a flag for partial binning needs.  Set the
+		 * open-loop voltage to the minimum possible value so that it
+		 * does not result in higher fuse corners getting forced to
+		 * higher open-loop voltages after monotonicity enforcement.
+		 */
+		if (is_msm8998 &&
+		    (volt_init == MSM8998_CPR_PARTIAL_BINNING_NEXT_CORNER ||
+		     volt_init == MSM8998_CPR_PARTIAL_BINNING_SAFE_CORNER) &&
+		    i <= MSM8998_CPR_PARTIAL_BINNING_MAX_FUSE_CORNER)
+			volt_init = MSM8996_MMSS_MIN_VOLTAGE_FUSE_VAL;
+
+		fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(ref_volt[i],
+			MSM8996_MMSS_FUSE_STEP_VOLT, volt_init,
+			MSM8996_MMSS_VOLTAGE_FUSE_SIZE);
+		cpr3_info(vreg, "fuse_corner[%d] open-loop=%7d uV\n",
+			i, fuse_volt[i]);
+	}
+
+	rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
+	if (rc) {
+		cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
+			rc);
+		goto done;
+	}
+
+	allow_interpolation = of_property_read_bool(node,
+				"qcom,allow-voltage-interpolation");
+
+	for (i = 1; i < vreg->fuse_corner_count; i++) {
+		if (fuse_volt[i] < fuse_volt[i - 1]) {
+			cpr3_debug(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
+				i, fuse_volt[i], i - 1, fuse_volt[i - 1],
+				i, fuse_volt[i - 1]);
+			fuse_volt[i] = fuse_volt[i - 1];
+		}
+	}
+
+	if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION)
+		allow_interpolation = false;
+
+	if (!allow_interpolation) {
+		/* Use fused open-loop voltage for lower frequencies. */
+		for (i = 0; i < vreg->corner_count; i++)
+			vreg->corner[i].open_loop_volt
+				= fuse_volt[vreg->corner[i].cpr_fuse_corner];
+		goto done;
+	}
+
+	/* Determine highest corner mapped to each fuse corner */
+	j = vreg->fuse_corner_count - 1;
+	for (i = vreg->corner_count - 1; i >= 0; i--) {
+		if (vreg->corner[i].cpr_fuse_corner == j) {
+			fmax_corner[j] = i;
+			j--;
+		}
+	}
+	if (j >= 0) {
+		cpr3_err(vreg, "invalid fuse corner mapping\n");
+		rc = -EINVAL;
+		goto done;
+	}
+
+	/*
+	 * Interpolation is not possible for corners mapped to the lowest fuse
+	 * corner so use the fuse corner value directly.
+	 */
+	for (i = 0; i <= fmax_corner[0]; i++)
+		vreg->corner[i].open_loop_volt = fuse_volt[0];
+
+	/* Interpolate voltages for the higher fuse corners. */
+	for (i = 1; i < vreg->fuse_corner_count; i++) {
+		freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
+		volt_low = fuse_volt[i - 1];
+		freq_high = vreg->corner[fmax_corner[i]].proc_freq;
+		volt_high = fuse_volt[i];
+
+		for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
+			vreg->corner[j].open_loop_volt = cpr3_interpolate(
+				freq_low, volt_low, freq_high, volt_high,
+				vreg->corner[j].proc_freq);
+	}
+
+done:
+	if (rc == 0) {
+		cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
+		for (i = 0; i < vreg->corner_count; i++)
+			cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
+				vreg->corner[i].open_loop_volt);
+
+		rc = cpr3_adjust_open_loop_voltages(vreg);
+		if (rc)
+			cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
+				rc);
+	}
+
+	kfree(fuse_volt);
+	kfree(fmax_corner);
+	return rc;
+}
+
+/**
+ * cpr3_msm8998_partial_binning_override() - override the voltage and quotient
+ *		settings for low corners based upon the special partial binning
+ *		open-loop voltage fuse values
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Some parts are not able to operate at low voltages.  The partial binning
+ * open-loop voltage fuse values specify if a given part has such limitations.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_msm8998_partial_binning_override(struct cpr3_regulator *vreg)
+{
+	struct cpr3_msm8996_mmss_fuses *fuse = vreg->platform_fuses;
+	u64 next = MSM8998_CPR_PARTIAL_BINNING_NEXT_CORNER;
+	u64 safe = MSM8998_CPR_PARTIAL_BINNING_SAFE_CORNER;
+	u32 proc_freq;
+	struct cpr3_corner *corner;
+	struct cpr3_corner *safe_corner;
+	int i, j, low, high, safe_fuse_corner, max_fuse_corner;
+
+	if (!cpr3_ctrl_is_msm8998(vreg->thread->ctrl))
+		return 0;
+
+	/* Handle the force highest corner fuse. */
+	if (fuse->force_highest_corner) {
+		cpr3_info(vreg, "overriding CPR parameters for corners 0 to %d with quotients and voltages of corner %d\n",
+			vreg->corner_count - 2, vreg->corner_count - 1);
+		corner = &vreg->corner[vreg->corner_count - 1];
+		for (i = 0; i < vreg->corner_count - 1; i++) {
+			proc_freq = vreg->corner[i].proc_freq;
+			vreg->corner[i] = *corner;
+			vreg->corner[i].proc_freq = proc_freq;
+		}
+
+		/*
+		 * Return since the potential partial binning fuse values are
+		 * superceded by the force highest corner fuse value.
+		 */
+		return 0;
+	}
+
+	/*
+	 * Allow up to the max corner which can be fused with partial
+	 * binning values.
+	 */
+	max_fuse_corner = min(MSM8998_CPR_PARTIAL_BINNING_MAX_FUSE_CORNER,
+				vreg->fuse_corner_count - 2);
+
+	for (i = 0; i <= max_fuse_corner; i++) {
+		/* Determine which higher corners to override with (if any). */
+		if (fuse->init_voltage[i] != next
+		    && fuse->init_voltage[i] != safe)
+			continue;
+
+		for (j = i + 1; j <= max_fuse_corner; j++)
+			if (fuse->init_voltage[j] != next
+			    && fuse->init_voltage[j] != safe)
+				break;
+		safe_fuse_corner = j;
+
+		j = fuse->init_voltage[i] == next ? i + 1 : safe_fuse_corner;
+
+		low = i > 0 ? vreg->fuse_corner_map[i] : 0;
+		high = vreg->fuse_corner_map[i + 1] - 1;
+
+		cpr3_info(vreg, "overriding CPR parameters for corners %d to %d with quotients of corner %d and voltages of corner %d\n",
+			low, high, vreg->fuse_corner_map[j],
+			vreg->fuse_corner_map[safe_fuse_corner]);
+
+		corner = &vreg->corner[vreg->fuse_corner_map[j]];
+		safe_corner
+		       = &vreg->corner[vreg->fuse_corner_map[safe_fuse_corner]];
+
+		for (j = low; j <= high; j++) {
+			proc_freq = vreg->corner[j].proc_freq;
+			vreg->corner[j] = *corner;
+			vreg->corner[j].proc_freq = proc_freq;
+
+			vreg->corner[j].floor_volt
+				= safe_corner->floor_volt;
+			vreg->corner[j].ceiling_volt
+				= safe_corner->ceiling_volt;
+			vreg->corner[j].open_loop_volt
+				= safe_corner->open_loop_volt;
+			vreg->corner[j].abs_ceiling_volt
+				= safe_corner->abs_ceiling_volt;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_mmss_print_settings() - print out MMSS CPR configuration settings into
+ *		the kernel log for debugging purposes
+ * @vreg:		Pointer to the CPR3 regulator
+ */
+static void cpr3_mmss_print_settings(struct cpr3_regulator *vreg)
+{
+	struct cpr3_corner *corner;
+	int i;
+
+	cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
+	for (i = 0; i < vreg->corner_count; i++) {
+		corner = &vreg->corner[i];
+		cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
+			i, corner->proc_freq, corner->cpr_fuse_corner,
+			corner->floor_volt, corner->open_loop_volt,
+			corner->ceiling_volt);
+	}
+}
+
+/**
+ * cpr3_mmss_init_aging() - perform MMSS CPR3 controller specific
+ *		aging initializations
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_mmss_init_aging(struct cpr3_controller *ctrl)
+{
+	struct cpr3_msm8996_mmss_fuses *fuse;
+	struct cpr3_regulator *vreg;
+	u32 aging_ro_scale;
+	int rc;
+
+	vreg = &ctrl->thread[0].vreg[0];
+
+	ctrl->aging_required = vreg->aging_allowed;
+	fuse = vreg->platform_fuses;
+
+	if (!ctrl->aging_required || !fuse)
+		return 0;
+
+	rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ro-scaling-factor",
+			1, &aging_ro_scale);
+	if (rc)
+		return rc;
+
+	if (aging_ro_scale == 0) {
+		cpr3_err(ctrl, "aging RO scaling factor is invalid: %u\n",
+			aging_ro_scale);
+		return -EINVAL;
+	}
+
+	ctrl->aging_vdd_mode = REGULATOR_MODE_NORMAL;
+	ctrl->aging_complete_vdd_mode = REGULATOR_MODE_IDLE;
+
+	ctrl->aging_sensor_count = 1;
+	ctrl->aging_sensor = kzalloc(sizeof(*ctrl->aging_sensor), GFP_KERNEL);
+	if (!ctrl->aging_sensor)
+		return -ENOMEM;
+
+	ctrl->aging_sensor->ro_scale = aging_ro_scale;
+
+	if (cpr3_ctrl_is_msm8998(ctrl)) {
+		ctrl->aging_sensor->sensor_id = MSM8998_MMSS_AGING_SENSOR_ID;
+		ctrl->aging_sensor->bypass_mask[0]
+					= MSM8998_MMSS_AGING_BYPASS_MASK0;
+		ctrl->aging_sensor->init_quot_diff
+			= cpr3_convert_open_loop_voltage_fuse(0,
+				MSM8998_MMSS_AGING_INIT_QUOT_DIFF_SCALE,
+				fuse->aging_init_quot_diff,
+				MSM8998_MMSS_AGING_INIT_QUOT_DIFF_SIZE);
+	} else {
+		ctrl->aging_sensor->sensor_id = MSM8996_MMSS_AGING_SENSOR_ID;
+		ctrl->aging_sensor->bypass_mask[0]
+					= MSM8996_MMSS_AGING_BYPASS_MASK0;
+		ctrl->aging_sensor->init_quot_diff
+			= cpr3_convert_open_loop_voltage_fuse(0,
+				MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SCALE,
+				fuse->aging_init_quot_diff,
+				MSM8996_MMSS_AGING_INIT_QUOT_DIFF_SIZE);
+	}
+
+	cpr3_debug(ctrl, "sensor %u aging init quotient diff = %d, aging RO scale = %u QUOT/V\n",
+		ctrl->aging_sensor->sensor_id,
+		ctrl->aging_sensor->init_quot_diff,
+		ctrl->aging_sensor->ro_scale);
+
+	return 0;
+}
+
+/**
+ * cpr3_mmss_init_thread() - perform all steps necessary to initialize the
+ *		configuration data for a CPR3 thread
+ * @thread:		Pointer to the CPR3 thread
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_mmss_init_thread(struct cpr3_thread *thread)
+{
+	struct cpr3_regulator *vreg = &thread->vreg[0];
+	struct cpr3_msm8996_mmss_fuses *fuse;
+	int rc;
+
+	rc = cpr3_parse_common_thread_data(thread);
+	if (rc) {
+		cpr3_err(vreg, "unable to read CPR thread data from device tree, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_msm8996_mmss_read_fuse_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
+		return rc;
+	}
+
+	fuse = vreg->platform_fuses;
+	if (fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED) {
+		cpr3_err(vreg, "this chip requires an unsupported voltage\n");
+		return -EPERM;
+	} else if (fuse->limitation
+			== MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) {
+		thread->ctrl->cpr_allowed_hw = false;
+	}
+
+	rc = cpr3_mmss_parse_corner_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_msm8996_mmss_adjust_target_quotients(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to adjust target quotients, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_msm8996_mmss_calculate_open_loop_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_limit_open_loop_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	cpr3_open_loop_voltage_as_ceiling(vreg);
+
+	rc = cpr3_limit_floor_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
+		return rc;
+	}
+
+	if (cpr3_ctrl_is_msm8998(thread->ctrl)) {
+		rc = cpr4_parse_core_count_temp_voltage_adj(vreg, false);
+		if (rc) {
+			cpr3_err(vreg, "unable to parse temperature based voltage adjustments, rc=%d\n",
+				 rc);
+			return rc;
+		}
+	}
+
+	rc = cpr3_msm8998_partial_binning_override(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to override CPR parameters based on partial binning fuse values, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	cpr3_mmss_print_settings(vreg);
+
+	return 0;
+}
+
+/**
+ * cpr4_mmss_parse_temp_adj_properties() - parse temperature based
+ *		adjustment properties from device tree
+ * @ctrl:	Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_mmss_parse_temp_adj_properties(struct cpr3_controller *ctrl)
+{
+	struct device_node *of_node = ctrl->dev->of_node;
+	int rc, len, temp_point_count;
+
+	if (!of_find_property(of_node, "qcom,cpr-temp-point-map", &len))
+		return 0;
+
+	temp_point_count = len / sizeof(u32);
+	if (temp_point_count <= 0
+	    || temp_point_count > MSM8998_MMSS_MAX_TEMP_POINTS) {
+		cpr3_err(ctrl, "invalid number of temperature points %d > %d (max)\n",
+			 temp_point_count, MSM8998_MMSS_MAX_TEMP_POINTS);
+		return -EINVAL;
+	}
+
+	ctrl->temp_points = devm_kcalloc(ctrl->dev, temp_point_count,
+					sizeof(*ctrl->temp_points), GFP_KERNEL);
+	if (!ctrl->temp_points)
+		return -ENOMEM;
+
+	rc = of_property_read_u32_array(of_node, "qcom,cpr-temp-point-map",
+					ctrl->temp_points, temp_point_count);
+	if (rc) {
+		cpr3_err(ctrl, "error reading property qcom,cpr-temp-point-map, rc=%d\n",
+			 rc);
+		return rc;
+	}
+
+	/*
+	 * If t1, t2, and t3 are the temperature points, then the temperature
+	 * bands are: (-inf, t1], (t1, t2], (t2, t3], and (t3, inf).
+	 */
+	ctrl->temp_band_count = temp_point_count + 1;
+
+	rc = of_property_read_u32(of_node, "qcom,cpr-initial-temp-band",
+				  &ctrl->initial_temp_band);
+	if (rc) {
+		cpr3_err(ctrl, "error reading qcom,cpr-initial-temp-band, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	if (ctrl->initial_temp_band >= ctrl->temp_band_count) {
+		cpr3_err(ctrl, "Initial temperature band value %d should be in range [0 - %d]\n",
+			ctrl->initial_temp_band, ctrl->temp_band_count - 1);
+		return -EINVAL;
+	}
+
+	ctrl->temp_sensor_id_start = MSM8998_MMSS_TEMP_SENSOR_ID_START;
+	ctrl->temp_sensor_id_end = MSM8998_MMSS_TEMP_SENSOR_ID_END;
+	ctrl->allow_temp_adj = true;
+
+	return rc;
+}
+
+/**
+ * cpr3_mmss_init_controller() - perform MMSS CPR3 controller specific
+ *		initializations
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_mmss_init_controller(struct cpr3_controller *ctrl)
+{
+	int rc;
+
+	rc = cpr3_parse_common_ctrl_data(ctrl);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	if (cpr3_ctrl_is_msm8998(ctrl)) {
+		rc = cpr4_mmss_parse_temp_adj_properties(ctrl);
+		if (rc)
+			return rc;
+	}
+
+	ctrl->sensor_count = cpr3_ctrl_is_msm8998(ctrl)
+				? MSM8998_MMSS_CPR_SENSOR_COUNT
+				: MSM8996_MMSS_CPR_SENSOR_COUNT;
+
+	/*
+	 * MMSS only has one thread (0) so the zeroed array does not need
+	 * further modification.
+	 */
+	ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
+				sizeof(*ctrl->sensor_owner), GFP_KERNEL);
+	if (!ctrl->sensor_owner)
+		return -ENOMEM;
+
+	ctrl->cpr_clock_rate = MSM8996_MMSS_CPR_CLOCK_RATE;
+	ctrl->ctrl_type = cpr3_ctrl_is_msm8998(ctrl)
+				? CPR_CTRL_TYPE_CPR4 : CPR_CTRL_TYPE_CPR3;
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+		/*
+		 * Use fixed step quotient if specified otherwise use dynamic
+		 * calculated per RO step quotient
+		 */
+		of_property_read_u32(ctrl->dev->of_node,
+				     "qcom,cpr-step-quot-fixed",
+				     &ctrl->step_quot_fixed);
+		ctrl->use_dynamic_step_quot = !ctrl->step_quot_fixed;
+	}
+
+	ctrl->iface_clk = devm_clk_get(ctrl->dev, "iface_clk");
+	if (IS_ERR(ctrl->iface_clk)) {
+		rc = PTR_ERR(ctrl->iface_clk);
+		if (cpr3_ctrl_is_msm8998(ctrl)) {
+			/* iface_clk is optional for msm8998 */
+			ctrl->iface_clk = NULL;
+		} else if (rc == -EPROBE_DEFER) {
+			return rc;
+		} else {
+			cpr3_err(ctrl, "unable to request interface clock, rc=%d\n",
+				rc);
+			return rc;
+		}
+	}
+
+	ctrl->bus_clk = devm_clk_get(ctrl->dev, "bus_clk");
+	if (IS_ERR(ctrl->bus_clk)) {
+		rc = PTR_ERR(ctrl->bus_clk);
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "unable request bus clock, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	return 0;
+}
+
+static int cpr3_mmss_regulator_suspend(struct platform_device *pdev,
+				pm_message_t state)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_suspend(ctrl);
+}
+
+static int cpr3_mmss_regulator_resume(struct platform_device *pdev)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_resume(ctrl);
+}
+
+/* Data corresponds to the SoC revision */
+static const struct of_device_id cpr_regulator_match_table[] = {
+	{
+		.compatible = "qcom,cpr3-msm8996-v1-mmss-regulator",
+		.data = (void *)(uintptr_t)1,
+	},
+	{
+		.compatible = "qcom,cpr3-msm8996-v2-mmss-regulator",
+		.data = (void *)(uintptr_t)2,
+	},
+	{
+		.compatible = "qcom,cpr3-msm8996-v3-mmss-regulator",
+		.data = (void *)(uintptr_t)3,
+	},
+	{
+		.compatible = "qcom,cpr3-msm8996-mmss-regulator",
+		.data = (void *)(uintptr_t)3,
+	},
+	{
+		.compatible = "qcom,cpr3-msm8996pro-mmss-regulator",
+		.data = (void *)(uintptr_t)MSM8996PRO_SOC_ID,
+	},
+	{
+		.compatible = "qcom,cpr4-msm8998-v1-mmss-regulator",
+		.data = (void *)(uintptr_t)MSM8998_V1_SOC_ID,
+	},
+	{
+		.compatible = "qcom,cpr4-msm8998-v2-mmss-regulator",
+		.data = (void *)(uintptr_t)MSM8998_V2_SOC_ID,
+	},
+	{
+		.compatible = "qcom,cpr4-msm8998-mmss-regulator",
+		.data = (void *)(uintptr_t)MSM8998_V2_SOC_ID,
+	},
+	{}
+};
+
+static int cpr3_mmss_regulator_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	const struct of_device_id *match;
+	struct cpr3_controller *ctrl;
+	int rc;
+
+	if (!dev->of_node) {
+		dev_err(dev, "Device tree node is missing\n");
+		return -EINVAL;
+	}
+
+	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
+	if (!ctrl)
+		return -ENOMEM;
+
+	ctrl->dev = dev;
+	/* Set to false later if anything precludes CPR operation. */
+	ctrl->cpr_allowed_hw = true;
+
+	rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
+					&ctrl->name);
+	if (rc) {
+		cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	match = of_match_node(cpr_regulator_match_table, dev->of_node);
+	if (match)
+		ctrl->soc_revision = (uintptr_t)match->data;
+	else
+		cpr3_err(ctrl, "could not find compatible string match\n");
+
+	rc = cpr3_map_fuse_base(ctrl, pdev);
+	if (rc) {
+		cpr3_err(ctrl, "could not map fuse base address\n");
+		return rc;
+	}
+
+	rc = cpr3_allocate_threads(ctrl, 0, 0);
+	if (rc) {
+		cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	if (ctrl->thread_count != 1) {
+		cpr3_err(ctrl, "expected 1 thread but found %d\n",
+			ctrl->thread_count);
+		return -EINVAL;
+	} else if (ctrl->thread[0].vreg_count != 1) {
+		cpr3_err(ctrl, "expected 1 regulator but found %d\n",
+			ctrl->thread[0].vreg_count);
+		return -EINVAL;
+	}
+
+	rc = cpr3_mmss_init_controller(ctrl);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	rc = cpr3_mmss_init_thread(&ctrl->thread[0]);
+	if (rc) {
+		cpr3_err(&ctrl->thread[0].vreg[0], "thread initialization failed, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_mem_acc_init(&ctrl->thread[0].vreg[0]);
+	if (rc) {
+		cpr3_err(ctrl, "failed to initialize mem-acc configuration, rc=%d\n",
+			 rc);
+		return rc;
+	}
+
+	rc = cpr3_mmss_init_aging(ctrl);
+	if (rc) {
+		cpr3_err(ctrl, "failed to initialize aging configurations, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	platform_set_drvdata(pdev, ctrl);
+
+	return cpr3_regulator_register(pdev, ctrl);
+}
+
+static int cpr3_mmss_regulator_remove(struct platform_device *pdev)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_unregister(ctrl);
+}
+
+static struct platform_driver cpr3_mmss_regulator_driver = {
+	.driver		= {
+		.name		= "qcom,cpr3-mmss-regulator",
+		.of_match_table	= cpr_regulator_match_table,
+		.owner		= THIS_MODULE,
+	},
+	.probe		= cpr3_mmss_regulator_probe,
+	.remove		= cpr3_mmss_regulator_remove,
+	.suspend	= cpr3_mmss_regulator_suspend,
+	.resume		= cpr3_mmss_regulator_resume,
+};
+
+static int cpr_regulator_init(void)
+{
+	return platform_driver_register(&cpr3_mmss_regulator_driver);
+}
+
+static void cpr_regulator_exit(void)
+{
+	platform_driver_unregister(&cpr3_mmss_regulator_driver);
+}
+
+MODULE_DESCRIPTION("CPR3 MMSS regulator driver");
+MODULE_LICENSE("GPL v2");
+
+arch_initcall(cpr_regulator_init);
+module_exit(cpr_regulator_exit);
diff --git a/drivers/regulator/cpr3-regulator.c b/drivers/regulator/cpr3-regulator.c
new file mode 100644
index 0000000..c51ed182b
--- /dev/null
+++ b/drivers/regulator/cpr3-regulator.c
@@ -0,0 +1,6492 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/bitops.h>
+#include <linux/debugfs.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/ktime.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_opp.h>
+#include <linux/slab.h>
+#include <linux/sort.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/regulator/of_regulator.h>
+#include <linux/regulator/msm-ldo-regulator.h>
+
+#include <soc/qcom/spm.h>
+
+#include "cpr3-regulator.h"
+
+#define CPR3_REGULATOR_CORNER_INVALID	(-1)
+#define CPR3_RO_MASK			GENMASK(CPR3_RO_COUNT - 1, 0)
+
+/* CPR3 registers */
+#define CPR3_REG_CPR_CTL			0x4
+#define CPR3_CPR_CTL_LOOP_EN_MASK		BIT(0)
+#define CPR3_CPR_CTL_LOOP_ENABLE		BIT(0)
+#define CPR3_CPR_CTL_LOOP_DISABLE		0
+#define CPR3_CPR_CTL_IDLE_CLOCKS_MASK		GENMASK(5, 1)
+#define CPR3_CPR_CTL_IDLE_CLOCKS_SHIFT		1
+#define CPR3_CPR_CTL_COUNT_MODE_MASK		GENMASK(7, 6)
+#define CPR3_CPR_CTL_COUNT_MODE_SHIFT		6
+#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MIN	0
+#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MAX	1
+#define CPR3_CPR_CTL_COUNT_MODE_STAGGERED	2
+#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_AGE	3
+#define CPR3_CPR_CTL_COUNT_REPEAT_MASK		GENMASK(31, 9)
+#define CPR3_CPR_CTL_COUNT_REPEAT_SHIFT		9
+
+#define CPR3_REG_CPR_STATUS			0x8
+#define CPR3_CPR_STATUS_BUSY_MASK		BIT(0)
+#define CPR3_CPR_STATUS_AGING_MEASUREMENT_MASK	BIT(1)
+
+/*
+ * This register is not present on controllers that support HW closed-loop
+ * except CPR4 APSS controller.
+ */
+#define CPR3_REG_CPR_TIMER_AUTO_CONT		0xC
+
+#define CPR3_REG_CPR_STEP_QUOT			0x14
+#define CPR3_CPR_STEP_QUOT_MIN_MASK		GENMASK(5, 0)
+#define CPR3_CPR_STEP_QUOT_MIN_SHIFT		0
+#define CPR3_CPR_STEP_QUOT_MAX_MASK		GENMASK(11, 6)
+#define CPR3_CPR_STEP_QUOT_MAX_SHIFT		6
+
+#define CPR3_REG_GCNT(ro)			(0xA0 + 0x4 * (ro))
+
+#define CPR3_REG_SENSOR_BYPASS_WRITE(sensor)	(0xE0 + 0x4 * ((sensor) / 32))
+#define CPR3_REG_SENSOR_BYPASS_WRITE_BANK(bank)	(0xE0 + 0x4 * (bank))
+
+#define CPR3_REG_SENSOR_MASK_WRITE(sensor)	(0x120 + 0x4 * ((sensor) / 32))
+#define CPR3_REG_SENSOR_MASK_WRITE_BANK(bank)	(0x120 + 0x4 * (bank))
+#define CPR3_REG_SENSOR_MASK_READ(sensor)	(0x140 + 0x4 * ((sensor) / 32))
+
+#define CPR3_REG_SENSOR_OWNER(sensor)	(0x200 + 0x4 * (sensor))
+
+#define CPR3_REG_CONT_CMD		0x800
+#define CPR3_CONT_CMD_ACK		0x1
+#define CPR3_CONT_CMD_NACK		0x0
+
+#define CPR3_REG_THRESH(thread)		(0x808 + 0x440 * (thread))
+#define CPR3_THRESH_CONS_DOWN_MASK	GENMASK(3, 0)
+#define CPR3_THRESH_CONS_DOWN_SHIFT	0
+#define CPR3_THRESH_CONS_UP_MASK	GENMASK(7, 4)
+#define CPR3_THRESH_CONS_UP_SHIFT	4
+#define CPR3_THRESH_DOWN_THRESH_MASK	GENMASK(12, 8)
+#define CPR3_THRESH_DOWN_THRESH_SHIFT	8
+#define CPR3_THRESH_UP_THRESH_MASK	GENMASK(17, 13)
+#define CPR3_THRESH_UP_THRESH_SHIFT	13
+
+#define CPR3_REG_RO_MASK(thread)	(0x80C + 0x440 * (thread))
+
+#define CPR3_REG_RESULT0(thread)	(0x810 + 0x440 * (thread))
+#define CPR3_RESULT0_BUSY_MASK		BIT(0)
+#define CPR3_RESULT0_STEP_DN_MASK	BIT(1)
+#define CPR3_RESULT0_STEP_UP_MASK	BIT(2)
+#define CPR3_RESULT0_ERROR_STEPS_MASK	GENMASK(7, 3)
+#define CPR3_RESULT0_ERROR_STEPS_SHIFT	3
+#define CPR3_RESULT0_ERROR_MASK		GENMASK(19, 8)
+#define CPR3_RESULT0_ERROR_SHIFT	8
+#define CPR3_RESULT0_NEGATIVE_MASK	BIT(20)
+
+#define CPR3_REG_RESULT1(thread)	(0x814 + 0x440 * (thread))
+#define CPR3_RESULT1_QUOT_MIN_MASK	GENMASK(11, 0)
+#define CPR3_RESULT1_QUOT_MIN_SHIFT	0
+#define CPR3_RESULT1_QUOT_MAX_MASK	GENMASK(23, 12)
+#define CPR3_RESULT1_QUOT_MAX_SHIFT	12
+#define CPR3_RESULT1_RO_MIN_MASK	GENMASK(27, 24)
+#define CPR3_RESULT1_RO_MIN_SHIFT	24
+#define CPR3_RESULT1_RO_MAX_MASK	GENMASK(31, 28)
+#define CPR3_RESULT1_RO_MAX_SHIFT	28
+
+#define CPR3_REG_RESULT2(thread)		(0x818 + 0x440 * (thread))
+#define CPR3_RESULT2_STEP_QUOT_MIN_MASK		GENMASK(5, 0)
+#define CPR3_RESULT2_STEP_QUOT_MIN_SHIFT	0
+#define CPR3_RESULT2_STEP_QUOT_MAX_MASK		GENMASK(11, 6)
+#define CPR3_RESULT2_STEP_QUOT_MAX_SHIFT	6
+#define CPR3_RESULT2_SENSOR_MIN_MASK		GENMASK(23, 16)
+#define CPR3_RESULT2_SENSOR_MIN_SHIFT		16
+#define CPR3_RESULT2_SENSOR_MAX_MASK		GENMASK(31, 24)
+#define CPR3_RESULT2_SENSOR_MAX_SHIFT		24
+
+#define CPR3_REG_IRQ_EN			0x81C
+#define CPR3_REG_IRQ_CLEAR		0x820
+#define CPR3_REG_IRQ_STATUS		0x824
+#define CPR3_IRQ_UP			BIT(3)
+#define CPR3_IRQ_MID			BIT(2)
+#define CPR3_IRQ_DOWN			BIT(1)
+
+#define CPR3_REG_TARGET_QUOT(thread, ro) \
+					(0x840 + 0x440 * (thread) + 0x4 * (ro))
+
+/* Registers found only on controllers that support HW closed-loop. */
+#define CPR3_REG_PD_THROTTLE		0xE8
+#define CPR3_PD_THROTTLE_DISABLE	0x0
+
+#define CPR3_REG_HW_CLOSED_LOOP		0x3000
+#define CPR3_HW_CLOSED_LOOP_ENABLE	0x0
+#define CPR3_HW_CLOSED_LOOP_DISABLE	0x1
+
+#define CPR3_REG_CPR_TIMER_MID_CONT	0x3004
+#define CPR3_REG_CPR_TIMER_UP_DN_CONT	0x3008
+
+#define CPR3_REG_LAST_MEASUREMENT		0x7F8
+#define CPR3_LAST_MEASUREMENT_THREAD_DN_SHIFT	0
+#define CPR3_LAST_MEASUREMENT_THREAD_UP_SHIFT	4
+#define CPR3_LAST_MEASUREMENT_THREAD_DN(thread) \
+		(BIT(thread) << CPR3_LAST_MEASUREMENT_THREAD_DN_SHIFT)
+#define CPR3_LAST_MEASUREMENT_THREAD_UP(thread) \
+		(BIT(thread) << CPR3_LAST_MEASUREMENT_THREAD_UP_SHIFT)
+#define CPR3_LAST_MEASUREMENT_AGGR_DN		BIT(8)
+#define CPR3_LAST_MEASUREMENT_AGGR_MID		BIT(9)
+#define CPR3_LAST_MEASUREMENT_AGGR_UP		BIT(10)
+#define CPR3_LAST_MEASUREMENT_VALID		BIT(11)
+#define CPR3_LAST_MEASUREMENT_SAW_ERROR		BIT(12)
+#define CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK	GENMASK(23, 16)
+#define CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT	16
+
+/* CPR4 controller specific registers and bit definitions */
+#define CPR4_REG_CPR_TIMER_CLAMP			0x10
+#define CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN	BIT(27)
+
+#define CPR4_REG_MISC				0x700
+#define CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK	GENMASK(23, 20)
+#define CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT	20
+#define CPR4_MISC_TEMP_SENSOR_ID_START_MASK	GENMASK(27, 24)
+#define CPR4_MISC_TEMP_SENSOR_ID_START_SHIFT	24
+#define CPR4_MISC_TEMP_SENSOR_ID_END_MASK	GENMASK(31, 28)
+#define CPR4_MISC_TEMP_SENSOR_ID_END_SHIFT	28
+
+#define CPR4_REG_SAW_ERROR_STEP_LIMIT		0x7A4
+#define CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK	GENMASK(4, 0)
+#define CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT	0
+#define CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK	GENMASK(9, 5)
+#define CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT	5
+
+#define CPR4_REG_MARGIN_TEMP_CORE_TIMERS			0x7A8
+#define CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK	GENMASK(28, 18)
+#define CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHIFT	18
+
+#define CPR4_REG_MARGIN_TEMP_CORE(core)		(0x7AC + 0x4 * (core))
+#define CPR4_MARGIN_TEMP_CORE_ADJ_MASK		GENMASK(7, 0)
+#define CPR4_MARGIN_TEMP_CORE_ADJ_SHIFT		8
+
+#define CPR4_REG_MARGIN_TEMP_POINT0N1		0x7F0
+#define CPR4_MARGIN_TEMP_POINT0_MASK		GENMASK(11, 0)
+#define CPR4_MARGIN_TEMP_POINT0_SHIFT		0
+#define CPR4_MARGIN_TEMP_POINT1_MASK		GENMASK(23, 12)
+#define CPR4_MARGIN_TEMP_POINT1_SHIFT		12
+#define CPR4_REG_MARGIN_TEMP_POINT2		0x7F4
+#define CPR4_MARGIN_TEMP_POINT2_MASK		GENMASK(11, 0)
+#define CPR4_MARGIN_TEMP_POINT2_SHIFT		0
+
+#define CPR4_REG_MARGIN_ADJ_CTL					0x7F8
+#define CPR4_MARGIN_ADJ_CTL_BOOST_EN				BIT(0)
+#define CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN				BIT(1)
+#define CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN				BIT(2)
+#define CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN		BIT(3)
+#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK		BIT(4)
+#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE		BIT(4)
+#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE		0
+#define CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN			BIT(7)
+#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN			BIT(8)
+#define CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_MASK			GENMASK(16, 12)
+#define CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_SHIFT		12
+#define CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_MASK		GENMASK(21, 19)
+#define CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_SHIFT		19
+#define CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK			GENMASK(25, 22)
+#define CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_SHIFT			22
+#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_MASK	GENMASK(31, 26)
+#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_SHIFT	26
+
+#define CPR4_REG_CPR_MASK_THREAD(thread)	(0x80C + 0x440 * (thread))
+#define CPR4_CPR_MASK_THREAD_DISABLE_THREAD		BIT(31)
+#define CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK	GENMASK(15, 0)
+
+/* CPRh controller specific registers and bit definitions */
+#define CPRH_REG_CORNER(corner)	(0x3A00 + 0x4 * (corner))
+#define CPRH_CORNER_INIT_VOLTAGE_MASK		GENMASK(7, 0)
+#define CPRH_CORNER_INIT_VOLTAGE_SHIFT		0
+#define CPRH_CORNER_FLOOR_VOLTAGE_MASK		GENMASK(15, 8)
+#define CPRH_CORNER_FLOOR_VOLTAGE_SHIFT		8
+#define CPRH_CORNER_QUOT_DELTA_MASK		GENMASK(24, 16)
+#define CPRH_CORNER_QUOT_DELTA_SHIFT		16
+#define CPRH_CORNER_RO_SEL_MASK			GENMASK(28, 25)
+#define CPRH_CORNER_RO_SEL_SHIFT		25
+#define CPRH_CORNER_CPR_CL_DISABLE	BIT(29)
+#define CPRH_CORNER_CORE_TEMP_MARGIN_DISABLE	BIT(30)
+#define CPRH_CORNER_LAST_KNOWN_VOLTAGE_ENABLE	BIT(31)
+#define CPRH_CORNER_INIT_VOLTAGE_MAX_VALUE	255
+#define CPRH_CORNER_FLOOR_VOLTAGE_MAX_VALUE	255
+#define CPRH_CORNER_QUOT_DELTA_MAX_VALUE	511
+
+#define CPRH_REG_CTL				0x3AA0
+#define CPRH_CTL_OSM_ENABLED			BIT(0)
+#define CPRH_CTL_BASE_VOLTAGE_MASK		GENMASK(10, 1)
+#define CPRH_CTL_BASE_VOLTAGE_SHIFT		1
+#define CPRH_CTL_INIT_MODE_MASK		GENMASK(16, 11)
+#define CPRH_CTL_INIT_MODE_SHIFT		11
+#define CPRH_CTL_MODE_SWITCH_DELAY_MASK		GENMASK(24, 17)
+#define CPRH_CTL_MODE_SWITCH_DELAY_SHIFT	17
+#define CPRH_CTL_VOLTAGE_MULTIPLIER_MASK	GENMASK(28, 25)
+#define CPRH_CTL_VOLTAGE_MULTIPLIER_SHIFT	25
+#define CPRH_CTL_LAST_KNOWN_VOLTAGE_MARGIN_MASK		GENMASK(31, 29)
+#define CPRH_CTL_LAST_KNOWN_VOLTAGE_MARGIN_SHIFT	29
+
+#define CPRH_REG_STATUS			0x3AA4
+#define CPRH_STATUS_CORNER			GENMASK(5, 0)
+#define CPRH_STATUS_CORNER_LAST_VOLT_MASK	GENMASK(17, 6)
+#define CPRH_STATUS_CORNER_LAST_VOLT_SHIFT	6
+
+#define CPRH_REG_CORNER_BAND	0x3AA8
+#define CPRH_CORNER_BAND_MASK		GENMASK(5, 0)
+#define CPRH_CORNER_BAND_SHIFT		6
+#define CPRH_CORNER_BAND_MAX_COUNT		4
+
+#define CPRH_MARGIN_TEMP_CORE_VBAND(core, vband) \
+	((vband) == 0 ? CPR4_REG_MARGIN_TEMP_CORE(core) \
+			: 0x3AB0 + 0x40 * ((vband) - 1) + 0x4 * (core))
+
+/*
+ * The amount of time to wait for the CPR controller to become idle when
+ * performing an aging measurement.
+ */
+#define CPR3_AGING_MEASUREMENT_TIMEOUT_NS	5000000
+
+/*
+ * The number of individual aging measurements to perform which are then
+ * averaged together in order to determine the final aging adjustment value.
+ */
+#define CPR3_AGING_MEASUREMENT_ITERATIONS	16
+
+/*
+ * Aging measurements for the aged and unaged ring oscillators take place a few
+ * microseconds apart.  If the vdd-supply voltage fluctuates between the two
+ * measurements, then the difference between them will be incorrect.  The
+ * difference could end up too high or too low.  This constant defines the
+ * number of lowest and highest measurements to ignore when averaging.
+ */
+#define CPR3_AGING_MEASUREMENT_FILTER		3
+
+/*
+ * The number of times to attempt the full aging measurement sequence before
+ * declaring a measurement failure.
+ */
+#define CPR3_AGING_RETRY_COUNT			5
+
+/*
+ * The maximum time to wait in microseconds for a CPR register write to
+ * complete.
+ */
+#define CPR3_REGISTER_WRITE_DELAY_US		200
+
+/*
+ * The number of times the CPRh controller multiplies the mode switch
+ * delay before utilizing it.
+ */
+#define CPRH_MODE_SWITCH_DELAY_FACTOR 4
+
+/*
+ * The number of times the CPRh controller multiplies the delta quotient
+ * steps before utilizing it.
+ */
+#define CPRH_DELTA_QUOT_STEP_FACTOR 4
+
+static DEFINE_MUTEX(cpr3_controller_list_mutex);
+static LIST_HEAD(cpr3_controller_list);
+static struct dentry *cpr3_debugfs_base;
+
+/**
+ * cpr3_read() - read four bytes from the memory address specified
+ * @ctrl:		Pointer to the CPR3 controller
+ * @offset:		Offset in bytes from the CPR3 controller's base address
+ *
+ * Return: memory address value
+ */
+static inline u32 cpr3_read(struct cpr3_controller *ctrl, u32 offset)
+{
+	if (!ctrl->cpr_enabled) {
+		cpr3_err(ctrl, "CPR register reads are not possible when CPR clocks are disabled\n");
+		return 0;
+	}
+
+	return readl_relaxed(ctrl->cpr_ctrl_base + offset);
+}
+
+/**
+ * cpr3_write() - write four bytes to the memory address specified
+ * @ctrl:		Pointer to the CPR3 controller
+ * @offset:		Offset in bytes from the CPR3 controller's base address
+ * @value:		Value to write to the memory address
+ *
+ * Return: none
+ */
+static inline void cpr3_write(struct cpr3_controller *ctrl, u32 offset,
+				u32 value)
+{
+	if (!ctrl->cpr_enabled) {
+		cpr3_err(ctrl, "CPR register writes are not possible when CPR clocks are disabled\n");
+		return;
+	}
+
+	writel_relaxed(value, ctrl->cpr_ctrl_base + offset);
+}
+
+/**
+ * cpr3_masked_write() - perform a read-modify-write sequence so that only
+ *		masked bits are modified
+ * @ctrl:		Pointer to the CPR3 controller
+ * @offset:		Offset in bytes from the CPR3 controller's base address
+ * @mask:		Mask identifying the bits that should be modified
+ * @value:		Value to write to the memory address
+ *
+ * Return: none
+ */
+static inline void cpr3_masked_write(struct cpr3_controller *ctrl, u32 offset,
+				u32 mask, u32 value)
+{
+	u32 reg_val, orig_val;
+
+	if (!ctrl->cpr_enabled) {
+		cpr3_err(ctrl, "CPR register writes are not possible when CPR clocks are disabled\n");
+		return;
+	}
+
+	reg_val = orig_val = readl_relaxed(ctrl->cpr_ctrl_base + offset);
+	reg_val &= ~mask;
+	reg_val |= value & mask;
+
+	if (reg_val != orig_val)
+		writel_relaxed(reg_val, ctrl->cpr_ctrl_base + offset);
+}
+
+/**
+ * cpr3_ctrl_loop_enable() - enable the CPR sensing loop for a given controller
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: none
+ */
+static inline void cpr3_ctrl_loop_enable(struct cpr3_controller *ctrl)
+{
+	if (ctrl->cpr_enabled && !(ctrl->aggr_corner.sdelta
+		&& ctrl->aggr_corner.sdelta->allow_boost))
+		cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
+			CPR3_CPR_CTL_LOOP_EN_MASK, CPR3_CPR_CTL_LOOP_ENABLE);
+}
+
+/**
+ * cpr3_ctrl_loop_disable() - disable the CPR sensing loop for a given
+ *		controller
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: none
+ */
+static inline void cpr3_ctrl_loop_disable(struct cpr3_controller *ctrl)
+{
+	if (ctrl->cpr_enabled)
+		cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
+			CPR3_CPR_CTL_LOOP_EN_MASK, CPR3_CPR_CTL_LOOP_DISABLE);
+}
+
+/**
+ * cpr3_clock_enable() - prepare and enable all clocks used by this CPR3
+ *		controller
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_clock_enable(struct cpr3_controller *ctrl)
+{
+	int rc;
+
+	rc = clk_prepare_enable(ctrl->bus_clk);
+	if (rc) {
+		cpr3_err(ctrl, "failed to enable bus clock, rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = clk_prepare_enable(ctrl->iface_clk);
+	if (rc) {
+		cpr3_err(ctrl, "failed to enable interface clock, rc=%d\n", rc);
+		clk_disable_unprepare(ctrl->bus_clk);
+		return rc;
+	}
+
+	rc = clk_prepare_enable(ctrl->core_clk);
+	if (rc) {
+		cpr3_err(ctrl, "failed to enable core clock, rc=%d\n", rc);
+		clk_disable_unprepare(ctrl->iface_clk);
+		clk_disable_unprepare(ctrl->bus_clk);
+		return rc;
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_clock_disable() - disable and unprepare all clocks used by this CPR3
+ *		controller
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: none
+ */
+static void cpr3_clock_disable(struct cpr3_controller *ctrl)
+{
+	clk_disable_unprepare(ctrl->core_clk);
+	clk_disable_unprepare(ctrl->iface_clk);
+	clk_disable_unprepare(ctrl->bus_clk);
+}
+
+/**
+ * cpr3_ctrl_clear_cpr4_config() - clear the CPR4 register configuration
+ *		programmed for current aggregated corner of a given controller
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static inline int cpr3_ctrl_clear_cpr4_config(struct cpr3_controller *ctrl)
+{
+	struct cpr4_sdelta *aggr_sdelta = ctrl->aggr_corner.sdelta;
+	bool cpr_enabled = ctrl->cpr_enabled;
+	int i, rc = 0;
+
+	if (!aggr_sdelta || !(aggr_sdelta->allow_core_count_adj
+		|| aggr_sdelta->allow_temp_adj || aggr_sdelta->allow_boost))
+		/* cpr4 features are not enabled */
+		return 0;
+
+	/* Ensure that CPR clocks are enabled before writing to registers. */
+	if (!cpr_enabled) {
+		rc = cpr3_clock_enable(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
+			return rc;
+		}
+		ctrl->cpr_enabled = true;
+	}
+
+	/*
+	 * Clear feature enable configuration made for current
+	 * aggregated corner.
+	 */
+	cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+		CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK
+		| CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN
+		| CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN
+		| CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN
+		| CPR4_MARGIN_ADJ_CTL_BOOST_EN
+		| CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK, 0);
+
+	cpr3_masked_write(ctrl, CPR4_REG_MISC,
+			CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK,
+			0 << CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT);
+
+	for (i = 0; i <= aggr_sdelta->max_core_count; i++) {
+		/* Clear voltage margin adjustments programmed in TEMP_COREi */
+		cpr3_write(ctrl, CPR4_REG_MARGIN_TEMP_CORE(i), 0);
+	}
+
+	/* Turn off CPR clocks if they were off before this function call. */
+	if (!cpr_enabled) {
+		cpr3_clock_disable(ctrl);
+		ctrl->cpr_enabled = false;
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_closed_loop_enable() - enable logical CPR closed-loop operation
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_closed_loop_enable(struct cpr3_controller *ctrl)
+{
+	int rc;
+
+	if (!ctrl->cpr_allowed_hw || !ctrl->cpr_allowed_sw) {
+		cpr3_err(ctrl, "cannot enable closed-loop CPR operation because it is disallowed\n");
+		return -EPERM;
+	} else if (ctrl->cpr_enabled) {
+		/* Already enabled */
+		return 0;
+	} else if (ctrl->cpr_suspended) {
+		/*
+		 * CPR must remain disabled as the system is entering suspend.
+		 */
+		return 0;
+	}
+
+	rc = cpr3_clock_enable(ctrl);
+	if (rc) {
+		cpr3_err(ctrl, "unable to enable CPR clocks, rc=%d\n", rc);
+		return rc;
+	}
+
+	ctrl->cpr_enabled = true;
+	cpr3_debug(ctrl, "CPR closed-loop operation enabled\n");
+
+	return 0;
+}
+
+/**
+ * cpr3_closed_loop_disable() - disable logical CPR closed-loop operation
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static inline int cpr3_closed_loop_disable(struct cpr3_controller *ctrl)
+{
+	if (!ctrl->cpr_enabled) {
+		/* Already disabled */
+		return 0;
+	}
+
+	cpr3_clock_disable(ctrl);
+	ctrl->cpr_enabled = false;
+	cpr3_debug(ctrl, "CPR closed-loop operation disabled\n");
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_get_gcnt() - returns the GCNT register value corresponding
+ *		to the clock rate and sensor time of the CPR3 controller
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: GCNT value
+ */
+static u32 cpr3_regulator_get_gcnt(struct cpr3_controller *ctrl)
+{
+	u64 temp;
+	unsigned int remainder;
+	u32 gcnt;
+
+	temp = (u64)ctrl->cpr_clock_rate * (u64)ctrl->sensor_time;
+	remainder = do_div(temp, 1000000000);
+	if (remainder)
+		temp++;
+	/*
+	 * GCNT == 0 corresponds to a single ref clock measurement interval so
+	 * offset GCNT values by 1.
+	 */
+	gcnt = temp - 1;
+
+	return gcnt;
+}
+
+/**
+ * cpr3_regulator_init_thread() - performs hardware initialization of CPR
+ *		thread registers
+ * @thread:		Pointer to the CPR3 thread
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_thread(struct cpr3_thread *thread)
+{
+	u32 reg;
+
+	reg = (thread->consecutive_up << CPR3_THRESH_CONS_UP_SHIFT)
+		& CPR3_THRESH_CONS_UP_MASK;
+	reg |= (thread->consecutive_down << CPR3_THRESH_CONS_DOWN_SHIFT)
+		& CPR3_THRESH_CONS_DOWN_MASK;
+	reg |= (thread->up_threshold << CPR3_THRESH_UP_THRESH_SHIFT)
+		& CPR3_THRESH_UP_THRESH_MASK;
+	reg |= (thread->down_threshold << CPR3_THRESH_DOWN_THRESH_SHIFT)
+		& CPR3_THRESH_DOWN_THRESH_MASK;
+
+	cpr3_write(thread->ctrl, CPR3_REG_THRESH(thread->thread_id), reg);
+
+	/*
+	 * Mask all RO's initially so that unused thread doesn't contribute
+	 * to closed-loop voltage.
+	 */
+	cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
+		CPR3_RO_MASK);
+
+	return 0;
+}
+
+/**
+ * cpr4_regulator_init_temp_points() - performs hardware initialization of CPR4
+ *		registers to track tsen temperature data and also specify the
+ *		temperature band range values to apply different voltage margins
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_regulator_init_temp_points(struct cpr3_controller *ctrl)
+{
+	if (!ctrl->allow_temp_adj)
+		return 0;
+
+	cpr3_masked_write(ctrl, CPR4_REG_MISC,
+				CPR4_MISC_TEMP_SENSOR_ID_START_MASK,
+				ctrl->temp_sensor_id_start
+				<< CPR4_MISC_TEMP_SENSOR_ID_START_SHIFT);
+
+	cpr3_masked_write(ctrl, CPR4_REG_MISC,
+				CPR4_MISC_TEMP_SENSOR_ID_END_MASK,
+				ctrl->temp_sensor_id_end
+				<< CPR4_MISC_TEMP_SENSOR_ID_END_SHIFT);
+
+	cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT2,
+		CPR4_MARGIN_TEMP_POINT2_MASK,
+		(ctrl->temp_band_count == 4 ? ctrl->temp_points[2] : 0x7FF)
+		<< CPR4_MARGIN_TEMP_POINT2_SHIFT);
+
+	cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT0N1,
+		CPR4_MARGIN_TEMP_POINT1_MASK,
+		(ctrl->temp_band_count >= 3 ? ctrl->temp_points[1] : 0x7FF)
+		<< CPR4_MARGIN_TEMP_POINT1_SHIFT);
+
+	cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT0N1,
+		CPR4_MARGIN_TEMP_POINT0_MASK,
+		(ctrl->temp_band_count >= 2 ? ctrl->temp_points[0] : 0x7FF)
+		<< CPR4_MARGIN_TEMP_POINT0_SHIFT);
+	return 0;
+}
+
+/**
+ * cpr3_regulator_init_cpr4() - performs hardware initialization at the
+ *		controller and thread level required for CPR4 operation.
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ * This function allocates sdelta structures and sdelta tables for aggregated
+ * corners of the controller and its threads.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_cpr4(struct cpr3_controller *ctrl)
+{
+	struct cpr3_thread *thread;
+	struct cpr3_regulator *vreg;
+	struct cpr4_sdelta *sdelta;
+	int i, j, ctrl_max_core_count, thread_max_core_count, rc = 0;
+	bool ctrl_valid_sdelta, thread_valid_sdelta;
+	u32 pmic_step_size = 1;
+	int thread_id = 0;
+	u64 temp;
+
+	if (ctrl->supports_hw_closed_loop) {
+		if (ctrl->saw_use_unit_mV)
+			pmic_step_size = ctrl->step_volt / 1000;
+		cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+				  CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_MASK,
+				  (pmic_step_size
+				  << CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_SHIFT));
+
+		cpr3_masked_write(ctrl, CPR4_REG_SAW_ERROR_STEP_LIMIT,
+				  CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK,
+				  (ctrl->down_error_step_limit
+					<< CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT));
+
+		cpr3_masked_write(ctrl, CPR4_REG_SAW_ERROR_STEP_LIMIT,
+				  CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK,
+				  (ctrl->up_error_step_limit
+					<< CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT));
+
+		/*
+		 * Enable thread aggregation regardless of which threads are
+		 * enabled or disabled.
+		 */
+		cpr3_masked_write(ctrl, CPR4_REG_CPR_TIMER_CLAMP,
+				  CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN,
+				  CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN);
+
+		switch (ctrl->thread_count) {
+		case 0:
+			/* Disable both threads */
+			cpr3_masked_write(ctrl, CPR4_REG_CPR_MASK_THREAD(0),
+				CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+				    | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
+				CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+				    | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
+
+			cpr3_masked_write(ctrl, CPR4_REG_CPR_MASK_THREAD(1),
+				CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+				    | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
+				CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+				    | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
+			break;
+		case 1:
+			/* Disable unused thread */
+			thread_id = ctrl->thread[0].thread_id ? 0 : 1;
+			cpr3_masked_write(ctrl,
+				CPR4_REG_CPR_MASK_THREAD(thread_id),
+				CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+				    | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
+				CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+				    | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
+			break;
+		}
+	}
+
+	if (!ctrl->allow_core_count_adj && !ctrl->allow_temp_adj
+		&& !ctrl->allow_boost) {
+		/*
+		 * Skip below configuration as none of the features
+		 * are enabled.
+		 */
+		return rc;
+	}
+
+	if (ctrl->supports_hw_closed_loop)
+		cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+				  CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN,
+				  CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN);
+
+	cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+			CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_MASK,
+			ctrl->step_quot_fixed
+			<< CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_SHIFT);
+
+	cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+			CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN,
+			(ctrl->use_dynamic_step_quot
+			? CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN : 0));
+
+	cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+			CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_MASK,
+			ctrl->initial_temp_band
+			<< CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_SHIFT);
+
+	rc = cpr4_regulator_init_temp_points(ctrl);
+	if (rc) {
+		cpr3_err(ctrl, "initialize temp points failed, rc=%d\n", rc);
+		return rc;
+	}
+
+	if (ctrl->voltage_settling_time) {
+		/*
+		 * Configure the settling timer used to account for
+		 * one VDD supply step.
+		 */
+		temp = (u64)ctrl->cpr_clock_rate
+				* (u64)ctrl->voltage_settling_time;
+		do_div(temp, 1000000000);
+		cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_CORE_TIMERS,
+			CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK,
+			temp
+		    << CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHIFT);
+	}
+
+	/*
+	 * Allocate memory for cpr4_sdelta structure and sdelta table for
+	 * controller aggregated corner by finding the maximum core count
+	 * used by any cpr3 regulators.
+	 */
+	ctrl_max_core_count = 1;
+	ctrl_valid_sdelta = false;
+	for (i = 0; i < ctrl->thread_count; i++) {
+		thread = &ctrl->thread[i];
+
+		/*
+		 * Allocate memory for cpr4_sdelta structure and sdelta table
+		 * for thread aggregated corner by finding the maximum core
+		 * count used by any cpr3 regulators of the thread.
+		 */
+		thread_max_core_count = 1;
+		thread_valid_sdelta = false;
+		for (j = 0; j < thread->vreg_count; j++) {
+			vreg = &thread->vreg[j];
+			thread_max_core_count = max(thread_max_core_count,
+							vreg->max_core_count);
+			thread_valid_sdelta |= (vreg->allow_core_count_adj
+							| vreg->allow_temp_adj
+							| vreg->allow_boost);
+		}
+		if (thread_valid_sdelta) {
+			sdelta = devm_kzalloc(ctrl->dev, sizeof(*sdelta),
+					GFP_KERNEL);
+			if (!sdelta)
+				return -ENOMEM;
+
+			sdelta->table = devm_kcalloc(ctrl->dev,
+						thread_max_core_count
+						* ctrl->temp_band_count,
+						sizeof(*sdelta->table),
+						GFP_KERNEL);
+			if (!sdelta->table)
+				return -ENOMEM;
+
+			sdelta->boost_table = devm_kcalloc(ctrl->dev,
+						ctrl->temp_band_count,
+						sizeof(*sdelta->boost_table),
+						GFP_KERNEL);
+			if (!sdelta->boost_table)
+				return -ENOMEM;
+
+			thread->aggr_corner.sdelta = sdelta;
+		}
+
+		ctrl_valid_sdelta |= thread_valid_sdelta;
+		ctrl_max_core_count = max(ctrl_max_core_count,
+						thread_max_core_count);
+	}
+
+	if (ctrl_valid_sdelta) {
+		sdelta = devm_kzalloc(ctrl->dev, sizeof(*sdelta), GFP_KERNEL);
+		if (!sdelta)
+			return -ENOMEM;
+
+		sdelta->table = devm_kcalloc(ctrl->dev, ctrl_max_core_count
+					* ctrl->temp_band_count,
+					sizeof(*sdelta->table), GFP_KERNEL);
+		if (!sdelta->table)
+			return -ENOMEM;
+
+		sdelta->boost_table = devm_kcalloc(ctrl->dev,
+					ctrl->temp_band_count,
+					sizeof(*sdelta->boost_table),
+					GFP_KERNEL);
+		if (!sdelta->boost_table)
+			return -ENOMEM;
+
+		ctrl->aggr_corner.sdelta = sdelta;
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_write_temp_core_margin() - programs hardware SDELTA registers with
+ *		the voltage margin adjustments that need to be applied for
+ *		different online core-count and temperature bands.
+ * @ctrl:		Pointer to the CPR3 controller
+ * @addr:		SDELTA register address
+ * @temp_core_adj:	Array of voltage margin values for different temperature
+ *			bands.
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ *
+ * Return: none
+ */
+static void cpr3_write_temp_core_margin(struct cpr3_controller *ctrl,
+				 int addr, int *temp_core_adj)
+{
+	int i, margin_steps;
+	u32 reg = 0;
+
+	for (i = 0; i < ctrl->temp_band_count; i++) {
+		margin_steps = max(min(temp_core_adj[i], 127), -128);
+		reg |= (margin_steps & CPR4_MARGIN_TEMP_CORE_ADJ_MASK) <<
+			(i * CPR4_MARGIN_TEMP_CORE_ADJ_SHIFT);
+	}
+
+	cpr3_write(ctrl, addr, reg);
+	cpr3_debug(ctrl, "sdelta offset=0x%08x, val=0x%08x\n", addr, reg);
+}
+
+/**
+ * cpr3_controller_program_sdelta() - programs hardware SDELTA registers with
+ *		the voltage margin adjustments that need to be applied at
+ *		different online core-count and temperature bands. Also,
+ *		programs hardware register configuration for per-online-core
+ *		and per-temperature based adjustments.
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_controller_program_sdelta(struct cpr3_controller *ctrl)
+{
+	struct cpr3_corner *corner = &ctrl->aggr_corner;
+	struct cpr4_sdelta *sdelta = corner->sdelta;
+	int i, index, max_core_count, rc = 0;
+	bool cpr_enabled = ctrl->cpr_enabled;
+
+	if (!sdelta)
+		/* cpr4_sdelta not defined for current aggregated corner */
+		return 0;
+
+	if (ctrl->supports_hw_closed_loop && ctrl->cpr_enabled) {
+		cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+			CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+			(ctrl->use_hw_closed_loop && !sdelta->allow_boost)
+			? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE : 0);
+	}
+
+	if (!sdelta->allow_core_count_adj && !sdelta->allow_temp_adj
+		&& !sdelta->allow_boost) {
+		/*
+		 * Per-online-core, per-temperature and voltage boost
+		 * adjustments are disabled for this aggregation corner.
+		 */
+		return 0;
+	}
+
+	/* Ensure that CPR clocks are enabled before writing to registers. */
+	if (!cpr_enabled) {
+		rc = cpr3_clock_enable(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
+			return rc;
+		}
+		ctrl->cpr_enabled = true;
+	}
+
+	max_core_count = sdelta->max_core_count;
+
+	if (sdelta->allow_core_count_adj || sdelta->allow_temp_adj) {
+		if (sdelta->allow_core_count_adj) {
+			/* Program TEMP_CORE0 to same margins as TEMP_CORE1 */
+			cpr3_write_temp_core_margin(ctrl,
+				CPR4_REG_MARGIN_TEMP_CORE(0),
+				&sdelta->table[0]);
+		}
+
+		for (i = 0; i < max_core_count; i++) {
+			index = i * sdelta->temp_band_count;
+			/*
+			 * Program TEMP_COREi with voltage margin adjustments
+			 * that need to be applied when the number of cores
+			 * becomes i.
+			 */
+			cpr3_write_temp_core_margin(ctrl,
+				CPR4_REG_MARGIN_TEMP_CORE(
+						sdelta->allow_core_count_adj
+						? i + 1 : max_core_count),
+						&sdelta->table[index]);
+		}
+	}
+
+	if (sdelta->allow_boost) {
+		/* Program only boost_num_cores row of SDELTA */
+		cpr3_write_temp_core_margin(ctrl,
+			CPR4_REG_MARGIN_TEMP_CORE(sdelta->boost_num_cores),
+					&sdelta->boost_table[0]);
+	}
+
+	if (!sdelta->allow_core_count_adj && !sdelta->allow_boost) {
+		cpr3_masked_write(ctrl, CPR4_REG_MISC,
+			CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK,
+			max_core_count
+			<< CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT);
+	}
+
+	cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+		CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK
+		| CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN
+		| CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN
+		| CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN
+		| CPR4_MARGIN_ADJ_CTL_BOOST_EN,
+		max_core_count << CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_SHIFT
+		| ((sdelta->allow_core_count_adj || sdelta->allow_boost)
+			? CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN : 0)
+		| ((sdelta->allow_temp_adj && ctrl->supports_hw_closed_loop)
+			? CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN : 0)
+		| (((ctrl->use_hw_closed_loop && !sdelta->allow_boost)
+		    || !ctrl->supports_hw_closed_loop)
+			? CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN : 0)
+		| (sdelta->allow_boost
+			?  CPR4_MARGIN_ADJ_CTL_BOOST_EN : 0));
+
+	/*
+	 * Ensure that all previous CPR register writes have completed before
+	 * continuing.
+	 */
+	mb();
+
+	/* Turn off CPR clocks if they were off before this function call. */
+	if (!cpr_enabled) {
+		cpr3_clock_disable(ctrl);
+		ctrl->cpr_enabled = false;
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_set_base_target_quot() - configure the target quotient
+ *		for each RO of the CPR3 regulator for CPRh operation.
+ *		In particular, the quotient of the RO selected for operation
+ *		should correspond to the lowest target quotient across the
+ *		corners supported by the single regulator of the CPR3 thread.
+ * @vreg:		Pointer to the CPR3 regulator
+ * @base_quots:		Pointer to the base quotient array. The array must be
+ *			of size CPR3_RO_COUNT and it is populated with the
+ *			base quotient per-RO.
+ *
+ * Return: none
+ */
+static void cpr3_regulator_set_base_target_quot(struct cpr3_regulator *vreg,
+						u32 *base_quots)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	int i, j, ro_mask = CPR3_RO_MASK;
+	u32 min_quot;
+
+	for (i = 0; i < vreg->corner_count; i++)
+		ro_mask &= vreg->corner[i].ro_mask;
+
+	/* Unmask the ROs selected for active use. */
+	cpr3_write(ctrl, CPR3_REG_RO_MASK(vreg->thread->thread_id),
+		   ro_mask);
+
+	for (i = 0; i < CPR3_RO_COUNT; i++) {
+		for (j = 0, min_quot = INT_MAX; j < vreg->corner_count; j++)
+			if (vreg->corner[j].target_quot[i])
+				min_quot = min(min_quot,
+				       vreg->corner[j].target_quot[i]);
+
+		if (min_quot == INT_MAX)
+			min_quot = 0;
+
+		cpr3_write(ctrl,
+			   CPR3_REG_TARGET_QUOT(vreg->thread->thread_id, i),
+			   min_quot);
+
+		base_quots[i] = min_quot;
+	}
+}
+
+/**
+ * cpr3_regulator_init_cprh_corners() - configure the per-corner CPRh registers
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function programs the controller registers which contain all information
+ * necessary to resolve the closed-loop voltage per-corner at runtime such as
+ * open-loop and floor voltages, target quotient delta, and RO select value.
+ * These registers also provide a means to disable closed-loop operation, core
+ * and temperature adjustments.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_cprh_corners(struct cpr3_regulator *vreg)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	struct cpr3_corner *corner;
+	u32 reg, delta_quot_steps, ro_sel;
+	u32 *base_quots;
+	int open_loop_volt_steps, floor_volt_steps, i, j, rc = 0;
+
+	base_quots = kcalloc(CPR3_RO_COUNT, sizeof(*base_quots),
+			     GFP_KERNEL);
+	if (!base_quots)
+		return -ENOMEM;
+
+	cpr3_regulator_set_base_target_quot(vreg, base_quots);
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		corner = &vreg->corner[i];
+		for (j = 0, ro_sel = INT_MAX; j < CPR3_RO_COUNT; j++) {
+			if (corner->target_quot[j]) {
+				ro_sel = j;
+				break;
+			}
+		}
+
+		if (ro_sel == INT_MAX) {
+			if (!corner->proc_freq) {
+				/*
+				 * Corner is not used as active DCVS set point
+				 * select RO 0 arbitrarily.
+				 */
+				ro_sel = 0;
+			} else {
+				cpr3_err(vreg, "corner=%d has invalid RO select value\n",
+					 i);
+				rc = -EINVAL;
+				goto free_base_quots;
+			}
+		}
+
+		open_loop_volt_steps = DIV_ROUND_UP(corner->open_loop_volt -
+						    ctrl->base_volt,
+						    ctrl->step_volt);
+		floor_volt_steps = DIV_ROUND_UP(corner->floor_volt -
+						ctrl->base_volt,
+						ctrl->step_volt);
+		delta_quot_steps = corner->proc_freq ?
+			DIV_ROUND_UP(corner->target_quot[ro_sel] -
+				     base_quots[ro_sel],
+				     CPRH_DELTA_QUOT_STEP_FACTOR) :
+			0;
+
+		if (open_loop_volt_steps > CPRH_CORNER_INIT_VOLTAGE_MAX_VALUE ||
+		    floor_volt_steps > CPRH_CORNER_FLOOR_VOLTAGE_MAX_VALUE ||
+		    delta_quot_steps > CPRH_CORNER_QUOT_DELTA_MAX_VALUE) {
+			cpr3_err(ctrl, "invalid CPRh corner configuration: open_loop_volt_steps=%d (%d max.), floor_volt_steps=%d (%d max), delta_quot_steps=%d (%d max)\n",
+				 open_loop_volt_steps,
+				 CPRH_CORNER_INIT_VOLTAGE_MAX_VALUE,
+				 floor_volt_steps,
+				 CPRH_CORNER_FLOOR_VOLTAGE_MAX_VALUE,
+				 delta_quot_steps,
+				 CPRH_CORNER_QUOT_DELTA_MAX_VALUE);
+			rc = -EINVAL;
+			goto free_base_quots;
+		}
+
+		reg = (open_loop_volt_steps << CPRH_CORNER_INIT_VOLTAGE_SHIFT)
+			& CPRH_CORNER_INIT_VOLTAGE_MASK;
+		reg |= (floor_volt_steps << CPRH_CORNER_FLOOR_VOLTAGE_SHIFT)
+			& CPRH_CORNER_FLOOR_VOLTAGE_MASK;
+		reg |= (delta_quot_steps << CPRH_CORNER_QUOT_DELTA_SHIFT)
+			& CPRH_CORNER_QUOT_DELTA_MASK;
+		reg |= (ro_sel << CPRH_CORNER_RO_SEL_SHIFT)
+			& CPRH_CORNER_RO_SEL_MASK;
+
+		if (corner->use_open_loop)
+			reg |= CPRH_CORNER_CPR_CL_DISABLE;
+
+		cpr3_debug(ctrl, "corner=%d open_loop_volt_steps=%d, floor_volt_steps=%d, delta_quot_steps=%d, base_volt=%d, step_volt=%d, base_quot=%d\n",
+			   i, open_loop_volt_steps, floor_volt_steps,
+			   delta_quot_steps, ctrl->base_volt,
+			   ctrl->step_volt, base_quots[ro_sel]);
+		cpr3_write(ctrl, CPRH_REG_CORNER(i), reg);
+	}
+
+free_base_quots:
+	kfree(base_quots);
+	return rc;
+}
+
+/**
+ * cprh_controller_program_sdelta() - programs hardware SDELTA registers with
+ *		the margins that need to be applied at different online
+ *		core-count and temperature bands for each corner band. Also,
+ *		programs hardware register configuration for core-count and
+ *		temp-based adjustments
+ *
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ *
+ * Return: none
+ */
+static void cprh_controller_program_sdelta(
+		struct cpr3_controller *ctrl)
+{
+	struct cpr3_regulator *vreg = &ctrl->thread[0].vreg[0];
+	struct cprh_corner_band *corner_band;
+	struct cpr4_sdelta *sdelta;
+	int i, j, index;
+	u32 reg = 0;
+
+	if (!vreg->allow_core_count_adj && !vreg->allow_temp_adj)
+		return;
+
+	cpr4_regulator_init_temp_points(ctrl);
+
+	for (i = 0; i < CPRH_CORNER_BAND_MAX_COUNT; i++) {
+		reg |= (i < vreg->corner_band_count ?
+			vreg->corner_band[i].corner
+			& CPRH_CORNER_BAND_MASK :
+			vreg->corner_count + 1)
+			<< (i * CPRH_CORNER_BAND_SHIFT);
+	}
+
+	cpr3_write(ctrl, CPRH_REG_CORNER_BAND, reg);
+
+	for (i = 0; i < vreg->corner_band_count; i++) {
+		corner_band = &vreg->corner_band[i];
+		sdelta = corner_band->sdelta;
+
+		if (!sdelta->allow_core_count_adj && !sdelta->allow_temp_adj) {
+			/*
+			 * Per-online-core and per-temperature margin
+			 * adjustments are disabled for this corner band.
+			 */
+			continue;
+		}
+
+		if (vreg->allow_core_count_adj)
+			cpr3_write_temp_core_margin(ctrl,
+				    CPRH_MARGIN_TEMP_CORE_VBAND(0, i),
+				    &sdelta->table[0]);
+
+		for (j = 0; j < sdelta->max_core_count; j++) {
+			index = j * sdelta->temp_band_count;
+
+			cpr3_write_temp_core_margin(ctrl,
+				    CPRH_MARGIN_TEMP_CORE_VBAND(
+				    sdelta->allow_core_count_adj
+				    ? j + 1 : vreg->max_core_count, i),
+				    &sdelta->table[index]);
+		}
+	}
+
+	if (!vreg->allow_core_count_adj) {
+		cpr3_masked_write(ctrl, CPR4_REG_MISC,
+			CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK,
+			vreg->max_core_count
+			<< CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT);
+	}
+
+	cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+		CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK
+		| CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN
+		| CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN
+		| CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN
+		| CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+		vreg->max_core_count << CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_SHIFT
+		| ((vreg->allow_core_count_adj)
+		   ? CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN : 0)
+		| (vreg->allow_temp_adj ? CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN : 0)
+		| ((ctrl->use_hw_closed_loop)
+		? CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN : 0)
+		| (ctrl->use_hw_closed_loop
+		? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE : 0));
+
+	/* Ensure that previous CPR register writes complete */
+	mb();
+}
+
+static int cprh_regulator_aging_adjust(struct cpr3_controller *ctrl);
+
+/**
+ * cpr3_regulator_init_cprh() - performs hardware initialization at the
+ *		controller and thread level required for CPRh operation.
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_cprh(struct cpr3_controller *ctrl)
+{
+	u32 reg, pmic_step_size = 1;
+	u64 temp;
+	int rc;
+
+	/* Single thread, single regulator supported */
+	if (ctrl->thread_count != 1) {
+		cpr3_err(ctrl, "expected 1 thread but found %d\n",
+			ctrl->thread_count);
+		return -EINVAL;
+	} else if (ctrl->thread[0].vreg_count != 1) {
+		cpr3_err(ctrl, "expected 1 regulator but found %d\n",
+			ctrl->thread[0].vreg_count);
+		return -EINVAL;
+	}
+
+	rc = cprh_regulator_aging_adjust(ctrl);
+	if (rc && rc != -ETIMEDOUT) {
+		/*
+		 * Don't fail initialization if the CPR aging measurement
+		 * timed out due to sensors not being available.
+		 */
+		cpr3_err(ctrl, "CPR aging adjustment failed, rc=%d\n", rc);
+		return rc;
+	}
+
+	cprh_controller_program_sdelta(ctrl);
+
+	rc = cpr3_regulator_init_cprh_corners(&ctrl->thread[0].vreg[0]);
+	if (rc) {
+		cpr3_err(ctrl, "failed to initialize CPRh corner registers\n");
+		return rc;
+	}
+
+	if (ctrl->saw_use_unit_mV)
+		pmic_step_size = ctrl->step_volt / 1000;
+	cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+				CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_MASK,
+				(pmic_step_size
+				<< CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_SHIFT));
+
+	cpr3_masked_write(ctrl, CPR4_REG_SAW_ERROR_STEP_LIMIT,
+				CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK,
+				(ctrl->down_error_step_limit
+				<< CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT));
+
+	cpr3_masked_write(ctrl, CPR4_REG_SAW_ERROR_STEP_LIMIT,
+				CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK,
+				(ctrl->up_error_step_limit
+				<< CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT));
+
+	cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+			CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_MASK,
+			ctrl->step_quot_fixed
+			<< CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_SHIFT);
+
+	cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+			CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN,
+			(ctrl->use_dynamic_step_quot
+			? CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN : 0));
+
+	if (ctrl->voltage_settling_time) {
+		/*
+		 * Configure the settling timer used to account for
+		 * one VDD supply step.
+		 */
+		temp = (u64)ctrl->cpr_clock_rate
+				* (u64)ctrl->voltage_settling_time;
+		do_div(temp, 1000000000);
+		cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_CORE_TIMERS,
+			CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK,
+			temp
+		  << CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHIFT);
+	}
+
+	if (ctrl->corner_switch_delay_time) {
+		/*
+		 * Configure the settling timer used to delay
+		 * following SAW requests
+		 */
+		temp = (u64)ctrl->cpr_clock_rate
+			* (u64)ctrl->corner_switch_delay_time;
+		do_div(temp, 1000000000);
+		do_div(temp, CPRH_MODE_SWITCH_DELAY_FACTOR);
+		cpr3_masked_write(ctrl, CPRH_REG_CTL,
+				  CPRH_CTL_MODE_SWITCH_DELAY_MASK,
+				  temp << CPRH_CTL_MODE_SWITCH_DELAY_SHIFT);
+	}
+
+	/*
+	 * Program base voltage and voltage multiplier values which
+	 * are used for floor and initial voltage calculations by the
+	 * CPRh controller.
+	 */
+	reg = (DIV_ROUND_UP(ctrl->base_volt, ctrl->step_volt)
+	       << CPRH_CTL_BASE_VOLTAGE_SHIFT)
+		& CPRH_CTL_BASE_VOLTAGE_MASK;
+	reg |= (DIV_ROUND_UP(ctrl->step_volt, 1000)
+		<< CPRH_CTL_VOLTAGE_MULTIPLIER_SHIFT)
+		& CPRH_CTL_VOLTAGE_MULTIPLIER_MASK;
+	/* Enable OSM block interface with CPR */
+	reg |= CPRH_CTL_OSM_ENABLED;
+	cpr3_masked_write(ctrl, CPRH_REG_CTL, CPRH_CTL_BASE_VOLTAGE_MASK
+			  | CPRH_CTL_VOLTAGE_MULTIPLIER_MASK
+			  | CPRH_CTL_OSM_ENABLED, reg);
+
+	/* Enable loop_en */
+	cpr3_ctrl_loop_enable(ctrl);
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_init_ctrl() - performs hardware initialization of CPR
+ *		controller registers
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_ctrl(struct cpr3_controller *ctrl)
+{
+	int i, j, k, m, rc;
+	u32 ro_used = 0;
+	u32 gcnt, cont_dly, up_down_dly, val;
+	u64 temp;
+	char *mode;
+
+	if (ctrl->core_clk) {
+		rc = clk_set_rate(ctrl->core_clk, ctrl->cpr_clock_rate);
+		if (rc) {
+			cpr3_err(ctrl, "clk_set_rate(core_clk, %u) failed, rc=%d\n",
+				ctrl->cpr_clock_rate, rc);
+			return rc;
+		}
+	}
+
+	rc = cpr3_clock_enable(ctrl);
+	if (rc) {
+		cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
+		return rc;
+	}
+	ctrl->cpr_enabled = true;
+
+	/* Find all RO's used by any corner of any regulator. */
+	for (i = 0; i < ctrl->thread_count; i++)
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++)
+			for (k = 0; k < ctrl->thread[i].vreg[j].corner_count;
+			     k++)
+				for (m = 0; m < CPR3_RO_COUNT; m++)
+					if (ctrl->thread[i].vreg[j].corner[k].
+					    target_quot[m])
+						ro_used |= BIT(m);
+
+	/* Configure the GCNT of the RO's that will be used */
+	gcnt = cpr3_regulator_get_gcnt(ctrl);
+	for (i = 0; i < CPR3_RO_COUNT; i++)
+		if (ro_used & BIT(i))
+			cpr3_write(ctrl, CPR3_REG_GCNT(i), gcnt);
+
+	/* Configure the loop delay time */
+	temp = (u64)ctrl->cpr_clock_rate * (u64)ctrl->loop_time;
+	do_div(temp, 1000000000);
+	cont_dly = temp;
+	if (ctrl->supports_hw_closed_loop
+		&& ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
+		cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, cont_dly);
+	else
+		cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT, cont_dly);
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+		temp = (u64)ctrl->cpr_clock_rate *
+				(u64)ctrl->up_down_delay_time;
+		do_div(temp, 1000000000);
+		up_down_dly = temp;
+		if (ctrl->supports_hw_closed_loop)
+			cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT,
+				up_down_dly);
+		cpr3_debug(ctrl, "up_down_dly=%u, up_down_delay_time=%u ns\n",
+			up_down_dly, ctrl->up_down_delay_time);
+	}
+
+	cpr3_debug(ctrl, "cpr_clock_rate=%u HZ, sensor_time=%u ns, loop_time=%u ns, gcnt=%u, cont_dly=%u\n",
+		ctrl->cpr_clock_rate, ctrl->sensor_time, ctrl->loop_time,
+		gcnt, cont_dly);
+
+	/* Configure CPR sensor operation */
+	val = (ctrl->idle_clocks << CPR3_CPR_CTL_IDLE_CLOCKS_SHIFT)
+		& CPR3_CPR_CTL_IDLE_CLOCKS_MASK;
+	val |= (ctrl->count_mode << CPR3_CPR_CTL_COUNT_MODE_SHIFT)
+		& CPR3_CPR_CTL_COUNT_MODE_MASK;
+	val |= (ctrl->count_repeat << CPR3_CPR_CTL_COUNT_REPEAT_SHIFT)
+		& CPR3_CPR_CTL_COUNT_REPEAT_MASK;
+	cpr3_write(ctrl, CPR3_REG_CPR_CTL, val);
+
+	cpr3_debug(ctrl, "idle_clocks=%u, count_mode=%u, count_repeat=%u; CPR_CTL=0x%08X\n",
+		ctrl->idle_clocks, ctrl->count_mode, ctrl->count_repeat, val);
+
+	/* Configure CPR default step quotients */
+	val = (ctrl->step_quot_init_min << CPR3_CPR_STEP_QUOT_MIN_SHIFT)
+		& CPR3_CPR_STEP_QUOT_MIN_MASK;
+	val |= (ctrl->step_quot_init_max << CPR3_CPR_STEP_QUOT_MAX_SHIFT)
+		& CPR3_CPR_STEP_QUOT_MAX_MASK;
+	cpr3_write(ctrl, CPR3_REG_CPR_STEP_QUOT, val);
+
+	cpr3_debug(ctrl, "step_quot_min=%u, step_quot_max=%u; STEP_QUOT=0x%08X\n",
+		ctrl->step_quot_init_min, ctrl->step_quot_init_max, val);
+
+	/* Configure the CPR sensor ownership */
+	for (i = 0; i < ctrl->sensor_count; i++)
+		cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(i),
+			   ctrl->sensor_owner[i]);
+
+	/* Configure per-thread registers */
+	for (i = 0; i < ctrl->thread_count; i++) {
+		rc = cpr3_regulator_init_thread(&ctrl->thread[i]);
+		if (rc) {
+			cpr3_err(ctrl, "CPR thread register initialization failed, rc=%d\n",
+				rc);
+			return rc;
+		}
+	}
+
+	if (ctrl->supports_hw_closed_loop) {
+		if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4 ||
+		    ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
+			cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+				CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+				ctrl->use_hw_closed_loop
+				? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
+				: CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
+		} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+			cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
+				ctrl->use_hw_closed_loop
+				? CPR3_HW_CLOSED_LOOP_ENABLE
+				: CPR3_HW_CLOSED_LOOP_DISABLE);
+
+			cpr3_debug(ctrl, "PD_THROTTLE=0x%08X\n",
+				ctrl->proc_clock_throttle);
+		}
+
+		if ((ctrl->use_hw_closed_loop ||
+		     ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) &&
+		    ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
+			rc = regulator_enable(ctrl->vdd_limit_regulator);
+			if (rc) {
+				cpr3_err(ctrl, "CPR limit regulator enable failed, rc=%d\n",
+					rc);
+				return rc;
+			}
+
+			if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+				rc = msm_spm_avs_enable_irq(0,
+							   MSM_SPM_AVS_IRQ_MAX);
+				if (rc) {
+					cpr3_err(ctrl, "could not enable max IRQ, rc=%d\n",
+						rc);
+					return rc;
+				}
+			}
+		}
+	}
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+		rc = cpr3_regulator_init_cpr4(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "CPR4-specific controller initialization failed, rc=%d\n",
+				rc);
+			return rc;
+		}
+	} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
+		rc = cpr3_regulator_init_cprh(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "CPRh-specific controller initialization failed, rc=%d\n",
+				 rc);
+			return rc;
+		}
+	}
+
+	/* Ensure that all register writes complete before disabling clocks. */
+	wmb();
+
+	/* Keep CPR clocks on for CPRh full HW closed-loop operation */
+	if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
+		cpr3_clock_disable(ctrl);
+		ctrl->cpr_enabled = false;
+	}
+
+	if (!ctrl->cpr_allowed_sw || !ctrl->cpr_allowed_hw)
+		mode = "open-loop";
+	else if (ctrl->supports_hw_closed_loop &&
+		 ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH)
+		mode = ctrl->use_hw_closed_loop
+			? "HW closed-loop" : "SW closed-loop";
+	else if (ctrl->supports_hw_closed_loop &&
+		 ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH)
+		mode = ctrl->use_hw_closed_loop
+			? "full HW closed-loop" : "open-loop";
+	else
+		mode = "closed-loop";
+
+	cpr3_info(ctrl, "Default CPR mode = %s", mode);
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_set_target_quot() - configure the target quotient for each
+ *		RO of the CPR3 thread and set the RO mask
+ * @thread:		Pointer to the CPR3 thread
+ *
+ * Return: none
+ */
+static void cpr3_regulator_set_target_quot(struct cpr3_thread *thread)
+{
+	u32 new_quot, last_quot;
+	int i;
+
+	if (thread->aggr_corner.ro_mask == CPR3_RO_MASK
+	    && thread->last_closed_loop_aggr_corner.ro_mask == CPR3_RO_MASK) {
+		/* Avoid writing target quotients since all RO's are masked. */
+		return;
+	} else if (thread->aggr_corner.ro_mask == CPR3_RO_MASK) {
+		cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
+			CPR3_RO_MASK);
+		thread->last_closed_loop_aggr_corner.ro_mask = CPR3_RO_MASK;
+		/*
+		 * Only the RO_MASK register needs to be written since all
+		 * RO's are masked.
+		 */
+		return;
+	} else if (thread->aggr_corner.ro_mask
+			!= thread->last_closed_loop_aggr_corner.ro_mask) {
+		cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
+			thread->aggr_corner.ro_mask);
+	}
+
+	for (i = 0; i < CPR3_RO_COUNT; i++) {
+		new_quot = thread->aggr_corner.target_quot[i];
+		last_quot = thread->last_closed_loop_aggr_corner.target_quot[i];
+		if (new_quot != last_quot)
+			cpr3_write(thread->ctrl,
+				CPR3_REG_TARGET_QUOT(thread->thread_id, i),
+				new_quot);
+	}
+
+	thread->last_closed_loop_aggr_corner = thread->aggr_corner;
+}
+
+/**
+ * cpr3_update_vreg_closed_loop_volt() - update the last known settled
+ *		closed loop voltage for a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ * @vdd_volt:		Last known settled voltage in microvolts for the
+ *			VDD supply
+ * @reg_last_measurement: Value read from the LAST_MEASUREMENT register
+ *
+ * Return: none
+ */
+static void cpr3_update_vreg_closed_loop_volt(struct cpr3_regulator *vreg,
+				int vdd_volt, u32 reg_last_measurement)
+{
+	bool step_dn, step_up, aggr_step_up, aggr_step_dn, aggr_step_mid;
+	bool valid, pd_valid, saw_error;
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	struct cpr3_corner *corner;
+	u32 id;
+
+	if (vreg->last_closed_loop_corner == CPR3_REGULATOR_CORNER_INVALID)
+		return;
+
+	corner = &vreg->corner[vreg->last_closed_loop_corner];
+
+	if (vreg->thread->last_closed_loop_aggr_corner.ro_mask
+	    == CPR3_RO_MASK  || !vreg->aggregated) {
+		return;
+	} else if (!ctrl->cpr_enabled || !ctrl->last_corner_was_closed_loop) {
+		return;
+	} else if (ctrl->thread_count == 1
+		 && vdd_volt >= corner->floor_volt
+		 && vdd_volt <= corner->ceiling_volt) {
+		corner->last_volt = vdd_volt;
+		cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d\n",
+			   vreg->last_closed_loop_corner, corner->last_volt,
+			   vreg->last_closed_loop_corner,
+			   corner->ceiling_volt,
+			   vreg->last_closed_loop_corner,
+			   corner->floor_volt);
+		return;
+	} else if (!ctrl->supports_hw_closed_loop) {
+		return;
+	} else if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPR3) {
+		corner->last_volt = vdd_volt;
+		cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d\n",
+			   vreg->last_closed_loop_corner, corner->last_volt,
+			   vreg->last_closed_loop_corner,
+			   corner->ceiling_volt,
+			   vreg->last_closed_loop_corner,
+			   corner->floor_volt);
+		return;
+	}
+
+	/* CPR clocks are on and HW closed loop is supported */
+	valid = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_VALID);
+	if (!valid) {
+		cpr3_debug(vreg, "CPR_LAST_VALID_MEASUREMENT=0x%X valid bit not set\n",
+			   reg_last_measurement);
+		return;
+	}
+
+	id = vreg->thread->thread_id;
+
+	step_dn
+	       = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_THREAD_DN(id));
+	step_up
+	       = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_THREAD_UP(id));
+	aggr_step_dn = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_DN);
+	aggr_step_mid
+		= !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_MID);
+	aggr_step_up = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_UP);
+	saw_error = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_SAW_ERROR);
+	pd_valid
+	     = !((((reg_last_measurement & CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK)
+		       >> CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT)
+		      & vreg->pd_bypass_mask) == vreg->pd_bypass_mask);
+
+	if (!pd_valid) {
+		cpr3_debug(vreg, "CPR_LAST_VALID_MEASUREMENT=0x%X, all power domains bypassed\n",
+			   reg_last_measurement);
+		return;
+	} else if (step_dn && step_up) {
+		cpr3_err(vreg, "both up and down status bits set, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
+			 reg_last_measurement);
+		return;
+	} else if (aggr_step_dn && step_dn && vdd_volt < corner->last_volt
+		   && vdd_volt >= corner->floor_volt) {
+		corner->last_volt = vdd_volt;
+	} else if (aggr_step_up && step_up && vdd_volt > corner->last_volt
+		   && vdd_volt <= corner->ceiling_volt) {
+		corner->last_volt = vdd_volt;
+	} else if (aggr_step_mid
+		   && vdd_volt >= corner->floor_volt
+		   && vdd_volt <= corner->ceiling_volt) {
+		corner->last_volt = vdd_volt;
+	} else if (saw_error && (vdd_volt == corner->ceiling_volt
+				 || vdd_volt == corner->floor_volt)) {
+		corner->last_volt = vdd_volt;
+	} else {
+		cpr3_debug(vreg, "last_volt not updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d, vdd_volt=%d, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
+			   vreg->last_closed_loop_corner, corner->last_volt,
+			   vreg->last_closed_loop_corner,
+			   corner->ceiling_volt,
+			   vreg->last_closed_loop_corner, corner->floor_volt,
+			   vdd_volt, reg_last_measurement);
+		return;
+	}
+
+	cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
+		   vreg->last_closed_loop_corner, corner->last_volt,
+		   vreg->last_closed_loop_corner, corner->ceiling_volt,
+		   vreg->last_closed_loop_corner, corner->floor_volt,
+		   reg_last_measurement);
+}
+
+/**
+ * cpr3_regulator_config_ldo_retention() - configure per-regulator LDO retention
+ *		mode
+ * @vreg:		Pointer to the CPR3 regulator to configure
+ * @ref_volt:		Reference voltage used to determine if LDO retention
+ *			mode can be allowed. It corresponds either to the
+ *			aggregated floor voltage or the next VDD supply setpoint
+ *
+ * This function determines if a CPR3 regulator's configuration satisfies safe
+ * operating voltages for LDO retention and uses the regulator_allow_bypass()
+ * interface on the LDO retention regulator to enable or disable such feature
+ * accordingly.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_config_ldo_retention(struct cpr3_regulator *vreg,
+					int ref_volt)
+{
+	struct regulator *ldo_ret_reg = vreg->ldo_ret_regulator;
+	int retention_volt, rc;
+	enum msm_ldo_supply_mode mode;
+
+	if (!ldo_ret_reg) {
+		/* LDO retention regulator is not defined */
+		return 0;
+	}
+
+	retention_volt = regulator_get_voltage(ldo_ret_reg);
+	if (retention_volt < 0) {
+		cpr3_err(vreg, "regulator_get_voltage(ldo_ret) failed, rc=%d\n",
+			 retention_volt);
+		return retention_volt;
+
+	}
+
+	mode = ref_volt >= retention_volt + vreg->ldo_min_headroom_volt
+		? LDO_MODE : BHS_MODE;
+
+	rc = regulator_allow_bypass(ldo_ret_reg, mode);
+	if (rc)
+		cpr3_err(vreg, "regulator_allow_bypass(ldo_ret) == %s failed, rc=%d\n",
+			 mode ? "true" : "false", rc);
+
+	return rc;
+}
+
+/**
+ * cpr3_regulator_config_kryo_ldo_mem_acc() - configure the mem-acc regulator
+ *		corner based upon a future Kryo LDO regulator voltage setpoint
+ * @vreg:		Pointer to the CPR3 regulator
+ * @new_volt:		New voltage in microvolts that the LDO regulator needs
+ *			to end up at
+ *
+ * This function determines if a new LDO regulator set point will result
+ * in crossing the voltage threshold that requires reconfiguration of
+ * the mem-acc regulator associated with a CPR3 regulator and if so, performs
+ * the correct sequence to select the correct mem-acc corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_config_kryo_ldo_mem_acc(struct cpr3_regulator *vreg,
+					     int new_volt)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	struct regulator *ldo_reg = vreg->ldo_regulator;
+	struct regulator *mem_acc_reg = vreg->mem_acc_regulator;
+	int mem_acc_volt = ctrl->mem_acc_threshold_volt;
+	int last_volt, safe_volt, mem_acc_corn, rc;
+	enum msm_apm_supply apm_mode;
+
+	if (!mem_acc_reg || !mem_acc_volt || !ldo_reg)
+		return 0;
+
+	apm_mode = msm_apm_get_supply(ctrl->apm);
+	if (apm_mode < 0) {
+		cpr3_err(ctrl, "APM get supply failed, rc=%d\n",
+			 apm_mode);
+		return apm_mode;
+	}
+
+	last_volt = regulator_get_voltage(ldo_reg);
+	if (last_volt < 0) {
+		cpr3_err(vreg, "regulator_get_voltage(ldo) failed, rc=%d\n",
+			 last_volt);
+		return last_volt;
+	}
+
+	if (((last_volt < mem_acc_volt && mem_acc_volt <= new_volt)
+	     || (last_volt >= mem_acc_volt && mem_acc_volt > new_volt))) {
+
+		if (apm_mode == ctrl->apm_high_supply)
+			safe_volt = min(vreg->ldo_max_volt, mem_acc_volt);
+		else
+			safe_volt = min(max(ctrl->system_supply_max_volt -
+					    vreg->ldo_max_headroom_volt,
+					    mem_acc_volt), vreg->ldo_max_volt);
+
+		rc = regulator_set_voltage(ldo_reg, safe_volt,
+					   max(new_volt, last_volt));
+		if (rc) {
+			cpr3_err(ctrl, "regulator_set_voltage(ldo) == %d failed, rc=%d\n",
+				 mem_acc_volt, rc);
+			return rc;
+		}
+
+		mem_acc_corn = new_volt < mem_acc_volt ?
+			ctrl->mem_acc_corner_map[CPR3_MEM_ACC_LOW_CORNER] :
+			ctrl->mem_acc_corner_map[CPR3_MEM_ACC_HIGH_CORNER];
+
+		rc = regulator_set_voltage(mem_acc_reg, mem_acc_corn,
+					   mem_acc_corn);
+		if (rc) {
+			cpr3_err(ctrl, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
+				 0, rc);
+			return rc;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_kryo_bhs_prepare() - configure the Kryo LDO regulator
+ *		associated with a CPR3 regulator in preparation for BHS
+ *		mode switch.
+ * @vreg:		Pointer to the CPR3 regulator
+ * @vdd_volt:		Last known settled voltage in microvolts for the VDD
+ *			supply
+ * @vdd_ceiling_volt:	Last known aggregated ceiling voltage in microvolts for
+ *			the VDD supply
+ *
+ * This function performs the necessary steps prior to switching a Kryo LDO
+ * regulator to BHS mode (LDO bypassed mode).
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_kryo_bhs_prepare(struct cpr3_regulator *vreg,
+			       int vdd_volt, int vdd_ceiling_volt)
+{
+	struct regulator *ldo_reg = vreg->ldo_regulator;
+	int bhs_volt, rc;
+
+	bhs_volt = vdd_volt - vreg->ldo_min_headroom_volt;
+	if (bhs_volt > vreg->ldo_max_volt) {
+		cpr3_debug(vreg, "limited to LDO output of %d uV when switching to BHS mode\n",
+			   vreg->ldo_max_volt);
+		bhs_volt = vreg->ldo_max_volt;
+	}
+
+	rc = cpr3_regulator_config_kryo_ldo_mem_acc(vreg, bhs_volt);
+	if (rc) {
+		cpr3_err(vreg, "failed to configure mem-acc settings\n");
+		return rc;
+	}
+
+	rc = regulator_set_voltage(ldo_reg, bhs_volt, min(vdd_ceiling_volt,
+							  vreg->ldo_max_volt));
+	if (rc) {
+		cpr3_err(vreg, "regulator_set_voltage(ldo) == %d failed, rc=%d\n",
+			 bhs_volt, rc);
+		return rc;
+	}
+
+	return rc;
+}
+
+/**
+ * cpr3_regulator_set_bhs_mode() - configure the LDO regulator associated with
+ *		a CPR3 regulator to BHS mode
+ * @vreg:		Pointer to the CPR3 regulator
+ * @vdd_volt:		Last known settled voltage in microvolts for the VDD
+ *			supply
+ * @vdd_ceiling_volt:	Last known aggregated ceiling voltage in microvolts for
+ *			the VDD supply
+ *
+ * This function performs the necessary steps to switch an LDO regulator
+ * to BHS mode (LDO bypassed mode).
+ */
+static int cpr3_regulator_set_bhs_mode(struct cpr3_regulator *vreg,
+			       int vdd_volt, int vdd_ceiling_volt)
+{
+	struct regulator *ldo_reg = vreg->ldo_regulator;
+	int rc;
+
+	if (vreg->ldo_type == CPR3_LDO_KRYO) {
+		rc = cpr3_regulator_kryo_bhs_prepare(vreg, vdd_volt,
+				vdd_ceiling_volt);
+		if (rc) {
+			cpr3_err(vreg, "cpr3 regulator bhs mode prepare failed, rc=%d\n",
+				rc);
+			return rc;
+		}
+	}
+
+	rc = regulator_allow_bypass(ldo_reg, BHS_MODE);
+	if (rc) {
+		cpr3_err(vreg, "regulator_allow_bypass(bhs) == %s failed, rc=%d\n",
+			 BHS_MODE ? "true" : "false", rc);
+		return rc;
+	}
+	vreg->ldo_regulator_bypass = BHS_MODE;
+
+	return rc;
+}
+
+/**
+ * cpr3_regulator_ldo_apm_prepare() - configure LDO regulators associated
+ *		with each CPR3 regulator of a CPR3 controller in preparation
+ *		for an APM switch.
+ * @ctrl:		Pointer to the CPR3 controller
+ * @new_volt:		New voltage in microvolts that the VDD supply
+ *			needs to end up at
+ * @last_volt:		Last known voltage in microvolts for the VDD supply
+ * @aggr_corner:	Pointer to the CPR3 corner which corresponds to the max
+ *			corner aggregated from all CPR3 threads managed by the
+ *			CPR3 controller
+ *
+ * This function ensures LDO regulator hardware requirements are met before
+ * an APM switch is requested. The function must be called as the last step
+ * before switching the APM mode.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_ldo_apm_prepare(struct cpr3_controller *ctrl,
+				int new_volt, int last_volt,
+				struct cpr3_corner *aggr_corner)
+{
+	struct cpr3_regulator *vreg;
+	struct cpr3_corner *current_corner;
+	enum msm_apm_supply apm_mode;
+	int i, j, safe_volt, max_volt, ldo_volt, ref_volt, rc;
+
+	apm_mode = msm_apm_get_supply(ctrl->apm);
+	if (apm_mode < 0) {
+		cpr3_err(ctrl, "APM get supply failed, rc=%d\n", apm_mode);
+		return apm_mode;
+	}
+
+	if (apm_mode == ctrl->apm_low_supply ||
+	    new_volt >= ctrl->apm_threshold_volt)
+		return 0;
+
+	/*
+	 * Guarantee LDO maximum headroom is not violated when the APM is
+	 * switched to the system-supply source.
+	 */
+	for (i = 0; i < ctrl->thread_count; i++) {
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+			vreg = &ctrl->thread[i].vreg[j];
+
+			if (!vreg->vreg_enabled || vreg->current_corner
+			    == CPR3_REGULATOR_CORNER_INVALID)
+				continue;
+
+			if (!vreg->ldo_regulator || !vreg->ldo_mode_allowed ||
+			    vreg->ldo_regulator_bypass == BHS_MODE)
+				continue;
+
+			/*
+			 * If the new VDD configuration does not satisfy
+			 * requirements for LDO usage, switch the regulator
+			 * to BHS mode. By doing so, the LDO maximum headroom
+			 * does not need to be enforced.
+			 */
+			current_corner = &vreg->corner[vreg->current_corner];
+			ldo_volt = current_corner->open_loop_volt
+				- vreg->ldo_adjust_volt;
+			ref_volt = ctrl->use_hw_closed_loop ?
+				aggr_corner->floor_volt :
+				new_volt;
+
+			if (ref_volt < ldo_volt + vreg->ldo_min_headroom_volt
+			    || ldo_volt < ctrl->system_supply_max_volt -
+			    vreg->ldo_max_headroom_volt ||
+			    ldo_volt > vreg->ldo_max_volt) {
+				rc = cpr3_regulator_set_bhs_mode(vreg,
+					 last_volt, aggr_corner->ceiling_volt);
+				if (rc)
+					return rc;
+				/*
+				 * Do not enforce LDO maximum headroom since the
+				 * regulator is now configured to BHS mode.
+				 */
+				continue;
+			}
+
+			safe_volt = min(max(ldo_volt,
+					    ctrl->system_supply_max_volt
+					    - vreg->ldo_max_headroom_volt),
+					vreg->ldo_max_volt);
+			max_volt = min(ctrl->system_supply_max_volt,
+				       vreg->ldo_max_volt);
+
+			rc = regulator_set_voltage(vreg->ldo_regulator,
+						   safe_volt, max_volt);
+			if (rc) {
+				cpr3_err(vreg, "regulator_set_voltage(ldo) == %d failed, rc=%d\n",
+					 safe_volt, rc);
+				return rc;
+			}
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_config_vreg_kryo_ldo() - configure the voltage and bypass
+ *		state for the Kryo LDO regulator associated with a single CPR3
+ *		regulator.
+ *
+ * @vreg:		Pointer to the CPR3 regulator
+ * @vdd_floor_volt:	Last known aggregated floor voltage in microvolts for
+ *			the VDD supply
+ * @vdd_ceiling_volt:	Last known aggregated ceiling voltage in microvolts for
+ *			the VDD supply
+ * @ref_volt:		Reference voltage in microvolts corresponds either to
+ *			the aggregated floor voltage or the next VDD supply
+ *			setpoint.
+ * @last_volt:		Last known voltage in microvolts for the VDD supply
+ *
+ * This function performs all relevant LDO or BHS configurations if a Kryo LDO
+ * regulator is specified.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_config_vreg_kryo_ldo(struct cpr3_regulator *vreg,
+			  int vdd_floor_volt, int vdd_ceiling_volt,
+			  int ref_volt, int last_volt)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	struct regulator *ldo_reg = vreg->ldo_regulator;
+	struct cpr3_corner *current_corner;
+	enum msm_apm_supply apm_mode;
+	int rc, ldo_volt, final_ldo_volt, bhs_volt, max_volt, safe_volt;
+
+	current_corner = &vreg->corner[vreg->current_corner];
+	ldo_volt = current_corner->open_loop_volt
+		- vreg->ldo_adjust_volt;
+	bhs_volt = last_volt - vreg->ldo_min_headroom_volt;
+	max_volt = min(vdd_ceiling_volt, vreg->ldo_max_volt);
+
+	if (ref_volt >= ldo_volt + vreg->ldo_min_headroom_volt &&
+	    ldo_volt >= ctrl->system_supply_max_volt -
+	    vreg->ldo_max_headroom_volt &&
+	    bhs_volt >= ctrl->system_supply_max_volt -
+	    vreg->ldo_max_headroom_volt &&
+	    ldo_volt <= vreg->ldo_max_volt) {
+		/* LDO minimum and maximum headrooms satisfied */
+		apm_mode = msm_apm_get_supply(ctrl->apm);
+		if (apm_mode < 0) {
+			cpr3_err(ctrl, "APM get supply failed, rc=%d\n",
+				 apm_mode);
+			return apm_mode;
+		}
+
+		if (vreg->ldo_regulator_bypass == BHS_MODE) {
+			/*
+			 * BHS to LDO transition. Configure LDO output
+			 * to min(max LDO output, VDD - LDO headroom)
+			 * voltage if APM is on high supply source or
+			 * min(max(system-supply ceiling - LDO max headroom,
+			 * VDD - LDO headroom), max LDO output) if
+			 * APM is on low supply source, then switch
+			 * regulator mode.
+			 */
+			if (apm_mode == ctrl->apm_high_supply)
+				safe_volt = min(vreg->ldo_max_volt, bhs_volt);
+			else
+				safe_volt =
+					min(max(ctrl->system_supply_max_volt -
+						vreg->ldo_max_headroom_volt,
+						bhs_volt),
+					    vreg->ldo_max_volt);
+
+			rc = cpr3_regulator_config_kryo_ldo_mem_acc(vreg,
+							       safe_volt);
+			if (rc) {
+				cpr3_err(vreg, "failed to configure mem-acc settings\n");
+				return rc;
+			}
+
+			rc = regulator_set_voltage(ldo_reg, safe_volt,
+						   max_volt);
+			if (rc) {
+				cpr3_err(vreg, "regulator_set_voltage(ldo) == %d failed, rc=%d\n",
+					 safe_volt, rc);
+				return rc;
+			}
+
+			rc = regulator_allow_bypass(ldo_reg, LDO_MODE);
+			if (rc) {
+				cpr3_err(vreg, "regulator_allow_bypass(ldo) == %s failed, rc=%d\n",
+					 LDO_MODE ? "true" : "false", rc);
+				return rc;
+			}
+			vreg->ldo_regulator_bypass = LDO_MODE;
+		}
+
+		/* Configure final LDO output voltage */
+		if (apm_mode == ctrl->apm_high_supply)
+			final_ldo_volt = max(ldo_volt,
+					     vdd_ceiling_volt -
+					     vreg->ldo_max_headroom_volt);
+		else
+			final_ldo_volt = ldo_volt;
+
+		rc = cpr3_regulator_config_kryo_ldo_mem_acc(vreg,
+						       final_ldo_volt);
+		if (rc) {
+			cpr3_err(vreg, "failed to configure mem-acc settings\n");
+			return rc;
+		}
+
+		rc = regulator_set_voltage(ldo_reg, final_ldo_volt, max_volt);
+		if (rc) {
+			cpr3_err(vreg, "regulator_set_voltage(ldo) == %d failed, rc=%d\n",
+				 final_ldo_volt, rc);
+			return rc;
+		}
+	} else {
+		if (vreg->ldo_regulator_bypass == LDO_MODE) {
+			/* LDO to BHS transition */
+			rc = cpr3_regulator_set_bhs_mode(vreg, last_volt,
+							 vdd_ceiling_volt);
+			if (rc)
+				return rc;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_config_vreg_ldo300() - configure the voltage and bypass state
+ *		for the LDO300 regulator associated with a single CPR3
+ *		regulator.
+ *
+ * @vreg:		Pointer to the CPR3 regulator
+ * @new_volt:		New voltage in microvolts that VDD supply needs to
+ *			end up at
+ * @vdd_ceiling_volt:	Last known aggregated ceiling voltage in microvolts for
+ *			the VDD supply
+ *
+ * This function performs all relevant LDO or BHS configurations for an LDO300
+ * type regulator.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_config_vreg_ldo300(struct cpr3_regulator *vreg,
+		int new_volt, int vdd_ceiling_volt)
+{
+	struct regulator *ldo_reg = vreg->ldo_regulator;
+	struct cpr3_corner *corner;
+	bool mode;
+	int rc = 0;
+
+	corner = &vreg->corner[vreg->current_corner];
+	mode = corner->ldo_mode_allowed ? LDO_MODE : BHS_MODE;
+
+	if (mode == LDO_MODE) {
+		rc = regulator_set_voltage(ldo_reg, new_volt, vdd_ceiling_volt);
+		if (rc) {
+			cpr3_err(vreg, "regulator_set_voltage(ldo) == %d failed, rc=%d\n",
+				 new_volt, rc);
+			return rc;
+		}
+	}
+
+	if (vreg->ldo_regulator_bypass != mode) {
+		rc = regulator_allow_bypass(ldo_reg, mode);
+		if (rc) {
+			cpr3_err(vreg, "regulator_allow_bypass(%s) is failed, rc=%d\n",
+				 mode == LDO_MODE ? "ldo" : "bhs", rc);
+			return rc;
+		}
+		vreg->ldo_regulator_bypass = mode;
+	}
+
+	return rc;
+}
+
+/**
+ * cpr3_regulator_config_vreg_ldo() - configure the voltage and bypass state for
+ *		the LDO regulator associated with a single CPR3 regulator.
+ *
+ * @vreg:		Pointer to the CPR3 regulator
+ * @vdd_floor_volt:	Last known aggregated floor voltage in microvolts for
+ *			the VDD supply
+ * @vdd_ceiling_volt:	Last known aggregated ceiling voltage in microvolts for
+ *			the VDD supply
+ * @new_volt:		New voltage in microvolts that VDD supply needs to
+ *			end up at
+ * @last_volt:		Last known voltage in microvolts for the VDD supply
+ *
+ * This function identifies the type of LDO regulator associated with a CPR3
+ * regulator and invokes the LDO specific configuration functions.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_config_vreg_ldo(struct cpr3_regulator *vreg,
+			  int vdd_floor_volt, int vdd_ceiling_volt,
+			  int new_volt, int last_volt)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	int ref_volt, rc;
+
+	ref_volt = ctrl->use_hw_closed_loop ? vdd_floor_volt :
+		new_volt;
+
+	rc = cpr3_regulator_config_ldo_retention(vreg, ref_volt);
+	if (rc)
+		return rc;
+
+	if (!vreg->vreg_enabled ||
+		vreg->current_corner == CPR3_REGULATOR_CORNER_INVALID)
+		return 0;
+
+	switch (vreg->ldo_type) {
+	case CPR3_LDO_KRYO:
+		rc = cpr3_regulator_config_vreg_kryo_ldo(vreg, vdd_floor_volt,
+				vdd_ceiling_volt, ref_volt, last_volt);
+		if (rc)
+			cpr3_err(vreg, "kryo ldo regulator config failed, rc=%d\n",
+				rc);
+		break;
+	case CPR3_LDO300:
+		rc = cpr3_regulator_config_vreg_ldo300(vreg, new_volt,
+				vdd_ceiling_volt);
+		if (rc)
+			cpr3_err(vreg, "ldo300 regulator config failed, rc=%d\n",
+				rc);
+		break;
+	default:
+		cpr3_err(vreg, "invalid ldo regulator type = %d\n",
+				vreg->ldo_type);
+		rc = -EINVAL;
+	}
+
+	return rc;
+}
+
+/**
+ * cpr3_regulator_config_ldo() - configure the voltage and bypass state for the
+ *		LDO regulator associated with each CPR3 regulator of a CPR3
+ *		controller
+ * @ctrl:		Pointer to the CPR3 controller
+ * @vdd_floor_volt:	Last known aggregated floor voltage in microvolts for
+ *			the VDD supply
+ * @vdd_ceiling_volt:	Last known aggregated ceiling voltage in microvolts for
+ *			the VDD supply
+ * @new_volt:		New voltage in microvolts that VDD supply needs to
+ *			end up at
+ * @last_volt:		Last known voltage in microvolts for the VDD supply
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_config_ldo(struct cpr3_controller *ctrl,
+				int vdd_floor_volt, int vdd_ceiling_volt,
+				int new_volt, int last_volt)
+{
+	struct cpr3_regulator *vreg;
+	int i, j, rc;
+
+	for (i = 0; i < ctrl->thread_count; i++) {
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+			vreg = &ctrl->thread[i].vreg[j];
+
+			if (!vreg->ldo_regulator || !vreg->ldo_mode_allowed)
+				continue;
+
+			rc = cpr3_regulator_config_vreg_ldo(vreg,
+					vdd_floor_volt, vdd_ceiling_volt,
+					new_volt, last_volt);
+			if (rc)
+				return rc;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_mem_acc_bhs_used() - determines if mem-acc regulators powered
+ *		through a BHS are associated with the CPR3 controller or any of
+ *		the CPR3 regulators it controls.
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * This function determines if the CPR3 controller or any of its CPR3 regulators
+ * need to manage mem-acc regulators that are currently powered through a BHS
+ * and whose corner selection is based upon a particular voltage threshold.
+ *
+ * Return: true or false
+ */
+static bool cpr3_regulator_mem_acc_bhs_used(struct cpr3_controller *ctrl)
+{
+	struct cpr3_regulator *vreg;
+	int i, j;
+
+	if (!ctrl->mem_acc_threshold_volt)
+		return false;
+
+	if (ctrl->mem_acc_regulator)
+		return true;
+
+	for (i = 0; i < ctrl->thread_count; i++) {
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+			vreg = &ctrl->thread[i].vreg[j];
+
+			if (vreg->mem_acc_regulator &&
+			    (!vreg->ldo_regulator ||
+			     vreg->ldo_regulator_bypass
+			     == BHS_MODE))
+				return true;
+		}
+	}
+
+	return false;
+}
+
+/**
+ * cpr3_regulator_config_bhs_mem_acc() - configure the mem-acc regulator
+ *		settings for hardware blocks currently powered through the BHS.
+ * @ctrl:		Pointer to the CPR3 controller
+ * @new_volt:		New voltage in microvolts that VDD supply needs to
+ *			end up at
+ * @last_volt:		Pointer to the last known voltage in microvolts for the
+ *			VDD supply
+ * @aggr_corner:	Pointer to the CPR3 corner which corresponds to the max
+ *			corner aggregated from all CPR3 threads managed by the
+ *			CPR3 controller
+ *
+ * This function programs the mem-acc regulator corners for CPR3 regulators
+ * whose LDO regulators are in bypassed state. The function also handles
+ * CPR3 controllers which utilize mem-acc regulators that operate independently
+ * from the LDO hardware and that must be programmed when the VDD supply
+ * crosses a particular voltage threshold.
+ *
+ * Return: 0 on success, errno on failure. If the VDD supply voltage is
+ * modified, last_volt is updated to reflect the new voltage setpoint.
+ */
+static int cpr3_regulator_config_bhs_mem_acc(struct cpr3_controller *ctrl,
+				     int new_volt, int *last_volt,
+				     struct cpr3_corner *aggr_corner)
+{
+	struct cpr3_regulator *vreg;
+	int i, j, rc, mem_acc_corn, safe_volt;
+	int mem_acc_volt = ctrl->mem_acc_threshold_volt;
+	int ref_volt;
+
+	if (!cpr3_regulator_mem_acc_bhs_used(ctrl))
+		return 0;
+
+	ref_volt = ctrl->use_hw_closed_loop ? aggr_corner->floor_volt :
+		new_volt;
+
+	if (((*last_volt < mem_acc_volt && mem_acc_volt <= ref_volt) ||
+	     (*last_volt >= mem_acc_volt && mem_acc_volt > ref_volt))) {
+		if (ref_volt < *last_volt)
+			safe_volt = max(mem_acc_volt, aggr_corner->last_volt);
+		else
+			safe_volt = max(mem_acc_volt, *last_volt);
+
+		rc = regulator_set_voltage(ctrl->vdd_regulator, safe_volt,
+					   new_volt < *last_volt ?
+					   ctrl->aggr_corner.ceiling_volt :
+					   new_volt);
+		if (rc) {
+			cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
+				 safe_volt, rc);
+			return rc;
+		}
+
+		*last_volt = safe_volt;
+
+		mem_acc_corn = ref_volt < mem_acc_volt ?
+			ctrl->mem_acc_corner_map[CPR3_MEM_ACC_LOW_CORNER] :
+			ctrl->mem_acc_corner_map[CPR3_MEM_ACC_HIGH_CORNER];
+
+		if (ctrl->mem_acc_regulator) {
+			rc = regulator_set_voltage(ctrl->mem_acc_regulator,
+						   mem_acc_corn, mem_acc_corn);
+			if (rc) {
+				cpr3_err(ctrl, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
+					 mem_acc_corn, rc);
+				return rc;
+			}
+		}
+
+		for (i = 0; i < ctrl->thread_count; i++) {
+			for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+				vreg = &ctrl->thread[i].vreg[j];
+
+				if (!vreg->mem_acc_regulator ||
+				    (vreg->ldo_regulator &&
+				     vreg->ldo_regulator_bypass
+				     == LDO_MODE))
+					continue;
+
+				rc = regulator_set_voltage(
+					vreg->mem_acc_regulator, mem_acc_corn,
+					mem_acc_corn);
+				if (rc) {
+					cpr3_err(vreg, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
+						 mem_acc_corn, rc);
+					return rc;
+				}
+			}
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_switch_apm_mode() - switch the mode of the APM controller
+ *		associated with a given CPR3 controller
+ * @ctrl:		Pointer to the CPR3 controller
+ * @new_volt:		New voltage in microvolts that VDD supply needs to
+ *			end up at
+ * @last_volt:		Pointer to the last known voltage in microvolts for the
+ *			VDD supply
+ * @aggr_corner:	Pointer to the CPR3 corner which corresponds to the max
+ *			corner aggregated from all CPR3 threads managed by the
+ *			CPR3 controller
+ *
+ * This function requests a switch of the APM mode while guaranteeing
+ * any LDO regulator hardware requirements are satisfied. The function must
+ * be called once it is known a new VDD supply setpoint crosses the APM
+ * voltage threshold.
+ *
+ * Return: 0 on success, errno on failure. If the VDD supply voltage is
+ * modified, last_volt is updated to reflect the new voltage setpoint.
+ */
+static int cpr3_regulator_switch_apm_mode(struct cpr3_controller *ctrl,
+					  int new_volt, int *last_volt,
+					  struct cpr3_corner *aggr_corner)
+{
+	struct regulator *vdd = ctrl->vdd_regulator;
+	int apm_volt = ctrl->apm_threshold_volt;
+	int orig_last_volt = *last_volt;
+	int rc;
+
+	rc = regulator_set_voltage(vdd, apm_volt, apm_volt);
+	if (rc) {
+		cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
+			 apm_volt, rc);
+		return rc;
+	}
+
+	*last_volt = apm_volt;
+
+	rc = cpr3_regulator_ldo_apm_prepare(ctrl, new_volt, *last_volt,
+					    aggr_corner);
+	if (rc) {
+		cpr3_err(ctrl, "unable to prepare LDO state for APM switch, rc=%d\n",
+			 rc);
+		return rc;
+	}
+
+	rc = msm_apm_set_supply(ctrl->apm, new_volt >= apm_volt
+				? ctrl->apm_high_supply : ctrl->apm_low_supply);
+	if (rc) {
+		cpr3_err(ctrl, "APM switch failed, rc=%d\n", rc);
+		/* Roll back the voltage. */
+		regulator_set_voltage(vdd, orig_last_volt, INT_MAX);
+		*last_volt = orig_last_volt;
+		return rc;
+	}
+	return 0;
+}
+
+/**
+ * cpr3_regulator_config_voltage_crossings() - configure APM and mem-acc
+ *		settings depending upon a new VDD supply setpoint
+ *
+ * @ctrl:		Pointer to the CPR3 controller
+ * @new_volt:		New voltage in microvolts that VDD supply needs to
+ *			end up at
+ * @last_volt:		Pointer to the last known voltage in microvolts for the
+ *			VDD supply
+ * @aggr_corner:	Pointer to the CPR3 corner which corresponds to the max
+ *			corner aggregated from all CPR3 threads managed by the
+ *			CPR3 controller
+ *
+ * This function handles the APM and mem-acc regulator reconfiguration if
+ * the new VDD supply voltage will result in crossing their respective voltage
+ * thresholds.
+ *
+ * Return: 0 on success, errno on failure. If the VDD supply voltage is
+ * modified, last_volt is updated to reflect the new voltage setpoint.
+ */
+static int cpr3_regulator_config_voltage_crossings(struct cpr3_controller *ctrl,
+				   int new_volt, int *last_volt,
+				   struct cpr3_corner *aggr_corner)
+{
+	bool apm_crossing = false, mem_acc_crossing = false;
+	bool mem_acc_bhs_used;
+	int apm_volt = ctrl->apm_threshold_volt;
+	int mem_acc_volt = ctrl->mem_acc_threshold_volt;
+	int ref_volt, rc;
+
+	if (ctrl->apm && apm_volt > 0
+	    && ((*last_volt < apm_volt && apm_volt <= new_volt)
+		|| (*last_volt >= apm_volt && apm_volt > new_volt)))
+		apm_crossing = true;
+
+	mem_acc_bhs_used = cpr3_regulator_mem_acc_bhs_used(ctrl);
+
+	ref_volt = ctrl->use_hw_closed_loop ? aggr_corner->floor_volt :
+		new_volt;
+
+	if (mem_acc_bhs_used &&
+	    (((*last_volt < mem_acc_volt && mem_acc_volt <= ref_volt) ||
+	      (*last_volt >= mem_acc_volt && mem_acc_volt > ref_volt))))
+		mem_acc_crossing = true;
+
+	if (apm_crossing && mem_acc_crossing) {
+		if ((new_volt < *last_volt && apm_volt >= mem_acc_volt) ||
+		    (new_volt >= *last_volt && apm_volt < mem_acc_volt)) {
+			rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt,
+							    last_volt,
+							    aggr_corner);
+			if (rc) {
+				cpr3_err(ctrl, "unable to switch APM mode\n");
+				return rc;
+			}
+
+			rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
+						       last_volt, aggr_corner);
+			if (rc) {
+				cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
+				return rc;
+			}
+		} else {
+			rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
+						       last_volt, aggr_corner);
+			if (rc) {
+				cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
+				return rc;
+			}
+
+			rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt,
+							    last_volt,
+							    aggr_corner);
+			if (rc) {
+				cpr3_err(ctrl, "unable to switch APM mode\n");
+				return rc;
+			}
+		}
+	} else if (apm_crossing) {
+		rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt, last_volt,
+						    aggr_corner);
+		if (rc) {
+			cpr3_err(ctrl, "unable to switch APM mode\n");
+			return rc;
+		}
+	} else if (mem_acc_crossing) {
+		rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
+						       last_volt, aggr_corner);
+		if (rc) {
+			cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
+			return rc;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_config_mem_acc() - configure the corner of the mem-acc
+ *			regulator associated with the CPR3 controller
+ * @ctrl:		Pointer to the CPR3 controller
+ * @aggr_corner:	Pointer to the CPR3 corner which corresponds to the max
+ *			corner aggregated from all CPR3 threads managed by the
+ *			CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_config_mem_acc(struct cpr3_controller *ctrl,
+					 struct cpr3_corner *aggr_corner)
+{
+	int rc;
+
+	if (ctrl->mem_acc_regulator && aggr_corner->mem_acc_volt) {
+		rc = regulator_set_voltage(ctrl->mem_acc_regulator,
+					   aggr_corner->mem_acc_volt,
+					   aggr_corner->mem_acc_volt);
+		if (rc) {
+			cpr3_err(ctrl, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
+				 aggr_corner->mem_acc_volt, rc);
+			return rc;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_scale_vdd_voltage() - scale the CPR controlled VDD supply
+ *		voltage to the new level while satisfying any other hardware
+ *		requirements
+ * @ctrl:		Pointer to the CPR3 controller
+ * @new_volt:		New voltage in microvolts that VDD supply needs to end
+ *			up at
+ * @last_volt:		Last known voltage in microvolts for the VDD supply
+ * @aggr_corner:	Pointer to the CPR3 corner which corresponds to the max
+ *			corner aggregated from all CPR3 threads managed by the
+ *			CPR3 controller
+ *
+ * This function scales the CPR controlled VDD supply voltage from its
+ * current level to the new voltage that is specified.  If the supply is
+ * configured to use the APM and the APM threshold is crossed as a result of
+ * the voltage scaling, then this function also stops at the APM threshold,
+ * switches the APM source, and finally sets the final new voltage.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_scale_vdd_voltage(struct cpr3_controller *ctrl,
+				int new_volt, int last_volt,
+				struct cpr3_corner *aggr_corner)
+{
+	struct regulator *vdd = ctrl->vdd_regulator;
+	int rc;
+
+	if (new_volt < last_volt) {
+		if (ctrl->support_ldo300_vreg) {
+			rc = cpr3_regulator_config_mem_acc(ctrl, aggr_corner);
+			if (rc)
+				return rc;
+		}
+
+		/* Decreasing VDD voltage */
+		rc = cpr3_regulator_config_ldo(ctrl, aggr_corner->floor_volt,
+					       ctrl->aggr_corner.ceiling_volt,
+					       new_volt, last_volt);
+		if (rc) {
+			cpr3_err(ctrl, "unable to configure LDO state, rc=%d\n",
+				 rc);
+			return rc;
+		}
+
+		if (!ctrl->support_ldo300_vreg) {
+			rc = cpr3_regulator_config_mem_acc(ctrl, aggr_corner);
+			if (rc)
+				return rc;
+		}
+	} else {
+		/* Increasing VDD voltage */
+		if (ctrl->system_regulator) {
+			rc = regulator_set_voltage(ctrl->system_regulator,
+				aggr_corner->system_volt, INT_MAX);
+			if (rc) {
+				cpr3_err(ctrl, "regulator_set_voltage(system) == %d failed, rc=%d\n",
+					aggr_corner->system_volt, rc);
+				return rc;
+			}
+		}
+	}
+
+	rc = cpr3_regulator_config_voltage_crossings(ctrl, new_volt, &last_volt,
+						     aggr_corner);
+	if (rc) {
+		cpr3_err(ctrl, "unable to handle voltage threshold crossing configurations, rc=%d\n",
+			 rc);
+		return rc;
+	}
+
+	/*
+	 * Subtract a small amount from the min_uV parameter so that the
+	 * set voltage request is not dropped by the framework due to being
+	 * duplicate.  This is needed in order to switch from hardware
+	 * closed-loop to open-loop successfully.
+	 */
+	rc = regulator_set_voltage(vdd, new_volt - (ctrl->cpr_enabled ? 0 : 1),
+				   aggr_corner->ceiling_volt);
+	if (rc) {
+		cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
+			new_volt, rc);
+		return rc;
+	}
+
+	if (new_volt == last_volt && ctrl->supports_hw_closed_loop
+	    && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+		/*
+		 * CPR4 features enforce voltage reprogramming when the last
+		 * set voltage and new set voltage are same. This way, we can
+		 * ensure that SAW PMIC STATUS register is updated with newly
+		 * programmed voltage.
+		 */
+		rc = regulator_sync_voltage(vdd);
+		if (rc) {
+			cpr3_err(ctrl, "regulator_sync_voltage(vdd) == %d failed, rc=%d\n",
+				new_volt, rc);
+			return rc;
+		}
+	}
+
+	if (new_volt >= last_volt) {
+		/* Increasing VDD voltage */
+		rc = cpr3_regulator_config_ldo(ctrl, aggr_corner->floor_volt,
+					       aggr_corner->ceiling_volt,
+					       new_volt, new_volt);
+		if (rc) {
+			cpr3_err(ctrl, "unable to configure LDO state, rc=%d\n",
+				 rc);
+			return rc;
+		}
+
+		rc = cpr3_regulator_config_mem_acc(ctrl, aggr_corner);
+		if (rc)
+			return rc;
+	} else {
+		/* Decreasing VDD voltage */
+		if (ctrl->system_regulator) {
+			rc = regulator_set_voltage(ctrl->system_regulator,
+				aggr_corner->system_volt, INT_MAX);
+			if (rc) {
+				cpr3_err(ctrl, "regulator_set_voltage(system) == %d failed, rc=%d\n",
+					aggr_corner->system_volt, rc);
+				return rc;
+			}
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_get_dynamic_floor_volt() - returns the current dynamic floor
+ *		voltage based upon static configurations and the state of all
+ *		power domains during the last CPR measurement
+ * @ctrl:		Pointer to the CPR3 controller
+ * @reg_last_measurement: Value read from the LAST_MEASUREMENT register
+ *
+ * When using HW closed-loop, the dynamic floor voltage is always returned
+ * regardless of the current state of the power domains.
+ *
+ * Return: dynamic floor voltage in microvolts or 0 if dynamic floor is not
+ *         currently required
+ */
+static int cpr3_regulator_get_dynamic_floor_volt(struct cpr3_controller *ctrl,
+		u32 reg_last_measurement)
+{
+	int dynamic_floor_volt = 0;
+	struct cpr3_regulator *vreg;
+	bool valid, pd_valid;
+	u32 bypass_bits;
+	int i, j;
+
+	if (!ctrl->supports_hw_closed_loop)
+		return 0;
+
+	if (likely(!ctrl->use_hw_closed_loop)) {
+		valid = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_VALID);
+		bypass_bits
+		 = (reg_last_measurement & CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK)
+			>> CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT;
+	} else {
+		/*
+		 * Ensure that the dynamic floor voltage is always used for
+		 * HW closed-loop since the conditions below cannot be evaluated
+		 * after each CPR measurement.
+		 */
+		valid = false;
+		bypass_bits = 0;
+	}
+
+	for (i = 0; i < ctrl->thread_count; i++) {
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+			vreg = &ctrl->thread[i].vreg[j];
+
+			if (!vreg->uses_dynamic_floor)
+				continue;
+
+			pd_valid = !((bypass_bits & vreg->pd_bypass_mask)
+					== vreg->pd_bypass_mask);
+
+			if (!valid || !pd_valid)
+				dynamic_floor_volt = max(dynamic_floor_volt,
+					vreg->corner[
+					 vreg->dynamic_floor_corner].last_volt);
+		}
+	}
+
+	return dynamic_floor_volt;
+}
+
+/**
+ * cpr3_regulator_max_sdelta_diff() - returns the maximum voltage difference in
+ *		microvolts that can result from different operating conditions
+ *		for the specified sdelta struct
+ * @sdelta:		Pointer to the sdelta structure
+ * @step_volt:		Step size in microvolts between available set
+ *			points of the VDD supply.
+ *
+ * Return: voltage difference between the highest and lowest adjustments if
+ *	sdelta and sdelta->table are valid, else 0.
+ */
+static int cpr3_regulator_max_sdelta_diff(const struct cpr4_sdelta *sdelta,
+				int step_volt)
+{
+	int i, j, index, sdelta_min = INT_MAX, sdelta_max = INT_MIN;
+
+	if (!sdelta || !sdelta->table)
+		return 0;
+
+	for (i = 0; i < sdelta->max_core_count; i++) {
+		for (j = 0; j < sdelta->temp_band_count; j++) {
+			index = i * sdelta->temp_band_count + j;
+			sdelta_min = min(sdelta_min, sdelta->table[index]);
+			sdelta_max = max(sdelta_max, sdelta->table[index]);
+		}
+	}
+
+	return (sdelta_max - sdelta_min) * step_volt;
+}
+
+/**
+ * cpr3_regulator_aggregate_sdelta() - check open-loop voltages of current
+ *		aggregated corner and current corner of a given regulator
+ *		and adjust the sdelta strucuture data of aggregate corner.
+ * @aggr_corner:	Pointer to accumulated aggregated corner which
+ *			is both an input and an output
+ * @corner:		Pointer to the corner to be aggregated with
+ *			aggr_corner
+ * @step_volt:		Step size in microvolts between available set
+ *			points of the VDD supply.
+ *
+ * Return: none
+ */
+static void cpr3_regulator_aggregate_sdelta(
+				struct cpr3_corner *aggr_corner,
+				const struct cpr3_corner *corner, int step_volt)
+{
+	struct cpr4_sdelta *aggr_sdelta, *sdelta;
+	int aggr_core_count, core_count, temp_band_count;
+	u32 aggr_index, index;
+	int i, j, sdelta_size, cap_steps, adjust_sdelta;
+
+	aggr_sdelta = aggr_corner->sdelta;
+	sdelta = corner->sdelta;
+
+	if (aggr_corner->open_loop_volt < corner->open_loop_volt) {
+		/*
+		 * Found the new dominant regulator as its open-loop requirement
+		 * is higher than previous dominant regulator. Calculate cap
+		 * voltage to limit the SDELTA values to make sure the runtime
+		 * (Core-count/temp) adjustments do not violate other
+		 * regulators' voltage requirements. Use cpr4_sdelta values of
+		 * new dominant regulator.
+		 */
+		aggr_sdelta->cap_volt = min(aggr_sdelta->cap_volt,
+						(corner->open_loop_volt -
+						aggr_corner->open_loop_volt));
+
+		/* Clear old data in the sdelta table */
+		sdelta_size = aggr_sdelta->max_core_count
+					* aggr_sdelta->temp_band_count;
+
+		if (aggr_sdelta->allow_core_count_adj
+			|| aggr_sdelta->allow_temp_adj)
+			memset(aggr_sdelta->table, 0, sdelta_size
+					* sizeof(*aggr_sdelta->table));
+
+		if (sdelta->allow_temp_adj || sdelta->allow_core_count_adj) {
+			/* Copy new data in sdelta table */
+			sdelta_size = sdelta->max_core_count
+						* sdelta->temp_band_count;
+			if (sdelta->table)
+				memcpy(aggr_sdelta->table, sdelta->table,
+					sdelta_size * sizeof(*sdelta->table));
+		}
+
+		if (sdelta->allow_boost) {
+			memcpy(aggr_sdelta->boost_table, sdelta->boost_table,
+				sdelta->temp_band_count
+				* sizeof(*sdelta->boost_table));
+			aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
+		} else if (aggr_sdelta->allow_boost) {
+			for (i = 0; i < aggr_sdelta->temp_band_count; i++) {
+				adjust_sdelta = (corner->open_loop_volt
+						- aggr_corner->open_loop_volt)
+						/ step_volt;
+				aggr_sdelta->boost_table[i] += adjust_sdelta;
+				aggr_sdelta->boost_table[i]
+					= min(aggr_sdelta->boost_table[i], 0);
+			}
+		}
+
+		aggr_corner->open_loop_volt = corner->open_loop_volt;
+		aggr_sdelta->allow_temp_adj = sdelta->allow_temp_adj;
+		aggr_sdelta->allow_core_count_adj
+					= sdelta->allow_core_count_adj;
+		aggr_sdelta->max_core_count = sdelta->max_core_count;
+		aggr_sdelta->temp_band_count = sdelta->temp_band_count;
+	} else if (aggr_corner->open_loop_volt > corner->open_loop_volt) {
+		/*
+		 * Adjust the cap voltage if the open-loop requirement of new
+		 * regulator is the next highest.
+		 */
+		aggr_sdelta->cap_volt = min(aggr_sdelta->cap_volt,
+						(aggr_corner->open_loop_volt
+						- corner->open_loop_volt));
+
+		if (sdelta->allow_boost) {
+			for (i = 0; i < aggr_sdelta->temp_band_count; i++) {
+				adjust_sdelta = (aggr_corner->open_loop_volt
+						- corner->open_loop_volt)
+						/ step_volt;
+				aggr_sdelta->boost_table[i] =
+					sdelta->boost_table[i] + adjust_sdelta;
+				aggr_sdelta->boost_table[i]
+					= min(aggr_sdelta->boost_table[i], 0);
+			}
+			aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
+		}
+	} else {
+		/*
+		 * Found another dominant regulator with same open-loop
+		 * requirement. Make cap voltage to '0'. Disable core-count
+		 * adjustments as we couldn't support for both regulators.
+		 * Keep enable temp based adjustments if enabled for both
+		 * regulators and choose mininum margin adjustment values
+		 * between them.
+		 */
+		aggr_sdelta->cap_volt = 0;
+		aggr_sdelta->allow_core_count_adj = false;
+
+		if (aggr_sdelta->allow_temp_adj
+					&& sdelta->allow_temp_adj) {
+			aggr_core_count = aggr_sdelta->max_core_count - 1;
+			core_count = sdelta->max_core_count - 1;
+			temp_band_count = sdelta->temp_band_count;
+			for (j = 0; j < temp_band_count; j++) {
+				aggr_index = aggr_core_count * temp_band_count
+						+ j;
+				index = core_count * temp_band_count + j;
+				aggr_sdelta->table[aggr_index] =
+					min(aggr_sdelta->table[aggr_index],
+						sdelta->table[index]);
+			}
+		} else {
+			aggr_sdelta->allow_temp_adj = false;
+		}
+
+		if (sdelta->allow_boost) {
+			memcpy(aggr_sdelta->boost_table, sdelta->boost_table,
+				sdelta->temp_band_count
+				* sizeof(*sdelta->boost_table));
+			aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
+		}
+	}
+
+	/* Keep non-dominant clients boost enable state */
+	aggr_sdelta->allow_boost |= sdelta->allow_boost;
+	if (aggr_sdelta->allow_boost)
+		aggr_sdelta->allow_core_count_adj = false;
+
+	if (aggr_sdelta->cap_volt && !(aggr_sdelta->cap_volt == INT_MAX)) {
+		core_count = aggr_sdelta->max_core_count;
+		temp_band_count = aggr_sdelta->temp_band_count;
+		/*
+		 * Convert cap voltage from uV to PMIC steps and use to limit
+		 * sdelta margin adjustments.
+		 */
+		cap_steps = aggr_sdelta->cap_volt / step_volt;
+		for (i = 0; i < core_count; i++)
+			for (j = 0; j < temp_band_count; j++) {
+				index = i * temp_band_count + j;
+				aggr_sdelta->table[index] =
+						min(aggr_sdelta->table[index],
+							cap_steps);
+		}
+	}
+}
+
+/**
+ * cpr3_regulator_aggregate_corners() - aggregate two corners together
+ * @aggr_corner:		Pointer to accumulated aggregated corner which
+ *				is both an input and an output
+ * @corner:			Pointer to the corner to be aggregated with
+ *				aggr_corner
+ * @aggr_quot:			Flag indicating that target quotients should be
+ *				aggregated as well.
+ * @step_volt:			Step size in microvolts between available set
+ *				points of the VDD supply.
+ *
+ * Return: none
+ */
+static void cpr3_regulator_aggregate_corners(struct cpr3_corner *aggr_corner,
+			const struct cpr3_corner *corner, bool aggr_quot,
+			int step_volt)
+{
+	int i;
+
+	aggr_corner->ceiling_volt
+		= max(aggr_corner->ceiling_volt, corner->ceiling_volt);
+	aggr_corner->floor_volt
+		= max(aggr_corner->floor_volt, corner->floor_volt);
+	aggr_corner->last_volt
+		= max(aggr_corner->last_volt, corner->last_volt);
+	aggr_corner->system_volt
+		= max(aggr_corner->system_volt, corner->system_volt);
+	aggr_corner->mem_acc_volt
+		= max(aggr_corner->mem_acc_volt, corner->mem_acc_volt);
+	aggr_corner->irq_en |= corner->irq_en;
+	aggr_corner->use_open_loop |= corner->use_open_loop;
+	aggr_corner->ldo_mode_allowed |= corner->ldo_mode_allowed;
+
+	if (aggr_quot) {
+		aggr_corner->ro_mask &= corner->ro_mask;
+
+		for (i = 0; i < CPR3_RO_COUNT; i++)
+			aggr_corner->target_quot[i]
+				= max(aggr_corner->target_quot[i],
+				      corner->target_quot[i]);
+	}
+
+	if (aggr_corner->sdelta && corner->sdelta
+		&& (aggr_corner->sdelta->table
+		|| aggr_corner->sdelta->boost_table)) {
+		cpr3_regulator_aggregate_sdelta(aggr_corner, corner, step_volt);
+	} else {
+		aggr_corner->open_loop_volt
+			= max(aggr_corner->open_loop_volt,
+				corner->open_loop_volt);
+	}
+}
+
+/**
+ * cpr3_regulator_update_ctrl_state() - update the state of the CPR controller
+ *		to reflect the corners used by all CPR3 regulators as well as
+ *		the CPR operating mode
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * This function aggregates the CPR parameters for all CPR3 regulators
+ * associated with the VDD supply.  Upon success, it sets the aggregated last
+ * known good voltage.
+ *
+ * The VDD supply voltage will not be physically configured unless this
+ * condition is met by at least one of the regulators of the controller:
+ * regulator->vreg_enabled == true &&
+ * regulator->current_corner != CPR3_REGULATOR_CORNER_INVALID
+ *
+ * CPR registers for the controller and each thread are updated as long as
+ * ctrl->cpr_enabled == true.
+ *
+ * Note, CPR3 controller lock must be held by the caller.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int _cpr3_regulator_update_ctrl_state(struct cpr3_controller *ctrl)
+{
+	struct cpr3_corner aggr_corner = {};
+	struct cpr3_thread *thread;
+	struct cpr3_regulator *vreg;
+	struct cpr4_sdelta *sdelta;
+	bool valid = false;
+	bool thread_valid;
+	int i, j, rc, new_volt, vdd_volt, dynamic_floor_volt, last_corner_volt;
+	u32 reg_last_measurement = 0, sdelta_size;
+	int *sdelta_table, *boost_table;
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+		rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+				rc);
+			return rc;
+		}
+	}
+
+	cpr3_ctrl_loop_disable(ctrl);
+
+	vdd_volt = regulator_get_voltage(ctrl->vdd_regulator);
+	if (vdd_volt < 0) {
+		cpr3_err(ctrl, "regulator_get_voltage(vdd) failed, rc=%d\n",
+			 vdd_volt);
+		return vdd_volt;
+	}
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+		/*
+		 * Save aggregated corner open-loop voltage which was programmed
+		 * during last corner switch which is used when programming new
+		 * aggregated corner open-loop voltage.
+		 */
+		last_corner_volt = ctrl->aggr_corner.open_loop_volt;
+	}
+
+	if (ctrl->cpr_enabled && ctrl->use_hw_closed_loop &&
+		ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
+		reg_last_measurement
+			= cpr3_read(ctrl, CPR3_REG_LAST_MEASUREMENT);
+
+	aggr_corner.sdelta = ctrl->aggr_corner.sdelta;
+	if (aggr_corner.sdelta) {
+		sdelta = aggr_corner.sdelta;
+		sdelta_table = sdelta->table;
+		if (sdelta_table) {
+			sdelta_size = sdelta->max_core_count *
+					sdelta->temp_band_count;
+			memset(sdelta_table, 0, sdelta_size
+					* sizeof(*sdelta_table));
+		}
+
+		boost_table = sdelta->boost_table;
+		if (boost_table)
+			memset(boost_table, 0, sdelta->temp_band_count
+					* sizeof(*boost_table));
+
+		memset(sdelta, 0, sizeof(*sdelta));
+		sdelta->table = sdelta_table;
+		sdelta->cap_volt = INT_MAX;
+		sdelta->boost_table = boost_table;
+	}
+
+	/* Aggregate the requests of all threads */
+	for (i = 0; i < ctrl->thread_count; i++) {
+		thread = &ctrl->thread[i];
+		thread_valid = false;
+
+		sdelta = thread->aggr_corner.sdelta;
+		if (sdelta) {
+			sdelta_table = sdelta->table;
+			if (sdelta_table) {
+				sdelta_size = sdelta->max_core_count *
+						sdelta->temp_band_count;
+				memset(sdelta_table, 0, sdelta_size
+						* sizeof(*sdelta_table));
+			}
+
+			boost_table = sdelta->boost_table;
+			if (boost_table)
+				memset(boost_table, 0, sdelta->temp_band_count
+						* sizeof(*boost_table));
+
+			memset(sdelta, 0, sizeof(*sdelta));
+			sdelta->table = sdelta_table;
+			sdelta->cap_volt = INT_MAX;
+			sdelta->boost_table = boost_table;
+		}
+
+		memset(&thread->aggr_corner, 0, sizeof(thread->aggr_corner));
+		thread->aggr_corner.sdelta = sdelta;
+		thread->aggr_corner.ro_mask = CPR3_RO_MASK;
+
+		for (j = 0; j < thread->vreg_count; j++) {
+			vreg = &thread->vreg[j];
+
+			if (ctrl->cpr_enabled && ctrl->use_hw_closed_loop)
+				cpr3_update_vreg_closed_loop_volt(vreg,
+						vdd_volt, reg_last_measurement);
+
+			if (!vreg->vreg_enabled
+			    || vreg->current_corner
+					    == CPR3_REGULATOR_CORNER_INVALID) {
+				/* Cannot participate in aggregation. */
+				vreg->aggregated = false;
+				continue;
+			} else {
+				vreg->aggregated = true;
+				thread_valid = true;
+			}
+
+			cpr3_regulator_aggregate_corners(&thread->aggr_corner,
+					&vreg->corner[vreg->current_corner],
+					true, ctrl->step_volt);
+		}
+
+		valid |= thread_valid;
+
+		if (thread_valid)
+			cpr3_regulator_aggregate_corners(&aggr_corner,
+					&thread->aggr_corner,
+					false, ctrl->step_volt);
+	}
+
+	if (valid && ctrl->cpr_allowed_hw && ctrl->cpr_allowed_sw) {
+		rc = cpr3_closed_loop_enable(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "could not enable CPR, rc=%d\n", rc);
+			return rc;
+		}
+	} else {
+		rc = cpr3_closed_loop_disable(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "could not disable CPR, rc=%d\n", rc);
+			return rc;
+		}
+	}
+
+	/* No threads are enabled with a valid corner so exit. */
+	if (!valid)
+		return 0;
+
+	/*
+	 * When using CPR hardware closed-loop, the voltage may vary anywhere
+	 * between the floor and ceiling voltage without software notification.
+	 * Therefore, it is required that the floor to ceiling range for the
+	 * aggregated corner not intersect the APM threshold voltage.  Adjust
+	 * the floor to ceiling range if this requirement is violated.
+	 *
+	 * The following algorithm is applied in the case that
+	 * floor < threshold <= ceiling:
+	 *	if open_loop >= threshold - adj, then floor = threshold
+	 *	else ceiling = threshold - step
+	 * where adj = an adjustment factor to ensure sufficient voltage margin
+	 * and step = VDD output step size
+	 *
+	 * The open-loop and last known voltages are also bounded by the new
+	 * floor or ceiling value as needed.
+	 */
+	if (ctrl->use_hw_closed_loop
+	    && aggr_corner.ceiling_volt >= ctrl->apm_threshold_volt
+	    && aggr_corner.floor_volt < ctrl->apm_threshold_volt) {
+
+		if (aggr_corner.open_loop_volt
+		    >= ctrl->apm_threshold_volt - ctrl->apm_adj_volt)
+			aggr_corner.floor_volt = ctrl->apm_threshold_volt;
+		else
+			aggr_corner.ceiling_volt
+				= ctrl->apm_threshold_volt - ctrl->step_volt;
+
+		aggr_corner.last_volt
+		    = max(aggr_corner.last_volt, aggr_corner.floor_volt);
+		aggr_corner.last_volt
+		    = min(aggr_corner.last_volt, aggr_corner.ceiling_volt);
+		aggr_corner.open_loop_volt
+		    = max(aggr_corner.open_loop_volt, aggr_corner.floor_volt);
+		aggr_corner.open_loop_volt
+		    = min(aggr_corner.open_loop_volt, aggr_corner.ceiling_volt);
+	}
+
+	if (ctrl->use_hw_closed_loop
+	    && aggr_corner.ceiling_volt >= ctrl->mem_acc_threshold_volt
+	    && aggr_corner.floor_volt < ctrl->mem_acc_threshold_volt) {
+		aggr_corner.floor_volt = ctrl->mem_acc_threshold_volt;
+		aggr_corner.last_volt = max(aggr_corner.last_volt,
+					     aggr_corner.floor_volt);
+		aggr_corner.open_loop_volt = max(aggr_corner.open_loop_volt,
+						  aggr_corner.floor_volt);
+	}
+
+	if (ctrl->use_hw_closed_loop) {
+		dynamic_floor_volt
+			= cpr3_regulator_get_dynamic_floor_volt(ctrl,
+							reg_last_measurement);
+		if (aggr_corner.floor_volt < dynamic_floor_volt) {
+			aggr_corner.floor_volt = dynamic_floor_volt;
+			aggr_corner.last_volt = max(aggr_corner.last_volt,
+							aggr_corner.floor_volt);
+			aggr_corner.open_loop_volt
+				= max(aggr_corner.open_loop_volt,
+					aggr_corner.floor_volt);
+			aggr_corner.ceiling_volt = max(aggr_corner.ceiling_volt,
+							aggr_corner.floor_volt);
+		}
+	}
+
+	if (ctrl->cpr_enabled && ctrl->last_corner_was_closed_loop) {
+		/*
+		 * Always program open-loop voltage for CPR4 controllers which
+		 * support hardware closed-loop.  Storing the last closed loop
+		 * voltage in corner structure can still help with debugging.
+		 */
+		if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
+			new_volt = aggr_corner.last_volt;
+		else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
+			 && ctrl->supports_hw_closed_loop)
+			new_volt = aggr_corner.open_loop_volt;
+		else
+			new_volt = min(aggr_corner.last_volt +
+			      cpr3_regulator_max_sdelta_diff(aggr_corner.sdelta,
+							     ctrl->step_volt),
+				       aggr_corner.ceiling_volt);
+	} else {
+		new_volt = aggr_corner.open_loop_volt;
+		aggr_corner.last_volt = aggr_corner.open_loop_volt;
+	}
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
+	    && ctrl->supports_hw_closed_loop) {
+		/*
+		 * Store last aggregated corner open-loop voltage in vdd_volt
+		 * which is used when programming current aggregated corner
+		 * required voltage.
+		 */
+		vdd_volt = last_corner_volt;
+	}
+
+	cpr3_debug(ctrl, "setting new voltage=%d uV\n", new_volt);
+	rc = cpr3_regulator_scale_vdd_voltage(ctrl, new_volt,
+					      vdd_volt, &aggr_corner);
+	if (rc) {
+		cpr3_err(ctrl, "vdd voltage scaling failed, rc=%d\n", rc);
+		return rc;
+	}
+
+	/* Only update registers if CPR is enabled. */
+	if (ctrl->cpr_enabled) {
+		if (ctrl->use_hw_closed_loop) {
+			/* Hardware closed-loop */
+
+			/* Set ceiling and floor limits in hardware */
+			rc = regulator_set_voltage(ctrl->vdd_limit_regulator,
+				aggr_corner.floor_volt,
+				aggr_corner.ceiling_volt);
+			if (rc) {
+				cpr3_err(ctrl, "could not configure HW closed-loop voltage limits, rc=%d\n",
+					rc);
+				return rc;
+			}
+		} else {
+			/* Software closed-loop */
+
+			/*
+			 * Disable UP or DOWN interrupts when at ceiling or
+			 * floor respectively.
+			 */
+			if (new_volt == aggr_corner.floor_volt)
+				aggr_corner.irq_en &= ~CPR3_IRQ_DOWN;
+			if (new_volt == aggr_corner.ceiling_volt)
+				aggr_corner.irq_en &= ~CPR3_IRQ_UP;
+
+			cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
+				CPR3_IRQ_UP | CPR3_IRQ_DOWN);
+			cpr3_write(ctrl, CPR3_REG_IRQ_EN, aggr_corner.irq_en);
+		}
+
+		for (i = 0; i < ctrl->thread_count; i++) {
+			cpr3_regulator_set_target_quot(&ctrl->thread[i]);
+
+			for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+				vreg = &ctrl->thread[i].vreg[j];
+
+				if (vreg->vreg_enabled)
+					vreg->last_closed_loop_corner
+						= vreg->current_corner;
+			}
+		}
+
+		if (ctrl->proc_clock_throttle) {
+			if (aggr_corner.ceiling_volt > aggr_corner.floor_volt
+			    && (ctrl->use_hw_closed_loop
+					|| new_volt < aggr_corner.ceiling_volt))
+				cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+						ctrl->proc_clock_throttle);
+			else
+				cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+						CPR3_PD_THROTTLE_DISABLE);
+		}
+
+		/*
+		 * Ensure that all CPR register writes complete before
+		 * re-enabling CPR loop operation.
+		 */
+		wmb();
+	} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
+		   && ctrl->vdd_limit_regulator) {
+		/* Set ceiling and floor limits in hardware */
+		rc = regulator_set_voltage(ctrl->vdd_limit_regulator,
+			aggr_corner.floor_volt,
+			aggr_corner.ceiling_volt);
+		if (rc) {
+			cpr3_err(ctrl, "could not configure HW closed-loop voltage limits, rc=%d\n",
+				rc);
+			return rc;
+		}
+	}
+
+	ctrl->aggr_corner = aggr_corner;
+
+	if (ctrl->allow_core_count_adj || ctrl->allow_temp_adj
+		|| ctrl->allow_boost) {
+		rc = cpr3_controller_program_sdelta(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "failed to program sdelta, rc=%d\n", rc);
+			return rc;
+		}
+	}
+
+	/*
+	 * Only enable the CPR controller if it is possible to set more than
+	 * one vdd-supply voltage.
+	 */
+	if (aggr_corner.ceiling_volt > aggr_corner.floor_volt &&
+			!aggr_corner.use_open_loop)
+		cpr3_ctrl_loop_enable(ctrl);
+
+	ctrl->last_corner_was_closed_loop = ctrl->cpr_enabled;
+	cpr3_debug(ctrl, "CPR configuration updated\n");
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_wait_for_idle() - wait for the CPR controller to no longer be
+ *		busy
+ * @ctrl:		Pointer to the CPR3 controller
+ * @max_wait_ns:	Max wait time in nanoseconds
+ *
+ * Return: 0 on success or -ETIMEDOUT if the controller was still busy after
+ *	   the maximum delay time
+ */
+static int cpr3_regulator_wait_for_idle(struct cpr3_controller *ctrl,
+					s64 max_wait_ns)
+{
+	ktime_t start, end;
+	s64 time_ns;
+	u32 reg;
+
+	/*
+	 * Ensure that all previous CPR register writes have completed before
+	 * checking the status register.
+	 */
+	mb();
+
+	start = ktime_get();
+	do {
+		end = ktime_get();
+		time_ns = ktime_to_ns(ktime_sub(end, start));
+		if (time_ns > max_wait_ns) {
+			cpr3_err(ctrl, "CPR controller still busy after %lld us\n",
+				div_s64(time_ns, 1000));
+			return -ETIMEDOUT;
+		}
+		usleep_range(50, 100);
+		reg = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
+	} while (reg & CPR3_CPR_STATUS_BUSY_MASK);
+
+	return 0;
+}
+
+/**
+ * cmp_int() - int comparison function to be passed into the sort() function
+ *		which leads to ascending sorting
+ * @a:			First int value
+ * @b:			Second int value
+ *
+ * Return: >0 if a > b, 0 if a == b, <0 if a < b
+ */
+static int cmp_int(const void *a, const void *b)
+{
+	return *(int *)a - *(int *)b;
+}
+
+/**
+ * cpr3_regulator_measure_aging() - measure the quotient difference for the
+ *		specified CPR aging sensor
+ * @ctrl:		Pointer to the CPR3 controller
+ * @aging_sensor:	Aging sensor to measure
+ *
+ * Note that vdd-supply must be configured to the aging reference voltage before
+ * calling this function.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_measure_aging(struct cpr3_controller *ctrl,
+				struct cpr3_aging_sensor_info *aging_sensor)
+{
+	u32 mask, reg, result, quot_min, quot_max, sel_min, sel_max;
+	u32 quot_min_scaled, quot_max_scaled;
+	u32 gcnt, gcnt_ref, gcnt0_restore, gcnt1_restore, irq_restore;
+	u32 ro_mask_restore, cont_dly_restore, up_down_dly_restore = 0;
+	int quot_delta, quot_delta_scaled, quot_delta_scaled_sum;
+	int *quot_delta_results;
+	int rc, rc2, i, aging_measurement_count, filtered_count;
+	bool is_aging_measurement;
+
+	quot_delta_results = kcalloc(CPR3_AGING_MEASUREMENT_ITERATIONS,
+			sizeof(*quot_delta_results), GFP_KERNEL);
+	if (!quot_delta_results)
+		return -ENOMEM;
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+		rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+				rc);
+			kfree(quot_delta_results);
+			return rc;
+		}
+	}
+
+	cpr3_ctrl_loop_disable(ctrl);
+
+	/* Enable up, down, and mid CPR interrupts */
+	irq_restore = cpr3_read(ctrl, CPR3_REG_IRQ_EN);
+	cpr3_write(ctrl, CPR3_REG_IRQ_EN,
+			CPR3_IRQ_UP | CPR3_IRQ_DOWN | CPR3_IRQ_MID);
+
+	/* Ensure that the aging sensor is assigned to CPR thread 0 */
+	cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(aging_sensor->sensor_id), 0);
+
+	/* Switch from HW to SW closed-loop if necessary */
+	if (ctrl->supports_hw_closed_loop) {
+		if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4 ||
+		    ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
+			cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+				CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+				CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
+		} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+			cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
+				CPR3_HW_CLOSED_LOOP_DISABLE);
+		}
+	}
+
+	/* Configure the GCNT for RO0 and RO1 that are used for aging */
+	gcnt0_restore = cpr3_read(ctrl, CPR3_REG_GCNT(0));
+	gcnt1_restore = cpr3_read(ctrl, CPR3_REG_GCNT(1));
+	gcnt_ref = cpr3_regulator_get_gcnt(ctrl);
+	gcnt = gcnt_ref * 3 / 2;
+	cpr3_write(ctrl, CPR3_REG_GCNT(0), gcnt);
+	cpr3_write(ctrl, CPR3_REG_GCNT(1), gcnt);
+
+	/* Unmask all RO's */
+	ro_mask_restore = cpr3_read(ctrl, CPR3_REG_RO_MASK(0));
+	cpr3_write(ctrl, CPR3_REG_RO_MASK(0), 0);
+
+	/*
+	 * Mask all sensors except for the one to measure and bypass all
+	 * sensors in collapsible domains.
+	 */
+	for (i = 0; i <= ctrl->sensor_count / 32; i++) {
+		mask = GENMASK(min(31, ctrl->sensor_count - i * 32), 0);
+		if (aging_sensor->sensor_id / 32 >= i
+		    && aging_sensor->sensor_id / 32 < (i + 1))
+			mask &= ~BIT(aging_sensor->sensor_id % 32);
+		cpr3_write(ctrl, CPR3_REG_SENSOR_MASK_WRITE_BANK(i), mask);
+		cpr3_write(ctrl, CPR3_REG_SENSOR_BYPASS_WRITE_BANK(i),
+				aging_sensor->bypass_mask[i]);
+	}
+
+	/* Set CPR loop delays to 0 us */
+	if (ctrl->supports_hw_closed_loop
+		&& ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+		cont_dly_restore = cpr3_read(ctrl, CPR3_REG_CPR_TIMER_MID_CONT);
+		up_down_dly_restore = cpr3_read(ctrl,
+						CPR3_REG_CPR_TIMER_UP_DN_CONT);
+		cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, 0);
+		cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT, 0);
+	} else {
+		cont_dly_restore = cpr3_read(ctrl,
+						CPR3_REG_CPR_TIMER_AUTO_CONT);
+		cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT, 0);
+	}
+
+	/* Set count mode to all-at-once min with no repeat */
+	cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
+		CPR3_CPR_CTL_COUNT_MODE_MASK | CPR3_CPR_CTL_COUNT_REPEAT_MASK,
+		CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MIN
+			<< CPR3_CPR_CTL_COUNT_MODE_SHIFT);
+
+	cpr3_ctrl_loop_enable(ctrl);
+
+	rc = cpr3_regulator_wait_for_idle(ctrl,
+					CPR3_AGING_MEASUREMENT_TIMEOUT_NS);
+	if (rc)
+		goto cleanup;
+
+	/* Set count mode to all-at-once aging */
+	cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL, CPR3_CPR_CTL_COUNT_MODE_MASK,
+			CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_AGE
+				<< CPR3_CPR_CTL_COUNT_MODE_SHIFT);
+
+	aging_measurement_count = 0;
+	for (i = 0; i < CPR3_AGING_MEASUREMENT_ITERATIONS; i++) {
+		/* Send CONT_NACK */
+		cpr3_write(ctrl, CPR3_REG_CONT_CMD, CPR3_CONT_CMD_NACK);
+
+		rc = cpr3_regulator_wait_for_idle(ctrl,
+					CPR3_AGING_MEASUREMENT_TIMEOUT_NS);
+		if (rc)
+			goto cleanup;
+
+		/* Check for PAGE_IS_AGE flag in status register */
+		reg = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
+		is_aging_measurement
+			= reg & CPR3_CPR_STATUS_AGING_MEASUREMENT_MASK;
+
+		/* Read CPR measurement results */
+		result = cpr3_read(ctrl, CPR3_REG_RESULT1(0));
+		quot_min = (result & CPR3_RESULT1_QUOT_MIN_MASK)
+				>> CPR3_RESULT1_QUOT_MIN_SHIFT;
+		quot_max = (result & CPR3_RESULT1_QUOT_MAX_MASK)
+				>> CPR3_RESULT1_QUOT_MAX_SHIFT;
+		sel_min = (result & CPR3_RESULT1_RO_MIN_MASK)
+				>> CPR3_RESULT1_RO_MIN_SHIFT;
+		sel_max = (result & CPR3_RESULT1_RO_MAX_MASK)
+				>> CPR3_RESULT1_RO_MAX_SHIFT;
+
+		/*
+		 * Scale the quotients so that they are equivalent to the fused
+		 * values.  This accounts for the difference in measurement
+		 * interval times.
+		 */
+		quot_min_scaled = quot_min * (gcnt_ref + 1) / (gcnt + 1);
+		quot_max_scaled = quot_max * (gcnt_ref + 1) / (gcnt + 1);
+
+		if (sel_max == 1) {
+			quot_delta = quot_max - quot_min;
+			quot_delta_scaled = quot_max_scaled - quot_min_scaled;
+		} else {
+			quot_delta = quot_min - quot_max;
+			quot_delta_scaled = quot_min_scaled - quot_max_scaled;
+		}
+
+		if (is_aging_measurement)
+			quot_delta_results[aging_measurement_count++]
+				= quot_delta_scaled;
+
+		cpr3_debug(ctrl, "aging results: page_is_age=%u, sel_min=%u, sel_max=%u, quot_min=%u, quot_max=%u, quot_delta=%d, quot_min_scaled=%u, quot_max_scaled=%u, quot_delta_scaled=%d\n",
+			is_aging_measurement, sel_min, sel_max, quot_min,
+			quot_max, quot_delta, quot_min_scaled, quot_max_scaled,
+			quot_delta_scaled);
+	}
+
+	filtered_count
+		= aging_measurement_count - CPR3_AGING_MEASUREMENT_FILTER * 2;
+	if (filtered_count > 0) {
+		sort(quot_delta_results, aging_measurement_count,
+			sizeof(*quot_delta_results), cmp_int, NULL);
+
+		quot_delta_scaled_sum = 0;
+		for (i = 0; i < filtered_count; i++)
+			quot_delta_scaled_sum
+				+= quot_delta_results[i
+					+ CPR3_AGING_MEASUREMENT_FILTER];
+
+		aging_sensor->measured_quot_diff
+			= quot_delta_scaled_sum / filtered_count;
+		cpr3_info(ctrl, "average quotient delta=%d (count=%d)\n",
+			aging_sensor->measured_quot_diff,
+			filtered_count);
+	} else {
+		cpr3_err(ctrl, "%d aging measurements completed after %d iterations\n",
+			aging_measurement_count,
+			CPR3_AGING_MEASUREMENT_ITERATIONS);
+		rc = -EBUSY;
+	}
+
+cleanup:
+	kfree(quot_delta_results);
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+		rc2 = cpr3_ctrl_clear_cpr4_config(ctrl);
+		if (rc2) {
+			cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+				rc2);
+			rc = rc2;
+		}
+	}
+
+	cpr3_ctrl_loop_disable(ctrl);
+
+	cpr3_write(ctrl, CPR3_REG_IRQ_EN, irq_restore);
+
+	cpr3_write(ctrl, CPR3_REG_RO_MASK(0), ro_mask_restore);
+
+	cpr3_write(ctrl, CPR3_REG_GCNT(0), gcnt0_restore);
+	cpr3_write(ctrl, CPR3_REG_GCNT(1), gcnt1_restore);
+
+	if (ctrl->supports_hw_closed_loop
+		&& ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+		cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, cont_dly_restore);
+		cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT,
+				up_down_dly_restore);
+	} else {
+		cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT,
+				cont_dly_restore);
+	}
+
+	for (i = 0; i <= ctrl->sensor_count / 32; i++) {
+		cpr3_write(ctrl, CPR3_REG_SENSOR_MASK_WRITE_BANK(i), 0);
+		cpr3_write(ctrl, CPR3_REG_SENSOR_BYPASS_WRITE_BANK(i), 0);
+	}
+
+	cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
+		CPR3_CPR_CTL_COUNT_MODE_MASK | CPR3_CPR_CTL_COUNT_REPEAT_MASK,
+		(ctrl->count_mode << CPR3_CPR_CTL_COUNT_MODE_SHIFT)
+		| (ctrl->count_repeat << CPR3_CPR_CTL_COUNT_REPEAT_SHIFT));
+
+	cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(aging_sensor->sensor_id),
+			ctrl->sensor_owner[aging_sensor->sensor_id]);
+
+	cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
+			CPR3_IRQ_UP | CPR3_IRQ_DOWN | CPR3_IRQ_MID);
+
+	if (ctrl->supports_hw_closed_loop) {
+		if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4 ||
+		    ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
+			cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+				CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+				ctrl->use_hw_closed_loop
+				? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
+				: CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
+		} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+			cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
+				ctrl->use_hw_closed_loop
+				? CPR3_HW_CLOSED_LOOP_ENABLE
+				: CPR3_HW_CLOSED_LOOP_DISABLE);
+		}
+	}
+
+	return rc;
+}
+
+/**
+ * cpr3_regulator_readjust_volt_and_quot() - readjust the target quotients as
+ *		well as the floor, ceiling, and open-loop voltages for the
+ *		regulator by removing the old adjustment and adding the new one
+ * @vreg:		Pointer to the CPR3 regulator
+ * @old_adjust_volt:	Old aging adjustment voltage in microvolts
+ * @new_adjust_volt:	New aging adjustment voltage in microvolts
+ *
+ * Also reset the cached closed loop voltage (last_volt) to equal the open-loop
+ * voltage for each corner.
+ *
+ * Return: None
+ */
+static void cpr3_regulator_readjust_volt_and_quot(struct cpr3_regulator *vreg,
+		int old_adjust_volt, int new_adjust_volt)
+{
+	unsigned long long temp;
+	int i, j, old_volt, new_volt, rounded_volt;
+
+	if (!vreg->aging_allowed)
+		return;
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		temp = (unsigned long long)old_adjust_volt
+			* (unsigned long long)vreg->corner[i].aging_derate;
+		do_div(temp, 1000);
+		old_volt = temp;
+
+		temp = (unsigned long long)new_adjust_volt
+			* (unsigned long long)vreg->corner[i].aging_derate;
+		do_div(temp, 1000);
+		new_volt = temp;
+
+		old_volt = min(vreg->aging_max_adjust_volt, old_volt);
+		new_volt = min(vreg->aging_max_adjust_volt, new_volt);
+
+		for (j = 0; j < CPR3_RO_COUNT; j++) {
+			if (vreg->corner[i].target_quot[j] != 0) {
+				vreg->corner[i].target_quot[j]
+					+= cpr3_quot_adjustment(
+						vreg->corner[i].ro_scale[j],
+						new_volt)
+					   - cpr3_quot_adjustment(
+						vreg->corner[i].ro_scale[j],
+						old_volt);
+			}
+		}
+
+		rounded_volt = CPR3_ROUND(new_volt,
+					vreg->thread->ctrl->step_volt);
+
+		if (!vreg->aging_allow_open_loop_adj)
+			rounded_volt = 0;
+
+		vreg->corner[i].ceiling_volt
+			= vreg->corner[i].unaged_ceiling_volt + rounded_volt;
+		vreg->corner[i].ceiling_volt = min(vreg->corner[i].ceiling_volt,
+					      vreg->corner[i].abs_ceiling_volt);
+		vreg->corner[i].floor_volt
+			= vreg->corner[i].unaged_floor_volt + rounded_volt;
+		vreg->corner[i].floor_volt = min(vreg->corner[i].floor_volt,
+						vreg->corner[i].ceiling_volt);
+		vreg->corner[i].open_loop_volt
+			= vreg->corner[i].unaged_open_loop_volt + rounded_volt;
+		vreg->corner[i].open_loop_volt
+			= min(vreg->corner[i].open_loop_volt,
+				vreg->corner[i].ceiling_volt);
+
+		vreg->corner[i].last_volt = vreg->corner[i].open_loop_volt;
+
+		cpr3_debug(vreg, "corner %d: applying %d uV closed-loop and %d uV open-loop voltage margin adjustment\n",
+			i, new_volt, rounded_volt);
+	}
+}
+
+/**
+ * cpr3_regulator_set_aging_ref_adjustment() - adjust target quotients for the
+ *		regulators managed by this CPR controller to account for aging
+ * @ctrl:		Pointer to the CPR3 controller
+ * @ref_adjust_volt:	New aging reference adjustment voltage in microvolts to
+ *			apply to all regulators managed by this CPR controller
+ *
+ * The existing aging adjustment as defined by ctrl->aging_ref_adjust_volt is
+ * first removed and then the adjustment is applied.  Lastly, the value of
+ * ctrl->aging_ref_adjust_volt is updated to ref_adjust_volt.
+ */
+static void cpr3_regulator_set_aging_ref_adjustment(
+		struct cpr3_controller *ctrl, int ref_adjust_volt)
+{
+	struct cpr3_regulator *vreg;
+	int i, j;
+
+	for (i = 0; i < ctrl->thread_count; i++) {
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+			vreg = &ctrl->thread[i].vreg[j];
+			cpr3_regulator_readjust_volt_and_quot(vreg,
+				ctrl->aging_ref_adjust_volt, ref_adjust_volt);
+			if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH)
+				cprh_adjust_voltages_for_apm(vreg);
+		}
+	}
+
+	ctrl->aging_ref_adjust_volt = ref_adjust_volt;
+}
+
+/**
+ * cpr3_regulator_aging_adjust() - adjust the target quotients for regulators
+ *		based on the output of CPR aging sensors
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_aging_adjust(struct cpr3_controller *ctrl)
+{
+	struct cpr3_regulator *vreg;
+	struct cpr3_corner restore_aging_corner;
+	struct cpr3_corner *corner;
+	int *restore_current_corner;
+	bool *restore_vreg_enabled;
+	int i, j, id, rc, rc2, vreg_count, aging_volt, max_aging_volt = 0;
+	u32 reg;
+
+	if (!ctrl->aging_required || !ctrl->cpr_enabled
+	    || ctrl->aggr_corner.ceiling_volt == 0
+	    || ctrl->aggr_corner.ceiling_volt > ctrl->aging_ref_volt)
+		return 0;
+
+	for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+			vreg = &ctrl->thread[i].vreg[j];
+			vreg_count++;
+
+			if (vreg->aging_allowed && vreg->vreg_enabled
+			    && vreg->current_corner > vreg->aging_corner)
+				return 0;
+		}
+	}
+
+	/* Verify that none of the aging sensors are currently masked. */
+	for (i = 0; i < ctrl->aging_sensor_count; i++) {
+		id = ctrl->aging_sensor[i].sensor_id;
+		reg = cpr3_read(ctrl, CPR3_REG_SENSOR_MASK_READ(id));
+		if (reg & BIT(id % 32))
+			return 0;
+	}
+
+	/*
+	 * Verify that the aging possible register (if specified) has an
+	 * acceptable value.
+	 */
+	if (ctrl->aging_possible_reg) {
+		reg = readl_relaxed(ctrl->aging_possible_reg);
+		reg &= ctrl->aging_possible_mask;
+		if (reg != ctrl->aging_possible_val)
+			return 0;
+	}
+
+	restore_current_corner = kcalloc(vreg_count,
+				sizeof(*restore_current_corner), GFP_KERNEL);
+	restore_vreg_enabled = kcalloc(vreg_count,
+				sizeof(*restore_vreg_enabled), GFP_KERNEL);
+	if (!restore_current_corner || !restore_vreg_enabled) {
+		kfree(restore_current_corner);
+		kfree(restore_vreg_enabled);
+		return -ENOMEM;
+	}
+
+	/* Force all regulators to the aging corner */
+	for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++, vreg_count++) {
+			vreg = &ctrl->thread[i].vreg[j];
+
+			restore_current_corner[vreg_count]
+				= vreg->current_corner;
+			restore_vreg_enabled[vreg_count]
+				= vreg->vreg_enabled;
+
+			vreg->current_corner = vreg->aging_corner;
+			vreg->vreg_enabled = true;
+		}
+	}
+
+	/* Force one of the regulators to require the aging reference voltage */
+	vreg = &ctrl->thread[0].vreg[0];
+	corner = &vreg->corner[vreg->current_corner];
+	restore_aging_corner = *corner;
+	corner->ceiling_volt = ctrl->aging_ref_volt;
+	corner->floor_volt = ctrl->aging_ref_volt;
+	corner->open_loop_volt = ctrl->aging_ref_volt;
+	corner->last_volt = ctrl->aging_ref_volt;
+
+	/* Skip last_volt caching */
+	ctrl->last_corner_was_closed_loop = false;
+
+	/* Set the vdd supply voltage to the aging reference voltage */
+	rc = _cpr3_regulator_update_ctrl_state(ctrl);
+	if (rc) {
+		cpr3_err(ctrl, "unable to force vdd-supply to the aging reference voltage=%d uV, rc=%d\n",
+			ctrl->aging_ref_volt, rc);
+		goto cleanup;
+	}
+
+	if (ctrl->aging_vdd_mode) {
+		rc = regulator_set_mode(ctrl->vdd_regulator,
+					ctrl->aging_vdd_mode);
+		if (rc) {
+			cpr3_err(ctrl, "unable to configure vdd-supply for mode=%u, rc=%d\n",
+				ctrl->aging_vdd_mode, rc);
+			goto cleanup;
+		}
+	}
+
+	/* Perform aging measurement on all aging sensors */
+	for (i = 0; i < ctrl->aging_sensor_count; i++) {
+		for (j = 0; j < CPR3_AGING_RETRY_COUNT; j++) {
+			rc = cpr3_regulator_measure_aging(ctrl,
+					&ctrl->aging_sensor[i]);
+			if (!rc)
+				break;
+		}
+
+		if (!rc) {
+			aging_volt =
+				cpr3_voltage_adjustment(
+					ctrl->aging_sensor[i].ro_scale,
+					ctrl->aging_sensor[i].measured_quot_diff
+					- ctrl->aging_sensor[i].init_quot_diff);
+			max_aging_volt = max(max_aging_volt, aging_volt);
+		} else {
+			cpr3_err(ctrl, "CPR aging measurement failed after %d tries, rc=%d\n",
+				j, rc);
+			ctrl->aging_failed = true;
+			ctrl->aging_required = false;
+			goto cleanup;
+		}
+	}
+
+cleanup:
+	vreg = &ctrl->thread[0].vreg[0];
+	vreg->corner[vreg->current_corner] = restore_aging_corner;
+
+	for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++, vreg_count++) {
+			vreg = &ctrl->thread[i].vreg[j];
+			vreg->current_corner
+				= restore_current_corner[vreg_count];
+			vreg->vreg_enabled = restore_vreg_enabled[vreg_count];
+		}
+	}
+
+	kfree(restore_current_corner);
+	kfree(restore_vreg_enabled);
+
+	/* Adjust the CPR target quotients according to the aging measurement */
+	if (!rc) {
+		cpr3_regulator_set_aging_ref_adjustment(ctrl, max_aging_volt);
+
+		cpr3_info(ctrl, "aging measurement successful; aging reference adjustment voltage=%d uV\n",
+			ctrl->aging_ref_adjust_volt);
+		ctrl->aging_succeeded = true;
+		ctrl->aging_required = false;
+	}
+
+	if (ctrl->aging_complete_vdd_mode) {
+		rc = regulator_set_mode(ctrl->vdd_regulator,
+					ctrl->aging_complete_vdd_mode);
+		if (rc)
+			cpr3_err(ctrl, "unable to configure vdd-supply for mode=%u, rc=%d\n",
+				ctrl->aging_complete_vdd_mode, rc);
+	}
+
+	/* Skip last_volt caching */
+	ctrl->last_corner_was_closed_loop = false;
+
+	/*
+	 * Restore vdd-supply to the voltage before the aging measurement and
+	 * restore the CPR3 controller hardware state.
+	 */
+	rc2 = _cpr3_regulator_update_ctrl_state(ctrl);
+
+	/* Stop last_volt caching on for the next request */
+	ctrl->last_corner_was_closed_loop = false;
+
+	return rc ? rc : rc2;
+}
+
+/**
+ * cprh_regulator_aging_adjust() - adjust the target quotients and open-loop
+ *		voltages for CPRh regulators based on the output of CPR aging
+ *		sensors
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_regulator_aging_adjust(struct cpr3_controller *ctrl)
+{
+	int i, j, id, rc, rc2, aging_volt, init_volt;
+	int max_aging_volt = 0;
+	u32 reg;
+
+	if (!ctrl->aging_required || !ctrl->cpr_enabled)
+		return 0;
+
+	if (!ctrl->vdd_regulator) {
+		cpr3_err(ctrl, "vdd-supply regulator missing\n");
+		return -ENODEV;
+	}
+
+	init_volt = regulator_get_voltage(ctrl->vdd_regulator);
+	if (init_volt < 0) {
+		cpr3_err(ctrl, "could not get vdd-supply voltage, rc=%d\n",
+			init_volt);
+		return init_volt;
+	}
+
+	if (init_volt > ctrl->aging_ref_volt) {
+		cpr3_info(ctrl, "unable to perform CPR aging measurement as vdd=%d uV > aging voltage=%d uV\n",
+			init_volt, ctrl->aging_ref_volt);
+		return 0;
+	}
+
+	/* Verify that none of the aging sensors are currently masked. */
+	for (i = 0; i < ctrl->aging_sensor_count; i++) {
+		id = ctrl->aging_sensor[i].sensor_id;
+		reg = cpr3_read(ctrl, CPR3_REG_SENSOR_MASK_READ(id));
+		if (reg & BIT(id % 32)) {
+			cpr3_info(ctrl, "unable to perform CPR aging measurement as CPR sensor %d is masked\n",
+				id);
+			return 0;
+		}
+	}
+
+	rc = regulator_set_voltage(ctrl->vdd_regulator, ctrl->aging_ref_volt,
+				INT_MAX);
+	if (rc) {
+		cpr3_err(ctrl, "unable to set vdd-supply to aging voltage=%d uV, rc=%d\n",
+			ctrl->aging_ref_volt, rc);
+		return rc;
+	}
+
+	if (ctrl->aging_vdd_mode) {
+		rc = regulator_set_mode(ctrl->vdd_regulator,
+					ctrl->aging_vdd_mode);
+		if (rc) {
+			cpr3_err(ctrl, "unable to configure vdd-supply for mode=%u, rc=%d\n",
+				ctrl->aging_vdd_mode, rc);
+			goto cleanup;
+		}
+	}
+
+	/* Perform aging measurement on all aging sensors */
+	for (i = 0; i < ctrl->aging_sensor_count; i++) {
+		for (j = 0; j < CPR3_AGING_RETRY_COUNT; j++) {
+			rc = cpr3_regulator_measure_aging(ctrl,
+					&ctrl->aging_sensor[i]);
+			if (!rc)
+				break;
+		}
+
+		if (!rc) {
+			aging_volt =
+				cpr3_voltage_adjustment(
+					ctrl->aging_sensor[i].ro_scale,
+					ctrl->aging_sensor[i].measured_quot_diff
+					- ctrl->aging_sensor[i].init_quot_diff);
+			max_aging_volt = max(max_aging_volt, aging_volt);
+		} else {
+			cpr3_err(ctrl, "CPR aging measurement failed after %d tries, rc=%d\n",
+				j, rc);
+			ctrl->aging_failed = true;
+			ctrl->aging_required = false;
+			goto cleanup;
+		}
+	}
+
+cleanup:
+	/* Adjust the CPR target quotients according to the aging measurement */
+	if (!rc) {
+		cpr3_regulator_set_aging_ref_adjustment(ctrl, max_aging_volt);
+
+		cpr3_info(ctrl, "aging measurement successful; aging reference adjustment voltage=%d uV\n",
+			ctrl->aging_ref_adjust_volt);
+		ctrl->aging_succeeded = true;
+		ctrl->aging_required = false;
+	}
+
+	rc2 = regulator_set_voltage(ctrl->vdd_regulator, init_volt, INT_MAX);
+	if (rc2) {
+		cpr3_err(ctrl, "unable to reset vdd-supply to initial voltage=%d uV, rc=%d\n",
+			init_volt, rc2);
+		return rc2;
+	}
+
+	if (ctrl->aging_complete_vdd_mode) {
+		rc2 = regulator_set_mode(ctrl->vdd_regulator,
+					ctrl->aging_complete_vdd_mode);
+		if (rc2)  {
+			cpr3_err(ctrl, "unable to configure vdd-supply for mode=%u, rc=%d\n",
+				ctrl->aging_complete_vdd_mode, rc2);
+			return rc2;
+		}
+	}
+
+	return rc;
+}
+
+/**
+ * cpr3_regulator_update_ctrl_state() - update the state of the CPR controller
+ *		to reflect the corners used by all CPR3 regulators as well as
+ *		the CPR operating mode and perform aging adjustments if needed
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Note, CPR3 controller lock must be held by the caller.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_update_ctrl_state(struct cpr3_controller *ctrl)
+{
+	int rc;
+
+	rc = _cpr3_regulator_update_ctrl_state(ctrl);
+	if (rc)
+		return rc;
+
+	return cpr3_regulator_aging_adjust(ctrl);
+}
+
+/**
+ * cpr3_regulator_set_voltage() - set the voltage corner for the CPR3 regulator
+ *			associated with the regulator device
+ * @rdev:		Regulator device pointer for the cpr3-regulator
+ * @corner:		New voltage corner to set (offset by CPR3_CORNER_OFFSET)
+ * @corner_max:		Maximum voltage corner allowed (offset by
+ *			CPR3_CORNER_OFFSET)
+ * @selector:		Pointer which is filled with the selector value for the
+ *			corner
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.  The VDD voltage will not be
+ * physically configured until both this function and cpr3_regulator_enable()
+ * are called.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_set_voltage(struct regulator_dev *rdev,
+		int corner, int corner_max, unsigned int *selector)
+{
+	struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	int rc = 0;
+	int last_corner;
+
+	corner -= CPR3_CORNER_OFFSET;
+	corner_max -= CPR3_CORNER_OFFSET;
+	*selector = corner;
+
+	mutex_lock(&ctrl->lock);
+
+	if (!vreg->vreg_enabled) {
+		vreg->current_corner = corner;
+		cpr3_debug(vreg, "stored corner=%d\n", corner);
+		goto done;
+	} else if (vreg->current_corner == corner) {
+		goto done;
+	}
+
+	last_corner = vreg->current_corner;
+	vreg->current_corner = corner;
+
+	rc = cpr3_regulator_update_ctrl_state(ctrl);
+	if (rc) {
+		cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
+		vreg->current_corner = last_corner;
+	}
+
+	cpr3_debug(vreg, "set corner=%d\n", corner);
+done:
+	mutex_unlock(&ctrl->lock);
+
+	return rc;
+}
+
+/**
+ * cpr3_regulator_get_voltage() - get the voltage corner for the CPR3 regulator
+ *			associated with the regulator device
+ * @rdev:		Regulator device pointer for the cpr3-regulator
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: voltage corner value offset by CPR3_CORNER_OFFSET
+ */
+static int cpr3_regulator_get_voltage(struct regulator_dev *rdev)
+{
+	struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+
+	if (vreg->current_corner == CPR3_REGULATOR_CORNER_INVALID)
+		return CPR3_CORNER_OFFSET;
+	else
+		return vreg->current_corner + CPR3_CORNER_OFFSET;
+}
+
+/**
+ * cpr3_regulator_list_voltage() - return the voltage corner mapped to the
+ *			specified selector
+ * @rdev:		Regulator device pointer for the cpr3-regulator
+ * @selector:		Regulator selector
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: voltage corner value offset by CPR3_CORNER_OFFSET
+ */
+static int cpr3_regulator_list_voltage(struct regulator_dev *rdev,
+		unsigned int selector)
+{
+	struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+
+	if (selector < vreg->corner_count)
+		return selector + CPR3_CORNER_OFFSET;
+	else
+		return 0;
+}
+
+/**
+ * cpr3_regulator_list_corner_voltage() - return the ceiling voltage mapped to
+ *			the specified voltage corner
+ * @rdev:		Regulator device pointer for the cpr3-regulator
+ * @corner:		Voltage corner
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: voltage value in microvolts or -EINVAL if the corner is out of range
+ */
+static int cpr3_regulator_list_corner_voltage(struct regulator_dev *rdev,
+		int corner)
+{
+	struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+
+	corner -= CPR3_CORNER_OFFSET;
+
+	if (corner >= 0 && corner < vreg->corner_count)
+		return vreg->corner[corner].ceiling_volt;
+	else
+		return -EINVAL;
+}
+
+/**
+ * cpr3_regulator_is_enabled() - return the enable state of the CPR3 regulator
+ * @rdev:		Regulator device pointer for the cpr3-regulator
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: true if regulator is enabled, false if regulator is disabled
+ */
+static int cpr3_regulator_is_enabled(struct regulator_dev *rdev)
+{
+	struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+
+	return vreg->vreg_enabled;
+}
+
+/**
+ * cpr3_regulator_enable() - enable the CPR3 regulator
+ * @rdev:		Regulator device pointer for the cpr3-regulator
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_enable(struct regulator_dev *rdev)
+{
+	struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	int rc = 0;
+
+	if (vreg->vreg_enabled == true)
+		return 0;
+
+	mutex_lock(&ctrl->lock);
+
+	if (ctrl->system_regulator) {
+		rc = regulator_enable(ctrl->system_regulator);
+		if (rc) {
+			cpr3_err(ctrl, "regulator_enable(system) failed, rc=%d\n",
+				rc);
+			goto done;
+		}
+	}
+
+	rc = regulator_enable(ctrl->vdd_regulator);
+	if (rc) {
+		cpr3_err(vreg, "regulator_enable(vdd) failed, rc=%d\n", rc);
+		goto done;
+	}
+
+	if (vreg->ldo_regulator) {
+		rc = regulator_enable(vreg->ldo_regulator);
+		if (rc) {
+			cpr3_err(vreg, "regulator_enable(ldo) failed, rc=%d\n",
+				 rc);
+			goto done;
+		}
+	}
+
+	vreg->vreg_enabled = true;
+	rc = cpr3_regulator_update_ctrl_state(ctrl);
+	if (rc) {
+		cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
+		regulator_disable(ctrl->vdd_regulator);
+		vreg->vreg_enabled = false;
+		goto done;
+	}
+
+	cpr3_debug(vreg, "Enabled\n");
+done:
+	mutex_unlock(&ctrl->lock);
+
+	return rc;
+}
+
+/**
+ * cpr3_regulator_disable() - disable the CPR3 regulator
+ * @rdev:		Regulator device pointer for the cpr3-regulator
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_disable(struct regulator_dev *rdev)
+{
+	struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	int rc, rc2;
+
+	if (vreg->vreg_enabled == false)
+		return 0;
+
+	mutex_lock(&ctrl->lock);
+
+	if (vreg->ldo_regulator && vreg->ldo_regulator_bypass == LDO_MODE) {
+		rc = regulator_get_voltage(ctrl->vdd_regulator);
+		if (rc < 0) {
+			cpr3_err(vreg, "regulator_get_voltage(vdd) failed, rc=%d\n",
+				 rc);
+			goto done;
+		}
+
+		/* Switch back to BHS for safe operation */
+		rc = cpr3_regulator_set_bhs_mode(vreg, rc,
+				       ctrl->aggr_corner.ceiling_volt);
+		if (rc) {
+			cpr3_err(vreg, "unable to switch to BHS mode, rc=%d\n",
+				 rc);
+			goto done;
+		}
+	}
+
+	if (vreg->ldo_regulator) {
+		rc = regulator_disable(vreg->ldo_regulator);
+		if (rc) {
+			cpr3_err(vreg, "regulator_disable(ldo) failed, rc=%d\n",
+				 rc);
+			goto done;
+		}
+	}
+	rc = regulator_disable(ctrl->vdd_regulator);
+	if (rc) {
+		cpr3_err(vreg, "regulator_disable(vdd) failed, rc=%d\n", rc);
+		goto done;
+	}
+
+	vreg->vreg_enabled = false;
+	rc = cpr3_regulator_update_ctrl_state(ctrl);
+	if (rc) {
+		cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
+		rc2 = regulator_enable(ctrl->vdd_regulator);
+		vreg->vreg_enabled = true;
+		goto done;
+	}
+
+	if (ctrl->system_regulator) {
+		rc = regulator_disable(ctrl->system_regulator);
+		if (rc) {
+			cpr3_err(ctrl, "regulator_disable(system) failed, rc=%d\n",
+				rc);
+			goto done;
+		}
+		if (ctrl->support_ldo300_vreg) {
+			rc = regulator_set_voltage(ctrl->system_regulator, 0,
+						INT_MAX);
+			if (rc)
+				cpr3_err(ctrl, "failed to set voltage on system rc=%d\n",
+					rc);
+			goto done;
+		}
+	}
+
+	cpr3_debug(vreg, "Disabled\n");
+done:
+	mutex_unlock(&ctrl->lock);
+
+	return rc;
+}
+
+static struct regulator_ops cpr3_regulator_ops = {
+	.enable			= cpr3_regulator_enable,
+	.disable		= cpr3_regulator_disable,
+	.is_enabled		= cpr3_regulator_is_enabled,
+	.set_voltage		= cpr3_regulator_set_voltage,
+	.get_voltage		= cpr3_regulator_get_voltage,
+	.list_voltage		= cpr3_regulator_list_voltage,
+	.list_corner_voltage	= cpr3_regulator_list_corner_voltage,
+};
+
+/**
+ * cprh_regulator_get_voltage() - get the voltage corner for the CPR3 regulator
+ *			associated with the regulator device
+ * @rdev:		Regulator device pointer for the cpr3-regulator
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device of a CPRh controller. The
+ * corner is read directly from CPRh hardware register.
+ *
+ * Return: voltage corner value offset by CPR3_CORNER_OFFSET
+ */
+static int cprh_regulator_get_voltage(struct regulator_dev *rdev)
+{
+	struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	bool cpr_enabled;
+	u32 reg, rc;
+
+	mutex_lock(&ctrl->lock);
+
+	cpr_enabled = ctrl->cpr_enabled;
+	if (!cpr_enabled) {
+		rc = cpr3_clock_enable(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
+			mutex_unlock(&ctrl->lock);
+			return CPR3_REGULATOR_CORNER_INVALID;
+		}
+		ctrl->cpr_enabled = true;
+	}
+
+	reg = cpr3_read(vreg->thread->ctrl, CPRH_REG_STATUS);
+
+	if (!cpr_enabled) {
+		cpr3_clock_disable(ctrl);
+		ctrl->cpr_enabled = false;
+	}
+
+	mutex_unlock(&ctrl->lock);
+
+	return (reg & CPRH_STATUS_CORNER)
+		+ CPR3_CORNER_OFFSET;
+}
+
+static struct regulator_ops cprh_regulator_ops = {
+	.get_voltage		= cprh_regulator_get_voltage,
+	.list_corner_voltage	= cpr3_regulator_list_corner_voltage,
+};
+
+/**
+ * cpr3_print_result() - print CPR measurement results to the kernel log for
+ *		debugging purposes
+ * @thread:		Pointer to the CPR3 thread
+ *
+ * Return: None
+ */
+static void cpr3_print_result(struct cpr3_thread *thread)
+{
+	struct cpr3_controller *ctrl = thread->ctrl;
+	u32 result[3], busy, step_dn, step_up, error_steps, error, negative;
+	u32 quot_min, quot_max, ro_min, ro_max, step_quot_min, step_quot_max;
+	u32 sensor_min, sensor_max;
+	char *sign;
+
+	result[0] = cpr3_read(ctrl, CPR3_REG_RESULT0(thread->thread_id));
+	result[1] = cpr3_read(ctrl, CPR3_REG_RESULT1(thread->thread_id));
+	result[2] = cpr3_read(ctrl, CPR3_REG_RESULT2(thread->thread_id));
+
+	busy = !!(result[0] & CPR3_RESULT0_BUSY_MASK);
+	step_dn = !!(result[0] & CPR3_RESULT0_STEP_DN_MASK);
+	step_up = !!(result[0] & CPR3_RESULT0_STEP_UP_MASK);
+	error_steps = (result[0] & CPR3_RESULT0_ERROR_STEPS_MASK)
+			>> CPR3_RESULT0_ERROR_STEPS_SHIFT;
+	error = (result[0] & CPR3_RESULT0_ERROR_MASK)
+			>> CPR3_RESULT0_ERROR_SHIFT;
+	negative = !!(result[0] & CPR3_RESULT0_NEGATIVE_MASK);
+
+	quot_min = (result[1] & CPR3_RESULT1_QUOT_MIN_MASK)
+			>> CPR3_RESULT1_QUOT_MIN_SHIFT;
+	quot_max = (result[1] & CPR3_RESULT1_QUOT_MAX_MASK)
+			>> CPR3_RESULT1_QUOT_MAX_SHIFT;
+	ro_min = (result[1] & CPR3_RESULT1_RO_MIN_MASK)
+			>> CPR3_RESULT1_RO_MIN_SHIFT;
+	ro_max = (result[1] & CPR3_RESULT1_RO_MAX_MASK)
+			>> CPR3_RESULT1_RO_MAX_SHIFT;
+
+	step_quot_min = (result[2] & CPR3_RESULT2_STEP_QUOT_MIN_MASK)
+			>> CPR3_RESULT2_STEP_QUOT_MIN_SHIFT;
+	step_quot_max = (result[2] & CPR3_RESULT2_STEP_QUOT_MAX_MASK)
+			>> CPR3_RESULT2_STEP_QUOT_MAX_SHIFT;
+	sensor_min = (result[2] & CPR3_RESULT2_SENSOR_MIN_MASK)
+			>> CPR3_RESULT2_SENSOR_MIN_SHIFT;
+	sensor_max = (result[2] & CPR3_RESULT2_SENSOR_MAX_MASK)
+			>> CPR3_RESULT2_SENSOR_MAX_SHIFT;
+
+	sign = negative ? "-" : "";
+	cpr3_debug(ctrl, "thread %u: busy=%u, step_dn=%u, step_up=%u, error_steps=%s%u, error=%s%u\n",
+		thread->thread_id, busy, step_dn, step_up, sign, error_steps,
+		sign, error);
+	cpr3_debug(ctrl, "thread %u: quot_min=%u, quot_max=%u, ro_min=%u, ro_max=%u\n",
+		thread->thread_id, quot_min, quot_max, ro_min, ro_max);
+	cpr3_debug(ctrl, "thread %u: step_quot_min=%u, step_quot_max=%u, sensor_min=%u, sensor_max=%u\n",
+		thread->thread_id, step_quot_min, step_quot_max, sensor_min,
+		sensor_max);
+}
+
+/**
+ * cpr3_thread_busy() - returns if the specified CPR3 thread is busy taking
+ *		a measurement
+ * @thread:		Pointer to the CPR3 thread
+ *
+ * Return: CPR3 busy status
+ */
+static bool cpr3_thread_busy(struct cpr3_thread *thread)
+{
+	u32 result;
+
+	result = cpr3_read(thread->ctrl, CPR3_REG_RESULT0(thread->thread_id));
+
+	return !!(result & CPR3_RESULT0_BUSY_MASK);
+}
+
+/**
+ * cpr3_irq_handler() - CPR interrupt handler callback function used for
+ *		software closed-loop operation
+ * @irq:		CPR interrupt number
+ * @data:		Private data corresponding to the CPR3 controller
+ *			pointer
+ *
+ * This function increases or decreases the vdd supply voltage based upon the
+ * CPR controller recommendation.
+ *
+ * Return: IRQ_HANDLED
+ */
+static irqreturn_t cpr3_irq_handler(int irq, void *data)
+{
+	struct cpr3_controller *ctrl = data;
+	struct cpr3_corner *aggr = &ctrl->aggr_corner;
+	u32 cont = CPR3_CONT_CMD_NACK;
+	u32 reg_last_measurement = 0;
+	struct cpr3_regulator *vreg;
+	struct cpr3_corner *corner;
+	unsigned long flags;
+	int i, j, new_volt, last_volt, dynamic_floor_volt, rc;
+	u32 irq_en, status, cpr_status, ctl;
+	bool up, down;
+
+	mutex_lock(&ctrl->lock);
+
+	if (!ctrl->cpr_enabled) {
+		cpr3_debug(ctrl, "CPR interrupt received but CPR is disabled\n");
+		mutex_unlock(&ctrl->lock);
+		return IRQ_HANDLED;
+	} else if (ctrl->use_hw_closed_loop) {
+		cpr3_debug(ctrl, "CPR interrupt received but CPR is using HW closed-loop\n");
+		goto done;
+	}
+
+	/*
+	 * CPR IRQ status checking and CPR controller disabling must happen
+	 * atomically and without invening delay in order to avoid an interrupt
+	 * storm caused by the handler racing with the CPR controller.
+	 */
+	local_irq_save(flags);
+	preempt_disable();
+
+	status = cpr3_read(ctrl, CPR3_REG_IRQ_STATUS);
+	up = status & CPR3_IRQ_UP;
+	down = status & CPR3_IRQ_DOWN;
+
+	if (!up && !down) {
+		/*
+		 * Toggle the CPR controller off and then back on since the
+		 * hardware and software states are out of sync.  This condition
+		 * occurs after an aging measurement completes as the CPR IRQ
+		 * physically triggers during the aging measurement but the
+		 * handler is stuck waiting on the mutex lock.
+		 */
+		cpr3_ctrl_loop_disable(ctrl);
+
+		local_irq_restore(flags);
+		preempt_enable();
+
+		/* Wait for the loop disable write to complete */
+		mb();
+
+		/* Wait for BUSY=1 and LOOP_EN=0 in CPR controller registers. */
+		for (i = 0; i < CPR3_REGISTER_WRITE_DELAY_US / 10; i++) {
+			cpr_status = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
+			ctl = cpr3_read(ctrl, CPR3_REG_CPR_CTL);
+			if (cpr_status & CPR3_CPR_STATUS_BUSY_MASK
+			    && (ctl & CPR3_CPR_CTL_LOOP_EN_MASK)
+					== CPR3_CPR_CTL_LOOP_DISABLE)
+				break;
+			udelay(10);
+		}
+		if (i == CPR3_REGISTER_WRITE_DELAY_US / 10)
+			cpr3_debug(ctrl, "CPR controller not disabled after %d us\n",
+				CPR3_REGISTER_WRITE_DELAY_US);
+
+		/* Clear interrupt status */
+		cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
+			CPR3_IRQ_UP | CPR3_IRQ_DOWN);
+
+		/* Wait for the interrupt clearing write to complete */
+		mb();
+
+		/* Wait for IRQ_STATUS register to be cleared. */
+		for (i = 0; i < CPR3_REGISTER_WRITE_DELAY_US / 10; i++) {
+			status = cpr3_read(ctrl, CPR3_REG_IRQ_STATUS);
+			if (!(status & (CPR3_IRQ_UP | CPR3_IRQ_DOWN)))
+				break;
+			udelay(10);
+		}
+		if (i == CPR3_REGISTER_WRITE_DELAY_US / 10)
+			cpr3_debug(ctrl, "CPR interrupts not cleared after %d us\n",
+				CPR3_REGISTER_WRITE_DELAY_US);
+
+		cpr3_ctrl_loop_enable(ctrl);
+
+		cpr3_debug(ctrl, "CPR interrupt received but no up or down status bit is set\n");
+
+		mutex_unlock(&ctrl->lock);
+		return IRQ_HANDLED;
+	} else if (up && down) {
+		cpr3_debug(ctrl, "both up and down status bits set\n");
+		/* The up flag takes precedence over the down flag. */
+		down = false;
+	}
+
+	if (ctrl->supports_hw_closed_loop)
+		reg_last_measurement
+			= cpr3_read(ctrl, CPR3_REG_LAST_MEASUREMENT);
+	dynamic_floor_volt = cpr3_regulator_get_dynamic_floor_volt(ctrl,
+							reg_last_measurement);
+
+	local_irq_restore(flags);
+	preempt_enable();
+
+	irq_en = aggr->irq_en;
+	last_volt = aggr->last_volt;
+
+	for (i = 0; i < ctrl->thread_count; i++) {
+		if (cpr3_thread_busy(&ctrl->thread[i])) {
+			cpr3_debug(ctrl, "CPR thread %u busy when it should be waiting for SW cont\n",
+				ctrl->thread[i].thread_id);
+			goto done;
+		}
+	}
+
+	new_volt = up ? last_volt + ctrl->step_volt
+		      : last_volt - ctrl->step_volt;
+
+	/* Re-enable UP/DOWN interrupt when its opposite is received. */
+	irq_en |= up ? CPR3_IRQ_DOWN : CPR3_IRQ_UP;
+
+	if (new_volt > aggr->ceiling_volt) {
+		new_volt = aggr->ceiling_volt;
+		irq_en &= ~CPR3_IRQ_UP;
+		cpr3_debug(ctrl, "limiting to ceiling=%d uV\n",
+			aggr->ceiling_volt);
+	} else if (new_volt < aggr->floor_volt) {
+		new_volt = aggr->floor_volt;
+		irq_en &= ~CPR3_IRQ_DOWN;
+		cpr3_debug(ctrl, "limiting to floor=%d uV\n", aggr->floor_volt);
+	}
+
+	if (down && new_volt < dynamic_floor_volt) {
+		/*
+		 * The vdd-supply voltage should not be decreased below the
+		 * dynamic floor voltage.  However, it is not necessary (and
+		 * counter productive) to force the voltage up to this level
+		 * if it happened to be below it since the closed-loop voltage
+		 * must have gotten there in a safe manner while the power
+		 * domains for the CPR3 regulator imposing the dynamic floor
+		 * were not bypassed.
+		 */
+		new_volt = last_volt;
+		irq_en &= ~CPR3_IRQ_DOWN;
+		cpr3_debug(ctrl, "limiting to dynamic floor=%d uV\n",
+			dynamic_floor_volt);
+	}
+
+	for (i = 0; i < ctrl->thread_count; i++)
+		cpr3_print_result(&ctrl->thread[i]);
+
+	cpr3_debug(ctrl, "%s: new_volt=%d uV, last_volt=%d uV\n",
+		up ? "UP" : "DN", new_volt, last_volt);
+
+	if (ctrl->proc_clock_throttle && last_volt == aggr->ceiling_volt
+	    && new_volt < last_volt)
+		cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+				ctrl->proc_clock_throttle);
+
+	if (new_volt != last_volt) {
+		rc = cpr3_regulator_scale_vdd_voltage(ctrl, new_volt,
+						      last_volt,
+						      aggr);
+		if (rc) {
+			cpr3_err(ctrl, "scale_vdd() failed to set vdd=%d uV, rc=%d\n",
+				 new_volt, rc);
+			goto done;
+		}
+		cont = CPR3_CONT_CMD_ACK;
+
+		/*
+		 * Update the closed-loop voltage for all regulators managed
+		 * by this CPR controller.
+		 */
+		for (i = 0; i < ctrl->thread_count; i++) {
+			for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+				vreg = &ctrl->thread[i].vreg[j];
+				cpr3_update_vreg_closed_loop_volt(vreg,
+					new_volt, reg_last_measurement);
+			}
+		}
+	}
+
+	if (ctrl->proc_clock_throttle && new_volt == aggr->ceiling_volt)
+		cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+				CPR3_PD_THROTTLE_DISABLE);
+
+	corner = &ctrl->thread[0].vreg[0].corner[
+			ctrl->thread[0].vreg[0].current_corner];
+
+	if (irq_en != aggr->irq_en) {
+		aggr->irq_en = irq_en;
+		cpr3_write(ctrl, CPR3_REG_IRQ_EN, irq_en);
+	}
+
+	aggr->last_volt = new_volt;
+
+done:
+	/* Clear interrupt status */
+	cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR, CPR3_IRQ_UP | CPR3_IRQ_DOWN);
+
+	/* ACK or NACK the CPR controller */
+	cpr3_write(ctrl, CPR3_REG_CONT_CMD, cont);
+
+	mutex_unlock(&ctrl->lock);
+	return IRQ_HANDLED;
+}
+
+/**
+ * cpr3_ceiling_irq_handler() - CPR ceiling reached interrupt handler callback
+ *		function used for hardware closed-loop operation
+ * @irq:		CPR ceiling interrupt number
+ * @data:		Private data corresponding to the CPR3 controller
+ *			pointer
+ *
+ * This function disables processor clock throttling and closed-loop operation
+ * when the ceiling voltage is reached.
+ *
+ * Return: IRQ_HANDLED
+ */
+static irqreturn_t cpr3_ceiling_irq_handler(int irq, void *data)
+{
+	struct cpr3_controller *ctrl = data;
+	int rc, volt;
+
+	mutex_lock(&ctrl->lock);
+
+	if (!ctrl->cpr_enabled) {
+		cpr3_debug(ctrl, "CPR ceiling interrupt received but CPR is disabled\n");
+		goto done;
+	} else if (!ctrl->use_hw_closed_loop) {
+		cpr3_debug(ctrl, "CPR ceiling interrupt received but CPR is using SW closed-loop\n");
+		goto done;
+	}
+
+	volt = regulator_get_voltage(ctrl->vdd_regulator);
+	if (volt < 0) {
+		cpr3_err(ctrl, "could not get vdd voltage, rc=%d\n", volt);
+		goto done;
+	} else if (volt != ctrl->aggr_corner.ceiling_volt) {
+		cpr3_debug(ctrl, "CPR ceiling interrupt received but vdd voltage: %d uV != ceiling voltage: %d uV\n",
+			volt, ctrl->aggr_corner.ceiling_volt);
+		goto done;
+	}
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+		/*
+		 * Since the ceiling voltage has been reached, disable processor
+		 * clock throttling as well as CPR closed-loop operation.
+		 */
+		cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+				CPR3_PD_THROTTLE_DISABLE);
+		cpr3_ctrl_loop_disable(ctrl);
+		cpr3_debug(ctrl, "CPR closed-loop and throttling disabled\n");
+	}
+
+done:
+	rc = msm_spm_avs_clear_irq(0, MSM_SPM_AVS_IRQ_MAX);
+	if (rc)
+		cpr3_err(ctrl, "could not clear max IRQ, rc=%d\n", rc);
+
+	mutex_unlock(&ctrl->lock);
+	return IRQ_HANDLED;
+}
+
+/**
+ * cpr3_regulator_vreg_register() - register a regulator device for a CPR3
+ *		regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function initializes all regulator framework related structures and then
+ * calls regulator_register() for the CPR3 regulator.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_vreg_register(struct cpr3_regulator *vreg)
+{
+	struct regulator_config config = {};
+	struct regulator_desc *rdesc;
+	struct regulator_init_data *init_data;
+	int rc;
+
+	init_data = of_get_regulator_init_data(vreg->thread->ctrl->dev,
+						vreg->of_node, &vreg->rdesc);
+	if (!init_data) {
+		cpr3_err(vreg, "regulator init data is missing\n");
+		return -EINVAL;
+	}
+
+	init_data->constraints.input_uV = init_data->constraints.max_uV;
+	rdesc			= &vreg->rdesc;
+	if (vreg->thread->ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
+		/* CPRh regulators are treated as always-on regulators */
+		rdesc->ops = &cprh_regulator_ops;
+	} else {
+		init_data->constraints.valid_ops_mask
+			|= REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_STATUS;
+		rdesc->ops = &cpr3_regulator_ops;
+	}
+
+	rdesc->n_voltages	= vreg->corner_count;
+	rdesc->name		= init_data->constraints.name;
+	rdesc->owner		= THIS_MODULE;
+	rdesc->type		= REGULATOR_VOLTAGE;
+
+	config.dev		= vreg->thread->ctrl->dev;
+	config.driver_data	= vreg;
+	config.init_data	= init_data;
+	config.of_node		= vreg->of_node;
+
+	vreg->rdev = regulator_register(rdesc, &config);
+	if (IS_ERR(vreg->rdev)) {
+		rc = PTR_ERR(vreg->rdev);
+		cpr3_err(vreg, "regulator_register failed, rc=%d\n", rc);
+		return rc;
+	}
+
+	return 0;
+}
+
+static int debugfs_int_set(void *data, u64 val)
+{
+	*(int *)data = val;
+	return 0;
+}
+
+static int debugfs_int_get(void *data, u64 *val)
+{
+	*val = *(int *)data;
+	return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(fops_int, debugfs_int_get, debugfs_int_set, "%lld\n");
+DEFINE_SIMPLE_ATTRIBUTE(fops_int_ro, debugfs_int_get, NULL, "%lld\n");
+DEFINE_SIMPLE_ATTRIBUTE(fops_int_wo, NULL, debugfs_int_set, "%lld\n");
+
+/**
+ * debugfs_create_int - create a debugfs file that is used to read and write a
+ *		signed int value
+ * @name:		Pointer to a string containing the name of the file to
+ *			create
+ * @mode:		The permissions that the file should have
+ * @parent:		Pointer to the parent dentry for this file.  This should
+ *			be a directory dentry if set.  If this parameter is
+ *			%NULL, then the file will be created in the root of the
+ *			debugfs filesystem.
+ * @value:		Pointer to the variable that the file should read to and
+ *			write from
+ *
+ * This function creates a file in debugfs with the given name that
+ * contains the value of the variable @value.  If the @mode variable is so
+ * set, it can be read from, and written to.
+ *
+ * This function will return a pointer to a dentry if it succeeds.  This
+ * pointer must be passed to the debugfs_remove() function when the file is
+ * to be removed.  If an error occurs, %NULL will be returned.
+ */
+static struct dentry *debugfs_create_int(const char *name, umode_t mode,
+				struct dentry *parent, int *value)
+{
+	/* if there are no write bits set, make read only */
+	if (!(mode & 0222))
+		return debugfs_create_file(name, mode, parent, value,
+					   &fops_int_ro);
+	/* if there are no read bits set, make write only */
+	if (!(mode & 0444))
+		return debugfs_create_file(name, mode, parent, value,
+					   &fops_int_wo);
+
+	return debugfs_create_file(name, mode, parent, value, &fops_int);
+}
+
+static int debugfs_bool_get(void *data, u64 *val)
+{
+	*val = *(bool *)data;
+	return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(fops_bool_ro, debugfs_bool_get, NULL, "%lld\n");
+
+/**
+ * cpr3_debug_ldo_mode_allowed_set() - debugfs callback used to change the
+ *		value of the CPR3 regulator ldo_mode_allowed flag
+ * @data:		Pointer to private data which is equal to the CPR3
+ *			regulator pointer
+ * @val:		New value for ldo_mode_allowed
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_ldo_mode_allowed_set(void *data, u64 val)
+{
+	struct cpr3_regulator *vreg = data;
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	bool allow = !!val;
+	int rc, vdd_volt;
+
+	mutex_lock(&ctrl->lock);
+
+	if (vreg->ldo_mode_allowed == allow)
+		goto done;
+
+	vreg->ldo_mode_allowed = allow;
+
+	if (!allow && vreg->ldo_regulator_bypass == LDO_MODE) {
+		vdd_volt = regulator_get_voltage(ctrl->vdd_regulator);
+		if (vdd_volt < 0) {
+			cpr3_err(vreg, "regulator_get_voltage(vdd) failed, rc=%d\n",
+				 vdd_volt);
+			goto done;
+		}
+
+		/* Switch back to BHS */
+		rc = cpr3_regulator_set_bhs_mode(vreg, vdd_volt,
+				       ctrl->aggr_corner.ceiling_volt);
+		if (rc) {
+			cpr3_err(vreg, "unable to switch to BHS mode, rc=%d\n",
+				 rc);
+			goto done;
+		}
+	} else {
+		rc = cpr3_regulator_update_ctrl_state(ctrl);
+		if (rc) {
+			cpr3_err(vreg, "could not change LDO mode=%s, rc=%d\n",
+				allow ? "allowed" : "disallowed", rc);
+			goto done;
+		}
+	}
+
+	cpr3_debug(vreg, "LDO mode=%s\n", allow ? "allowed" : "disallowed");
+
+done:
+	mutex_unlock(&ctrl->lock);
+	return 0;
+}
+
+/**
+ * cpr3_debug_ldo_mode_allowed_get() - debugfs callback used to retrieve the
+ *		value of the CPR3 regulator ldo_mode_allowed flag
+ * @data:		Pointer to private data which is equal to the CPR3
+ *			regulator pointer
+ * @val:		Output parameter written with a value of the
+ *			ldo_mode_allowed flag
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_ldo_mode_allowed_get(void *data, u64 *val)
+{
+	struct cpr3_regulator *vreg = data;
+
+	*val = vreg->ldo_mode_allowed;
+
+	return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_ldo_mode_allowed_fops,
+			cpr3_debug_ldo_mode_allowed_get,
+			cpr3_debug_ldo_mode_allowed_set,
+			"%llu\n");
+
+/**
+ * cpr3_debug_ldo_mode_get() - debugfs callback used to retrieve the state of
+ *		the CPR3 regulator's LDO
+ * @data:		Pointer to private data which is equal to the CPR3
+ *			regulator pointer
+ * @val:		Output parameter written with a value of 1 if using
+ *			LDO mode or 0 if the LDO is bypassed
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_ldo_mode_get(void *data, u64 *val)
+{
+	struct cpr3_regulator *vreg = data;
+
+	*val = (vreg->ldo_regulator_bypass == LDO_MODE);
+
+	return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_ldo_mode_fops, cpr3_debug_ldo_mode_get,
+			NULL, "%llu\n");
+
+/**
+ * struct cpr3_debug_corner_info - data structure used by the
+ *		cpr3_debugfs_create_corner_int function
+ * @vreg:		Pointer to the CPR3 regulator
+ * @index:		Pointer to the corner array index
+ * @member_offset:	Offset in bytes from the beginning of struct cpr3_corner
+ *			to the beginning of the value to be read from
+ * @corner:		Pointer to the CPR3 corner array
+ */
+struct cpr3_debug_corner_info {
+	struct cpr3_regulator	*vreg;
+	int			*index;
+	size_t			member_offset;
+	struct cpr3_corner	*corner;
+};
+
+static int cpr3_debug_corner_int_get(void *data, u64 *val)
+{
+	struct cpr3_debug_corner_info *info = data;
+	struct cpr3_controller *ctrl = info->vreg->thread->ctrl;
+	int i;
+
+	mutex_lock(&ctrl->lock);
+
+	i = *info->index;
+	if (i < 0)
+		i = 0;
+
+	*val = *(int *)((char *)&info->vreg->corner[i] + info->member_offset);
+
+	mutex_unlock(&ctrl->lock);
+
+	return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_corner_int_fops, cpr3_debug_corner_int_get,
+			NULL, "%lld\n");
+
+/**
+ * cpr3_debugfs_create_corner_int - create a debugfs file that is used to read
+ *		a signed int value out of a CPR3 regulator's corner array
+ * @vreg:		Pointer to the CPR3 regulator
+ * @name:		Pointer to a string containing the name of the file to
+ *			create
+ * @mode:		The permissions that the file should have
+ * @parent:		Pointer to the parent dentry for this file.  This should
+ *			be a directory dentry if set.  If this parameter is
+ *			%NULL, then the file will be created in the root of the
+ *			debugfs filesystem.
+ * @index:		Pointer to the corner array index
+ * @member_offset:	Offset in bytes from the beginning of struct cpr3_corner
+ *			to the beginning of the value to be read from
+ *
+ * This function creates a file in debugfs with the given name that
+ * contains the value of the int type variable vreg->corner[index].member
+ * where member_offset == offsetof(struct cpr3_corner, member).
+ */
+static struct dentry *cpr3_debugfs_create_corner_int(
+		struct cpr3_regulator *vreg, const char *name, umode_t mode,
+		struct dentry *parent, int *index, size_t member_offset)
+{
+	struct cpr3_debug_corner_info *info;
+
+	info = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
+	if (!info)
+		return NULL;
+
+	info->vreg = vreg;
+	info->index = index;
+	info->member_offset = member_offset;
+
+	return debugfs_create_file(name, mode, parent, info,
+				   &cpr3_debug_corner_int_fops);
+}
+
+static int cpr3_debug_quot_open(struct inode *inode, struct file *file)
+{
+	struct cpr3_debug_corner_info *info = inode->i_private;
+	struct cpr3_thread *thread = info->vreg->thread;
+	int size, i, pos;
+	u32 *quot;
+	char *buf;
+
+	/*
+	 * Max size:
+	 *  - 10 digits + ' ' or '\n' = 11 bytes per number
+	 *  - terminating '\0'
+	 */
+	size = CPR3_RO_COUNT * 11;
+	buf = kzalloc(size + 1, GFP_KERNEL);
+	if (!buf)
+		return -ENOMEM;
+
+	file->private_data = buf;
+
+	mutex_lock(&thread->ctrl->lock);
+
+	quot = info->corner[*info->index].target_quot;
+
+	for (i = 0, pos = 0; i < CPR3_RO_COUNT; i++)
+		pos += scnprintf(buf + pos, size - pos, "%u%c",
+			quot[i], i < CPR3_RO_COUNT - 1 ? ' ' : '\n');
+
+	mutex_unlock(&thread->ctrl->lock);
+
+	return nonseekable_open(inode, file);
+}
+
+static ssize_t cpr3_debug_quot_read(struct file *file, char __user *buf,
+		size_t len, loff_t *ppos)
+{
+	return simple_read_from_buffer(buf, len, ppos, file->private_data,
+					strlen(file->private_data));
+}
+
+static int cpr3_debug_quot_release(struct inode *inode, struct file *file)
+{
+	kfree(file->private_data);
+
+	return 0;
+}
+
+static const struct file_operations cpr3_debug_quot_fops = {
+	.owner	 = THIS_MODULE,
+	.open	 = cpr3_debug_quot_open,
+	.release = cpr3_debug_quot_release,
+	.read	 = cpr3_debug_quot_read,
+	.llseek  = no_llseek,
+};
+
+/**
+ * cpr3_regulator_debugfs_corner_add() - add debugfs files to expose
+ *		configuration data for the CPR corner
+ * @vreg:		Pointer to the CPR3 regulator
+ * @corner_dir:		Pointer to the parent corner dentry for the new files
+ * @index:		Pointer to the corner array index
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_corner_add(struct cpr3_regulator *vreg,
+		struct dentry *corner_dir, int *index)
+{
+	struct cpr3_debug_corner_info *info;
+	struct dentry *temp;
+
+	temp = cpr3_debugfs_create_corner_int(vreg, "floor_volt", 0444,
+		corner_dir, index, offsetof(struct cpr3_corner, floor_volt));
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(vreg, "floor_volt debugfs file creation failed\n");
+		return;
+	}
+
+	temp = cpr3_debugfs_create_corner_int(vreg, "ceiling_volt", 0444,
+		corner_dir, index, offsetof(struct cpr3_corner, ceiling_volt));
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(vreg, "ceiling_volt debugfs file creation failed\n");
+		return;
+	}
+
+	temp = cpr3_debugfs_create_corner_int(vreg, "open_loop_volt", 0444,
+		corner_dir, index,
+		offsetof(struct cpr3_corner, open_loop_volt));
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(vreg, "open_loop_volt debugfs file creation failed\n");
+		return;
+	}
+
+	temp = cpr3_debugfs_create_corner_int(vreg, "last_volt", 0444,
+		corner_dir, index, offsetof(struct cpr3_corner, last_volt));
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(vreg, "last_volt debugfs file creation failed\n");
+		return;
+	}
+
+	info = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
+	if (!info)
+		return;
+
+	info->vreg = vreg;
+	info->index = index;
+	info->corner = vreg->corner;
+
+	temp = debugfs_create_file("target_quots", 0444, corner_dir, info,
+				&cpr3_debug_quot_fops);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(vreg, "target_quots debugfs file creation failed\n");
+		return;
+	}
+}
+
+/**
+ * cpr3_debug_corner_index_set() - debugfs callback used to change the
+ *		value of the CPR3 regulator debug_corner index
+ * @data:		Pointer to private data which is equal to the CPR3
+ *			regulator pointer
+ * @val:		New value for debug_corner
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_corner_index_set(void *data, u64 val)
+{
+	struct cpr3_regulator *vreg = data;
+
+	if (val < CPR3_CORNER_OFFSET || val > vreg->corner_count) {
+		cpr3_err(vreg, "invalid corner index %llu; allowed values: %d-%d\n",
+			val, CPR3_CORNER_OFFSET, vreg->corner_count);
+		return -EINVAL;
+	}
+
+	mutex_lock(&vreg->thread->ctrl->lock);
+	vreg->debug_corner = val - CPR3_CORNER_OFFSET;
+	mutex_unlock(&vreg->thread->ctrl->lock);
+
+	return 0;
+}
+
+/**
+ * cpr3_debug_corner_index_get() - debugfs callback used to retrieve
+ *		the value of the CPR3 regulator debug_corner index
+ * @data:		Pointer to private data which is equal to the CPR3
+ *			regulator pointer
+ * @val:		Output parameter written with the value of
+ *			debug_corner
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_corner_index_get(void *data, u64 *val)
+{
+	struct cpr3_regulator *vreg = data;
+
+	*val = vreg->debug_corner + CPR3_CORNER_OFFSET;
+
+	return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_corner_index_fops,
+			cpr3_debug_corner_index_get,
+			cpr3_debug_corner_index_set,
+			"%llu\n");
+
+/**
+ * cpr3_debug_current_corner_index_get() - debugfs callback used to retrieve
+ *		the value of the CPR3 regulator current_corner index
+ * @data:		Pointer to private data which is equal to the CPR3
+ *			regulator pointer
+ * @val:		Output parameter written with the value of
+ *			current_corner
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_current_corner_index_get(void *data, u64 *val)
+{
+	struct cpr3_regulator *vreg = data;
+
+	*val = vreg->current_corner + CPR3_CORNER_OFFSET;
+
+	return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_current_corner_index_fops,
+			cpr3_debug_current_corner_index_get,
+			NULL, "%llu\n");
+
+/**
+ * cpr3_regulator_debugfs_vreg_add() - add debugfs files to expose configuration
+ *		data for the CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ * @thread_dir		CPR3 thread debugfs directory handle
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_vreg_add(struct cpr3_regulator *vreg,
+				struct dentry *thread_dir)
+{
+	struct dentry *temp, *corner_dir, *vreg_dir;
+
+	vreg_dir = debugfs_create_dir(vreg->name, thread_dir);
+	if (IS_ERR_OR_NULL(vreg_dir)) {
+		cpr3_err(vreg, "%s debugfs directory creation failed\n",
+			vreg->name);
+		return;
+	}
+
+	temp = debugfs_create_int("speed_bin_fuse", 0444, vreg_dir,
+				  &vreg->speed_bin_fuse);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(vreg, "speed_bin_fuse debugfs file creation failed\n");
+		return;
+	}
+
+	temp = debugfs_create_int("cpr_rev_fuse", 0444, vreg_dir,
+				  &vreg->cpr_rev_fuse);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(vreg, "cpr_rev_fuse debugfs file creation failed\n");
+		return;
+	}
+
+	temp = debugfs_create_int("fuse_combo", 0444, vreg_dir,
+				  &vreg->fuse_combo);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(vreg, "fuse_combo debugfs file creation failed\n");
+		return;
+	}
+
+	if (vreg->ldo_regulator) {
+		temp = debugfs_create_file("ldo_mode", 0444, vreg_dir, vreg,
+					&cpr3_debug_ldo_mode_fops);
+		if (IS_ERR_OR_NULL(temp)) {
+			cpr3_err(vreg, "ldo_mode debugfs file creation failed\n");
+			return;
+		}
+
+		temp = debugfs_create_file("ldo_mode_allowed",
+				0644, vreg_dir, vreg,
+				&cpr3_debug_ldo_mode_allowed_fops);
+		if (IS_ERR_OR_NULL(temp)) {
+			cpr3_err(vreg, "ldo_mode_allowed debugfs file creation failed\n");
+			return;
+		}
+	}
+
+	temp = debugfs_create_int("corner_count", 0444, vreg_dir,
+				  &vreg->corner_count);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(vreg, "corner_count debugfs file creation failed\n");
+		return;
+	}
+
+	corner_dir = debugfs_create_dir("corner", vreg_dir);
+	if (IS_ERR_OR_NULL(corner_dir)) {
+		cpr3_err(vreg, "corner debugfs directory creation failed\n");
+		return;
+	}
+
+	temp = debugfs_create_file("index", 0644, corner_dir, vreg,
+				&cpr3_debug_corner_index_fops);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(vreg, "index debugfs file creation failed\n");
+		return;
+	}
+
+	cpr3_regulator_debugfs_corner_add(vreg, corner_dir,
+					&vreg->debug_corner);
+
+	corner_dir = debugfs_create_dir("current_corner", vreg_dir);
+	if (IS_ERR_OR_NULL(corner_dir)) {
+		cpr3_err(vreg, "current_corner debugfs directory creation failed\n");
+		return;
+	}
+
+	temp = debugfs_create_file("index", 0444, corner_dir, vreg,
+				&cpr3_debug_current_corner_index_fops);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(vreg, "index debugfs file creation failed\n");
+		return;
+	}
+
+	cpr3_regulator_debugfs_corner_add(vreg, corner_dir,
+					  &vreg->current_corner);
+}
+
+/**
+ * cpr3_regulator_debugfs_thread_add() - add debugfs files to expose
+ *		configuration data for the CPR thread
+ * @thread:		Pointer to the CPR3 thread
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_thread_add(struct cpr3_thread *thread)
+{
+	struct cpr3_controller *ctrl = thread->ctrl;
+	struct dentry *aggr_dir, *temp, *thread_dir;
+	struct cpr3_debug_corner_info *info;
+	char buf[20];
+	int *index;
+	int i;
+
+	scnprintf(buf, sizeof(buf), "thread%u", thread->thread_id);
+	thread_dir = debugfs_create_dir(buf, thread->ctrl->debugfs);
+	if (IS_ERR_OR_NULL(thread_dir)) {
+		cpr3_err(ctrl, "thread %u %s debugfs directory creation failed\n",
+			thread->thread_id, buf);
+		return;
+	}
+
+	aggr_dir = debugfs_create_dir("max_aggregated_params", thread_dir);
+	if (IS_ERR_OR_NULL(aggr_dir)) {
+		cpr3_err(ctrl, "thread %u max_aggregated_params debugfs directory creation failed\n",
+			thread->thread_id);
+		return;
+	}
+
+	temp = debugfs_create_int("floor_volt", 0444, aggr_dir,
+				  &thread->aggr_corner.floor_volt);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(ctrl, "thread %u aggr floor_volt debugfs file creation failed\n",
+			thread->thread_id);
+		return;
+	}
+
+	temp = debugfs_create_int("ceiling_volt", 0444, aggr_dir,
+				  &thread->aggr_corner.ceiling_volt);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(ctrl, "thread %u aggr ceiling_volt debugfs file creation failed\n",
+			thread->thread_id);
+		return;
+	}
+
+	temp = debugfs_create_int("open_loop_volt", 0444, aggr_dir,
+				  &thread->aggr_corner.open_loop_volt);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(ctrl, "thread %u aggr open_loop_volt debugfs file creation failed\n",
+			thread->thread_id);
+		return;
+	}
+
+	temp = debugfs_create_int("last_volt", 0444, aggr_dir,
+				  &thread->aggr_corner.last_volt);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(ctrl, "thread %u aggr last_volt debugfs file creation failed\n",
+			thread->thread_id);
+		return;
+	}
+
+	info = devm_kzalloc(thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
+	index = devm_kzalloc(thread->ctrl->dev, sizeof(*index), GFP_KERNEL);
+	if (!info || !index)
+		return;
+	*index = 0;
+	info->vreg = &thread->vreg[0];
+	info->index = index;
+	info->corner = &thread->aggr_corner;
+
+	temp = debugfs_create_file("target_quots", 0444, aggr_dir, info,
+				&cpr3_debug_quot_fops);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(ctrl, "thread %u target_quots debugfs file creation failed\n",
+			thread->thread_id);
+		return;
+	}
+
+	for (i = 0; i < thread->vreg_count; i++)
+		cpr3_regulator_debugfs_vreg_add(&thread->vreg[i], thread_dir);
+}
+
+/**
+ * cpr3_debug_closed_loop_enable_set() - debugfs callback used to change the
+ *		value of the CPR controller cpr_allowed_sw flag which enables or
+ *		disables closed-loop operation
+ * @data:		Pointer to private data which is equal to the CPR
+ *			controller pointer
+ * @val:		New value for cpr_allowed_sw
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_closed_loop_enable_set(void *data, u64 val)
+{
+	struct cpr3_controller *ctrl = data;
+	bool enable = !!val;
+	int rc;
+
+	mutex_lock(&ctrl->lock);
+
+	if (ctrl->cpr_allowed_sw == enable)
+		goto done;
+
+	if (enable && !ctrl->cpr_allowed_hw) {
+		cpr3_err(ctrl, "CPR closed-loop operation is not allowed\n");
+		goto done;
+	}
+
+	ctrl->cpr_allowed_sw = enable;
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
+		cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+			CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+			ctrl->cpr_allowed_sw && ctrl->use_hw_closed_loop
+			? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
+			: CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
+	} else {
+		rc = cpr3_regulator_update_ctrl_state(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "could not change CPR enable state=%u, rc=%d\n",
+				 enable, rc);
+			goto done;
+		}
+
+		if (ctrl->proc_clock_throttle && !ctrl->cpr_enabled) {
+			rc = cpr3_clock_enable(ctrl);
+			if (rc) {
+				cpr3_err(ctrl, "clock enable failed, rc=%d\n",
+					 rc);
+				goto done;
+			}
+			ctrl->cpr_enabled = true;
+
+			cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+				   CPR3_PD_THROTTLE_DISABLE);
+
+			cpr3_clock_disable(ctrl);
+			ctrl->cpr_enabled = false;
+		}
+	}
+
+	if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
+		cpr3_debug(ctrl, "closed-loop=%s\n", enable ?
+			   "enabled" : "disabled");
+	} else {
+		cpr3_debug(ctrl, "closed-loop=%s\n", enable &&
+			   ctrl->use_hw_closed_loop ? "enabled" : "disabled");
+	}
+done:
+	mutex_unlock(&ctrl->lock);
+	return 0;
+}
+
+/**
+ * cpr3_debug_closed_loop_enable_get() - debugfs callback used to retrieve
+ *		the value of the CPR controller cpr_allowed_sw flag which
+ *		indicates if closed-loop operation is enabled
+ * @data:		Pointer to private data which is equal to the CPR
+ *			controller pointer
+ * @val:		Output parameter written with the value of
+ *			cpr_allowed_sw
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_closed_loop_enable_get(void *data, u64 *val)
+{
+	struct cpr3_controller *ctrl = data;
+
+	*val = ctrl->cpr_allowed_sw;
+
+	return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_closed_loop_enable_fops,
+			cpr3_debug_closed_loop_enable_get,
+			cpr3_debug_closed_loop_enable_set,
+			"%llu\n");
+
+/**
+ * cpr3_debug_hw_closed_loop_enable_set() - debugfs callback used to change the
+ *		value of the CPR controller use_hw_closed_loop flag which
+ *		switches between software closed-loop and hardware closed-loop
+ *		operation for CPR3 and CPR4 controllers and between open-loop
+ *		and full hardware closed-loop operation for CPRh controllers.
+ * @data:		Pointer to private data which is equal to the CPR
+ *			controller pointer
+ * @val:		New value for use_hw_closed_loop
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_hw_closed_loop_enable_set(void *data, u64 val)
+{
+	struct cpr3_controller *ctrl = data;
+	bool use_hw_closed_loop = !!val;
+	struct cpr3_regulator *vreg;
+	bool cpr_enabled;
+	int i, j, k, rc;
+
+	mutex_lock(&ctrl->lock);
+
+	if (ctrl->use_hw_closed_loop == use_hw_closed_loop)
+		goto done;
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+		rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+				rc);
+			goto done;
+		}
+	}
+
+	if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH)
+		cpr3_ctrl_loop_disable(ctrl);
+
+	ctrl->use_hw_closed_loop = use_hw_closed_loop;
+
+	cpr_enabled = ctrl->cpr_enabled;
+
+	/* Ensure that CPR clocks are enabled before writing to registers. */
+	if (!cpr_enabled) {
+		rc = cpr3_clock_enable(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
+			goto done;
+		}
+		ctrl->cpr_enabled = true;
+	}
+
+	if (ctrl->use_hw_closed_loop && ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH)
+		cpr3_write(ctrl, CPR3_REG_IRQ_EN, 0);
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+		cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+			CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+			ctrl->use_hw_closed_loop
+			? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
+			: CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
+	} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
+		cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+			CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+			ctrl->cpr_allowed_sw && ctrl->use_hw_closed_loop
+			? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
+			: CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
+	} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+		cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
+			ctrl->use_hw_closed_loop
+			? CPR3_HW_CLOSED_LOOP_ENABLE
+			: CPR3_HW_CLOSED_LOOP_DISABLE);
+	}
+
+	/* Turn off CPR clocks if they were off before this function call. */
+	if (!cpr_enabled) {
+		cpr3_clock_disable(ctrl);
+		ctrl->cpr_enabled = false;
+	}
+
+	if (ctrl->use_hw_closed_loop && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+		rc = regulator_enable(ctrl->vdd_limit_regulator);
+		if (rc) {
+			cpr3_err(ctrl, "CPR limit regulator enable failed, rc=%d\n",
+				rc);
+			goto done;
+		}
+
+		rc = msm_spm_avs_enable_irq(0, MSM_SPM_AVS_IRQ_MAX);
+		if (rc) {
+			cpr3_err(ctrl, "could not enable max IRQ, rc=%d\n", rc);
+			goto done;
+		}
+	} else if (!ctrl->use_hw_closed_loop
+			&& ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+		rc = regulator_disable(ctrl->vdd_limit_regulator);
+		if (rc) {
+			cpr3_err(ctrl, "CPR limit regulator disable failed, rc=%d\n",
+				rc);
+			goto done;
+		}
+
+		rc = msm_spm_avs_disable_irq(0, MSM_SPM_AVS_IRQ_MAX);
+		if (rc) {
+			cpr3_err(ctrl, "could not disable max IRQ, rc=%d\n",
+				rc);
+			goto done;
+		}
+	}
+
+	if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
+		/*
+		 * Due to APM and mem-acc floor restriction constraints,
+		 * the closed-loop voltage may be different when using
+		 * software closed-loop vs hardware closed-loop.  Therefore,
+		 * reset the cached closed-loop voltage for all corners to the
+		 * corresponding open-loop voltage when switching between
+		 * SW and HW closed-loop mode.
+		 */
+		for (i = 0; i < ctrl->thread_count; i++) {
+			for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+				vreg = &ctrl->thread[i].vreg[j];
+				for (k = 0; k < vreg->corner_count; k++)
+					vreg->corner[k].last_volt
+					= vreg->corner[k].open_loop_volt;
+			}
+		}
+
+		/* Skip last_volt caching */
+		ctrl->last_corner_was_closed_loop = false;
+
+		rc = cpr3_regulator_update_ctrl_state(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "could not change CPR HW closed-loop enable state=%u, rc=%d\n",
+				 use_hw_closed_loop, rc);
+			goto done;
+		}
+
+		cpr3_debug(ctrl, "CPR mode=%s\n",
+			   use_hw_closed_loop ?
+			   "HW closed-loop" : "SW closed-loop");
+	} else {
+		cpr3_debug(ctrl, "CPR mode=%s\n",
+			   ctrl->cpr_allowed_sw && use_hw_closed_loop ?
+			   "full HW closed-loop" : "open-loop");
+	}
+done:
+	mutex_unlock(&ctrl->lock);
+	return 0;
+}
+
+/**
+ * cpr3_debug_hw_closed_loop_enable_get() - debugfs callback used to retrieve
+ *		the value of the CPR controller use_hw_closed_loop flag which
+ *		indicates if hardware closed-loop operation is being used in
+ *		place of software closed-loop operation
+ * @data:		Pointer to private data which is equal to the CPR
+ *			controller pointer
+ * @val:		Output parameter written with the value of
+ *			use_hw_closed_loop
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_hw_closed_loop_enable_get(void *data, u64 *val)
+{
+	struct cpr3_controller *ctrl = data;
+
+	*val = ctrl->use_hw_closed_loop;
+
+	return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_hw_closed_loop_enable_fops,
+			cpr3_debug_hw_closed_loop_enable_get,
+			cpr3_debug_hw_closed_loop_enable_set,
+			"%llu\n");
+
+/**
+ * cpr3_debug_trigger_aging_measurement_set() - debugfs callback used to trigger
+ *		another CPR measurement
+ * @data:		Pointer to private data which is equal to the CPR
+ *			controller pointer
+ * @val:		Unused
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_trigger_aging_measurement_set(void *data, u64 val)
+{
+	struct cpr3_controller *ctrl = data;
+	int rc;
+
+	mutex_lock(&ctrl->lock);
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+		rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+				rc);
+			goto done;
+		}
+	}
+
+	cpr3_ctrl_loop_disable(ctrl);
+
+	cpr3_regulator_set_aging_ref_adjustment(ctrl, INT_MAX);
+	ctrl->aging_required = true;
+	ctrl->aging_succeeded = false;
+	ctrl->aging_failed = false;
+
+	rc = cpr3_regulator_update_ctrl_state(ctrl);
+	if (rc) {
+		cpr3_err(ctrl, "could not update the CPR controller state, rc=%d\n",
+			rc);
+		goto done;
+	}
+
+done:
+	mutex_unlock(&ctrl->lock);
+	return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_trigger_aging_measurement_fops,
+			NULL,
+			cpr3_debug_trigger_aging_measurement_set,
+			"%llu\n");
+
+/**
+ * cpr3_regulator_debugfs_ctrl_add() - add debugfs files to expose configuration
+ *		data for the CPR controller
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_ctrl_add(struct cpr3_controller *ctrl)
+{
+	struct dentry *temp, *aggr_dir;
+	int i;
+
+	/* Add cpr3-regulator base directory if it isn't present already. */
+	if (cpr3_debugfs_base == NULL) {
+		cpr3_debugfs_base = debugfs_create_dir("cpr3-regulator", NULL);
+		if (IS_ERR_OR_NULL(cpr3_debugfs_base)) {
+			cpr3_err(ctrl, "cpr3-regulator debugfs base directory creation failed\n");
+			cpr3_debugfs_base = NULL;
+			return;
+		}
+	}
+
+	ctrl->debugfs = debugfs_create_dir(ctrl->name, cpr3_debugfs_base);
+	if (IS_ERR_OR_NULL(ctrl->debugfs)) {
+		cpr3_err(ctrl, "cpr3-regulator controller debugfs directory creation failed\n");
+		return;
+	}
+
+	temp = debugfs_create_file("cpr_closed_loop_enable", 0644,
+					ctrl->debugfs, ctrl,
+					&cpr3_debug_closed_loop_enable_fops);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(ctrl, "cpr_closed_loop_enable debugfs file creation failed\n");
+		return;
+	}
+
+	if (ctrl->supports_hw_closed_loop) {
+		temp = debugfs_create_file("use_hw_closed_loop", 0644,
+					ctrl->debugfs, ctrl,
+					&cpr3_debug_hw_closed_loop_enable_fops);
+		if (IS_ERR_OR_NULL(temp)) {
+			cpr3_err(ctrl, "use_hw_closed_loop debugfs file creation failed\n");
+			return;
+		}
+	}
+
+	temp = debugfs_create_int("thread_count", 0444, ctrl->debugfs,
+				  &ctrl->thread_count);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(ctrl, "thread_count debugfs file creation failed\n");
+		return;
+	}
+
+	if (ctrl->apm) {
+		temp = debugfs_create_int("apm_threshold_volt", 0444,
+				ctrl->debugfs, &ctrl->apm_threshold_volt);
+		if (IS_ERR_OR_NULL(temp)) {
+			cpr3_err(ctrl, "apm_threshold_volt debugfs file creation failed\n");
+			return;
+		}
+	}
+
+	if (ctrl->aging_required || ctrl->aging_succeeded
+	    || ctrl->aging_failed) {
+		temp = debugfs_create_int("aging_adj_volt", 0444,
+				ctrl->debugfs, &ctrl->aging_ref_adjust_volt);
+		if (IS_ERR_OR_NULL(temp)) {
+			cpr3_err(ctrl, "aging_adj_volt debugfs file creation failed\n");
+			return;
+		}
+
+		temp = debugfs_create_file("aging_succeeded", 0444,
+			ctrl->debugfs, &ctrl->aging_succeeded, &fops_bool_ro);
+		if (IS_ERR_OR_NULL(temp)) {
+			cpr3_err(ctrl, "aging_succeeded debugfs file creation failed\n");
+			return;
+		}
+
+		temp = debugfs_create_file("aging_failed", 0444,
+			ctrl->debugfs, &ctrl->aging_failed, &fops_bool_ro);
+		if (IS_ERR_OR_NULL(temp)) {
+			cpr3_err(ctrl, "aging_failed debugfs file creation failed\n");
+			return;
+		}
+
+		temp = debugfs_create_file("aging_trigger", 0200,
+			ctrl->debugfs, ctrl,
+			&cpr3_debug_trigger_aging_measurement_fops);
+		if (IS_ERR_OR_NULL(temp)) {
+			cpr3_err(ctrl, "aging_trigger debugfs file creation failed\n");
+			return;
+		}
+	}
+
+	aggr_dir = debugfs_create_dir("max_aggregated_voltages", ctrl->debugfs);
+	if (IS_ERR_OR_NULL(aggr_dir)) {
+		cpr3_err(ctrl, "max_aggregated_voltages debugfs directory creation failed\n");
+		return;
+	}
+
+	temp = debugfs_create_int("floor_volt", 0444, aggr_dir,
+				  &ctrl->aggr_corner.floor_volt);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(ctrl, "aggr floor_volt debugfs file creation failed\n");
+		return;
+	}
+
+	temp = debugfs_create_int("ceiling_volt", 0444, aggr_dir,
+				  &ctrl->aggr_corner.ceiling_volt);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(ctrl, "aggr ceiling_volt debugfs file creation failed\n");
+		return;
+	}
+
+	temp = debugfs_create_int("open_loop_volt", 0444, aggr_dir,
+				  &ctrl->aggr_corner.open_loop_volt);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(ctrl, "aggr open_loop_volt debugfs file creation failed\n");
+		return;
+	}
+
+	temp = debugfs_create_int("last_volt", 0444, aggr_dir,
+				  &ctrl->aggr_corner.last_volt);
+	if (IS_ERR_OR_NULL(temp)) {
+		cpr3_err(ctrl, "aggr last_volt debugfs file creation failed\n");
+		return;
+	}
+
+	for (i = 0; i < ctrl->thread_count; i++)
+		cpr3_regulator_debugfs_thread_add(&ctrl->thread[i]);
+}
+
+/**
+ * cpr3_regulator_debugfs_ctrl_remove() - remove debugfs files for the CPR
+ *		controller
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Note, this function must be called after the controller has been removed from
+ * cpr3_controller_list and while the cpr3_controller_list_mutex lock is held.
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_ctrl_remove(struct cpr3_controller *ctrl)
+{
+	if (list_empty(&cpr3_controller_list)) {
+		debugfs_remove_recursive(cpr3_debugfs_base);
+		cpr3_debugfs_base = NULL;
+	} else {
+		debugfs_remove_recursive(ctrl->debugfs);
+	}
+}
+
+/**
+ * cpr3_regulator_init_ctrl_data() - performs initialization of CPR controller
+ *					elements
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_ctrl_data(struct cpr3_controller *ctrl)
+{
+	/* Read the initial vdd voltage from hardware. */
+	ctrl->aggr_corner.last_volt
+		= regulator_get_voltage(ctrl->vdd_regulator);
+	if (ctrl->aggr_corner.last_volt < 0) {
+		cpr3_err(ctrl, "regulator_get_voltage(vdd) failed, rc=%d\n",
+				ctrl->aggr_corner.last_volt);
+		return ctrl->aggr_corner.last_volt;
+	}
+	ctrl->aggr_corner.open_loop_volt = ctrl->aggr_corner.last_volt;
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_init_vreg_data() - performs initialization of common CPR3
+ *		regulator elements and validate aging configurations
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_vreg_data(struct cpr3_regulator *vreg)
+{
+	int i, j;
+	bool init_aging;
+
+	vreg->current_corner = CPR3_REGULATOR_CORNER_INVALID;
+	vreg->last_closed_loop_corner = CPR3_REGULATOR_CORNER_INVALID;
+
+	init_aging = vreg->aging_allowed && vreg->thread->ctrl->aging_required;
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		vreg->corner[i].last_volt = vreg->corner[i].open_loop_volt;
+		vreg->corner[i].irq_en = CPR3_IRQ_UP | CPR3_IRQ_DOWN;
+
+		vreg->corner[i].ro_mask = 0;
+		for (j = 0; j < CPR3_RO_COUNT; j++) {
+			if (vreg->corner[i].target_quot[j] == 0)
+				vreg->corner[i].ro_mask |= BIT(j);
+		}
+
+		if (init_aging) {
+			vreg->corner[i].unaged_floor_volt
+				= vreg->corner[i].floor_volt;
+			vreg->corner[i].unaged_ceiling_volt
+				= vreg->corner[i].ceiling_volt;
+			vreg->corner[i].unaged_open_loop_volt
+				= vreg->corner[i].open_loop_volt;
+		}
+
+		if (vreg->aging_allowed) {
+			if (vreg->corner[i].unaged_floor_volt <= 0) {
+				cpr3_err(vreg, "invalid unaged_floor_volt[%d] = %d\n",
+					i, vreg->corner[i].unaged_floor_volt);
+				return -EINVAL;
+			}
+			if (vreg->corner[i].unaged_ceiling_volt <= 0) {
+				cpr3_err(vreg, "invalid unaged_ceiling_volt[%d] = %d\n",
+					i, vreg->corner[i].unaged_ceiling_volt);
+				return -EINVAL;
+			}
+			if (vreg->corner[i].unaged_open_loop_volt <= 0) {
+				cpr3_err(vreg, "invalid unaged_open_loop_volt[%d] = %d\n",
+				      i, vreg->corner[i].unaged_open_loop_volt);
+				return -EINVAL;
+			}
+		}
+	}
+
+	if (vreg->aging_allowed && vreg->corner[vreg->aging_corner].ceiling_volt
+	    > vreg->thread->ctrl->aging_ref_volt) {
+		cpr3_err(vreg, "aging corner %d ceiling voltage = %d > aging ref voltage = %d uV\n",
+			vreg->aging_corner,
+			vreg->corner[vreg->aging_corner].ceiling_volt,
+			vreg->thread->ctrl->aging_ref_volt);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_regulator_suspend() - perform common required CPR3 power down steps
+ *		before the system enters suspend
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_regulator_suspend(struct cpr3_controller *ctrl)
+{
+	int rc;
+
+	mutex_lock(&ctrl->lock);
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+		rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+				rc);
+			mutex_unlock(&ctrl->lock);
+			return rc;
+		}
+	}
+
+	cpr3_ctrl_loop_disable(ctrl);
+
+	if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
+		rc = cpr3_closed_loop_disable(ctrl);
+		if (rc)
+			cpr3_err(ctrl, "could not disable CPR, rc=%d\n", rc);
+
+		ctrl->cpr_suspended = true;
+	}
+
+	mutex_unlock(&ctrl->lock);
+	return 0;
+}
+
+/**
+ * cpr3_regulator_resume() - perform common required CPR3 power up steps after
+ *		the system resumes from suspend
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_regulator_resume(struct cpr3_controller *ctrl)
+{
+	int rc;
+
+	mutex_lock(&ctrl->lock);
+
+	if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
+		ctrl->cpr_suspended = false;
+		rc = cpr3_regulator_update_ctrl_state(ctrl);
+		if (rc)
+			cpr3_err(ctrl, "could not enable CPR, rc=%d\n", rc);
+	} else {
+		cpr3_ctrl_loop_enable(ctrl);
+	}
+
+	mutex_unlock(&ctrl->lock);
+	return 0;
+}
+
+/**
+ * cpr3_regulator_cpu_hotplug_callback() - reset CPR IRQ affinity when a CPU is
+ *		brought online via hotplug
+ * @nb:			Pointer to the notifier block
+ * @action:		hotplug action
+ * @hcpu:		long value corresponding to the CPU number
+ *
+ * Return: NOTIFY_OK
+ */
+static int cpr3_regulator_cpu_hotplug_callback(struct notifier_block *nb,
+					    unsigned long action, void *hcpu)
+{
+	struct cpr3_controller *ctrl = container_of(nb, struct cpr3_controller,
+					cpu_hotplug_notifier);
+	int cpu = (long)hcpu;
+
+	action &= ~CPU_TASKS_FROZEN;
+
+	if (action == CPU_ONLINE
+	    && cpumask_test_cpu(cpu, &ctrl->irq_affinity_mask))
+		irq_set_affinity(ctrl->irq, &ctrl->irq_affinity_mask);
+
+	return NOTIFY_OK;
+}
+
+/**
+ * cpr3_regulator_validate_controller() - verify the data passed in via the
+ *		cpr3_controller data structure
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_validate_controller(struct cpr3_controller *ctrl)
+{
+	struct cpr3_thread *thread;
+	struct cpr3_regulator *vreg;
+	int i, j, allow_boost_vreg_count = 0;
+
+	if (!ctrl->vdd_regulator && ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
+		cpr3_err(ctrl, "vdd regulator missing\n");
+		return -EINVAL;
+	} else if (ctrl->sensor_count <= 0
+		   || ctrl->sensor_count > CPR3_MAX_SENSOR_COUNT) {
+		cpr3_err(ctrl, "invalid CPR sensor count=%d\n",
+			ctrl->sensor_count);
+		return -EINVAL;
+	} else if (!ctrl->sensor_owner) {
+		cpr3_err(ctrl, "CPR sensor ownership table missing\n");
+		return -EINVAL;
+	}
+
+	if (ctrl->aging_required) {
+		for (i = 0; i < ctrl->aging_sensor_count; i++) {
+			if (ctrl->aging_sensor[i].sensor_id
+			    >= ctrl->sensor_count) {
+				cpr3_err(ctrl, "aging_sensor[%d] id=%u is not in the value range 0-%d",
+					i, ctrl->aging_sensor[i].sensor_id,
+					ctrl->sensor_count - 1);
+				return -EINVAL;
+			}
+		}
+	}
+
+	for (i = 0; i < ctrl->thread_count; i++) {
+		thread = &ctrl->thread[i];
+		for (j = 0; j < thread->vreg_count; j++) {
+			vreg = &thread->vreg[j];
+			if (vreg->allow_boost)
+				allow_boost_vreg_count++;
+		}
+	}
+
+	if (allow_boost_vreg_count > 1) {
+		/*
+		 * Boost feature is not allowed to be used for more
+		 * than one CPR3 regulator of a CPR3 controller.
+		 */
+		cpr3_err(ctrl, "Boost feature is enabled for more than one regulator\n");
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_panic_callback() - panic notification callback function. This function
+ *		is invoked when a kernel panic occurs.
+ * @nfb:	Notifier block pointer of CPR3 controller
+ * @event:	Value passed unmodified to notifier function
+ * @data:	Pointer passed unmodified to notifier function
+ *
+ * Return: NOTIFY_OK
+ */
+static int cpr3_panic_callback(struct notifier_block *nfb,
+			unsigned long event, void *data)
+{
+	struct cpr3_controller *ctrl = container_of(nfb,
+				struct cpr3_controller, panic_notifier);
+	struct cpr3_panic_regs_info *regs_info = ctrl->panic_regs_info;
+	struct cpr3_reg_info *reg;
+	int i = 0;
+
+	for (i = 0; i < regs_info->reg_count; i++) {
+		reg = &(regs_info->regs[i]);
+		reg->value = readl_relaxed(reg->virt_addr);
+		pr_err("%s[0x%08x] = 0x%08x\n", reg->name, reg->addr,
+			reg->value);
+	}
+	/*
+	 * Barrier to ensure that the information has been updated in the
+	 * structure.
+	 */
+	mb();
+
+	return NOTIFY_OK;
+}
+
+/**
+ * cpr3_regulator_register() - register the regulators for a CPR3 controller and
+ *		perform CPR hardware initialization
+ * @pdev:		Platform device pointer for the CPR3 controller
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_regulator_register(struct platform_device *pdev,
+			struct cpr3_controller *ctrl)
+{
+	struct device *dev = &pdev->dev;
+	struct resource *res;
+	int i, j, rc;
+
+	if (!dev->of_node) {
+		dev_err(dev, "%s: Device tree node is missing\n", __func__);
+		return -EINVAL;
+	}
+
+	if (!ctrl || !ctrl->name) {
+		dev_err(dev, "%s: CPR controller data is missing\n", __func__);
+		return -EINVAL;
+	}
+
+	rc = cpr3_regulator_validate_controller(ctrl);
+	if (rc) {
+		cpr3_err(ctrl, "controller validation failed, rc=%d\n", rc);
+		return rc;
+	}
+
+	mutex_init(&ctrl->lock);
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cpr_ctrl");
+	if (!res || !res->start) {
+		cpr3_err(ctrl, "CPR controller address is missing\n");
+		return -ENXIO;
+	}
+	ctrl->cpr_ctrl_base = devm_ioremap(dev, res->start, resource_size(res));
+
+	if (ctrl->aging_possible_mask) {
+		/*
+		 * Aging possible register address is required if an aging
+		 * possible mask has been specified.
+		 */
+		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+						"aging_allowed");
+		if (!res || !res->start) {
+			cpr3_err(ctrl, "CPR aging allowed address is missing\n");
+			return -ENXIO;
+		}
+		ctrl->aging_possible_reg = devm_ioremap(dev, res->start,
+							resource_size(res));
+	}
+
+	if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
+		ctrl->irq = platform_get_irq_byname(pdev, "cpr");
+		if (ctrl->irq < 0) {
+			cpr3_err(ctrl, "missing CPR interrupt\n");
+			return ctrl->irq;
+		}
+	}
+
+	if (ctrl->supports_hw_closed_loop) {
+		rc = msm_spm_probe_done();
+		if (rc) {
+			if (rc != -EPROBE_DEFER)
+				cpr3_err(ctrl, "spm unavailable, rc=%d\n", rc);
+			return rc;
+		}
+
+		if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+			ctrl->ceiling_irq = platform_get_irq_byname(pdev,
+						"ceiling");
+			if (ctrl->ceiling_irq < 0) {
+				cpr3_err(ctrl, "missing ceiling interrupt\n");
+				return ctrl->ceiling_irq;
+			}
+		}
+	}
+
+	if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
+		rc = cpr3_regulator_init_ctrl_data(ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "CPR controller data initialization failed, rc=%d\n",
+				 rc);
+			return rc;
+		}
+	}
+
+	for (i = 0; i < ctrl->thread_count; i++) {
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+			rc = cpr3_regulator_init_vreg_data(
+						&ctrl->thread[i].vreg[j]);
+			if (rc)
+				return rc;
+			cpr3_print_quots(&ctrl->thread[i].vreg[j]);
+		}
+	}
+
+	/*
+	 * Add the maximum possible aging voltage margin until it is possible
+	 * to perform an aging measurement.
+	 */
+	if (ctrl->aging_required)
+		cpr3_regulator_set_aging_ref_adjustment(ctrl, INT_MAX);
+
+	rc = cpr3_regulator_init_ctrl(ctrl);
+	if (rc) {
+		cpr3_err(ctrl, "CPR controller initialization failed, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	/* Register regulator devices for all threads. */
+	for (i = 0; i < ctrl->thread_count; i++) {
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+			rc = cpr3_regulator_vreg_register(
+					&ctrl->thread[i].vreg[j]);
+			if (rc) {
+				cpr3_err(&ctrl->thread[i].vreg[j], "failed to register regulator, rc=%d\n",
+					rc);
+				goto free_regulators;
+			}
+		}
+	}
+
+	if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPRH) {
+		rc = devm_request_threaded_irq(dev, ctrl->irq, NULL,
+					       cpr3_irq_handler,
+					       IRQF_ONESHOT |
+					       IRQF_TRIGGER_RISING,
+					       "cpr3", ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "could not request IRQ %d, rc=%d\n",
+				 ctrl->irq, rc);
+			goto free_regulators;
+		}
+	}
+
+	if (ctrl->supports_hw_closed_loop &&
+	    ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+		rc = devm_request_threaded_irq(dev, ctrl->ceiling_irq, NULL,
+			cpr3_ceiling_irq_handler,
+			IRQF_ONESHOT | IRQF_TRIGGER_RISING,
+			"cpr3_ceiling", ctrl);
+		if (rc) {
+			cpr3_err(ctrl, "could not request ceiling IRQ %d, rc=%d\n",
+				ctrl->ceiling_irq, rc);
+			goto free_regulators;
+		}
+	}
+
+	if (ctrl->irq && !cpumask_empty(&ctrl->irq_affinity_mask)) {
+		irq_set_affinity(ctrl->irq, &ctrl->irq_affinity_mask);
+
+		ctrl->cpu_hotplug_notifier.notifier_call
+			= cpr3_regulator_cpu_hotplug_callback;
+		register_hotcpu_notifier(&ctrl->cpu_hotplug_notifier);
+	}
+
+	mutex_lock(&cpr3_controller_list_mutex);
+	cpr3_regulator_debugfs_ctrl_add(ctrl);
+	list_add(&ctrl->list, &cpr3_controller_list);
+	mutex_unlock(&cpr3_controller_list_mutex);
+
+	if (ctrl->panic_regs_info) {
+		/* Register panic notification call back */
+		ctrl->panic_notifier.notifier_call = cpr3_panic_callback;
+		atomic_notifier_chain_register(&panic_notifier_list,
+			&ctrl->panic_notifier);
+	}
+
+	return 0;
+
+free_regulators:
+	for (i = 0; i < ctrl->thread_count; i++)
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++)
+			if (!IS_ERR_OR_NULL(ctrl->thread[i].vreg[j].rdev))
+				regulator_unregister(
+					ctrl->thread[i].vreg[j].rdev);
+	return rc;
+}
+
+/**
+ * cpr3_regulator_unregister() - unregister the regulators for a CPR3 controller
+ *		and perform CPR hardware shutdown
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_regulator_unregister(struct cpr3_controller *ctrl)
+{
+	int i, j, rc = 0;
+
+	mutex_lock(&cpr3_controller_list_mutex);
+	list_del(&ctrl->list);
+	cpr3_regulator_debugfs_ctrl_remove(ctrl);
+	mutex_unlock(&cpr3_controller_list_mutex);
+
+	if (ctrl->irq && !cpumask_empty(&ctrl->irq_affinity_mask))
+		unregister_hotcpu_notifier(&ctrl->cpu_hotplug_notifier);
+
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4)
+		rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+		if (rc)
+			cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+				rc);
+
+	cpr3_ctrl_loop_disable(ctrl);
+
+	cpr3_closed_loop_disable(ctrl);
+
+	if (ctrl->vdd_limit_regulator) {
+		regulator_disable(ctrl->vdd_limit_regulator);
+
+		if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
+			msm_spm_avs_disable_irq(0, MSM_SPM_AVS_IRQ_MAX);
+	}
+
+	for (i = 0; i < ctrl->thread_count; i++)
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++)
+			regulator_unregister(ctrl->thread[i].vreg[j].rdev);
+
+	if (ctrl->panic_notifier.notifier_call)
+		atomic_notifier_chain_unregister(&panic_notifier_list,
+			&ctrl->panic_notifier);
+
+	return 0;
+}
diff --git a/drivers/regulator/cpr3-regulator.h b/drivers/regulator/cpr3-regulator.h
new file mode 100644
index 0000000..7dae23c
--- /dev/null
+++ b/drivers/regulator/cpr3-regulator.h
@@ -0,0 +1,1095 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#ifndef __REGULATOR_CPR3_REGULATOR_H__
+#define __REGULATOR_CPR3_REGULATOR_H__
+
+#include <linux/clk.h>
+#include <linux/mutex.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/types.h>
+#include <linux/power/qcom/apm.h>
+#include <linux/regulator/driver.h>
+
+struct cpr3_controller;
+struct cpr3_thread;
+
+/**
+ * struct cpr3_fuse_param - defines one contiguous segment of a fuse parameter
+ *			    that is contained within a given row.
+ * @row:	Fuse row number
+ * @bit_start:	The first bit within the row of the fuse parameter segment
+ * @bit_end:	The last bit within the row of the fuse parameter segment
+ *
+ * Each fuse row is 64 bits in length.  bit_start and bit_end may take values
+ * from 0 to 63.  bit_start must be less than or equal to bit_end.
+ */
+struct cpr3_fuse_param {
+	unsigned int		row;
+	unsigned int		bit_start;
+	unsigned int		bit_end;
+};
+
+/* Each CPR3 sensor has 16 ring oscillators */
+#define CPR3_RO_COUNT		16
+
+/* The maximum number of sensors that can be present on a single CPR loop. */
+#define CPR3_MAX_SENSOR_COUNT	256
+
+/* This constant is used when allocating array printing buffers. */
+#define MAX_CHARS_PER_INT	10
+
+/**
+ * struct cpr4_sdelta - CPR4 controller specific data structure for the sdelta
+ *			adjustment table which is used to adjust the VDD supply
+ *			voltage automatically based upon the temperature and/or
+ *			the number of online CPU cores.
+ * @allow_core_count_adj: Core count adjustments are allowed.
+ * @allow_temp_adj:	Temperature based adjustments are allowed.
+ * @max_core_count:	Maximum number of cores considered for core count
+ *			adjustment logic.
+ * @temp_band_count:	Number of temperature bands considered for temperature
+ *			based adjustment logic.
+ * @cap_volt:		CAP in uV to apply to SDELTA margins with multiple
+ *			cpr3-regulators defined for single controller.
+ * @table:		SDELTA table with per-online-core and temperature based
+ *			adjustments of size (max_core_count * temp_band_count)
+ *			Outer: core count
+ *			Inner: temperature band
+ *			Each element has units of VDD supply steps. Positive
+ *			values correspond to a reduction in voltage and negative
+ *			value correspond to an increase (this follows the SDELTA
+ *			register semantics).
+ * @allow_boost:	Voltage boost allowed.
+ * @boost_num_cores:	The number of online cores at which the boost voltage
+ *			adjustments will be applied
+ * @boost_table:	SDELTA table with boost voltage adjustments of size
+ *			temp_band_count. Each element has units of VDD supply
+ *			steps. Positive values correspond to a reduction in
+ *			voltage and negative value correspond to an increase
+ *			(this follows the SDELTA register semantics).
+ */
+struct cpr4_sdelta {
+	bool	allow_core_count_adj;
+	bool	allow_temp_adj;
+	int	max_core_count;
+	int	temp_band_count;
+	int	cap_volt;
+	int	*table;
+	bool	allow_boost;
+	int	boost_num_cores;
+	int	*boost_table;
+};
+
+/**
+ * struct cpr3_corner - CPR3 virtual voltage corner data structure
+ * @floor_volt:		CPR closed-loop floor voltage in microvolts
+ * @ceiling_volt:	CPR closed-loop ceiling voltage in microvolts
+ * @open_loop_volt:	CPR open-loop voltage (i.e. initial voltage) in
+ *			microvolts
+ * @last_volt:		Last known settled CPR closed-loop voltage which is used
+ *			when switching to a new corner
+ * @abs_ceiling_volt:	The absolute CPR closed-loop ceiling voltage in
+ *			microvolts.  This is used to limit the ceiling_volt
+ *			value when it is increased as a result of aging
+ *			adjustment.
+ * @unaged_floor_volt:	The CPR closed-loop floor voltage in microvolts before
+ *			any aging adjustment is performed
+ * @unaged_ceiling_volt: The CPR closed-loop ceiling voltage in microvolts
+ *			before any aging adjustment is performed
+ * @unaged_open_loop_volt: The CPR open-loop voltage (i.e. initial voltage) in
+ *			microvolts before any aging adjusment is performed
+ * @system_volt:	The system-supply voltage in microvolts or corners or
+ *			levels
+ * @mem_acc_volt:	The mem-acc-supply voltage in corners
+ * @proc_freq:		Processor frequency in Hertz. For CPR rev. 3 and 4
+ *			conrollers, this field is only used by platform specific
+ *			CPR3 driver for interpolation. For CPRh-compliant
+ *			controllers, this frequency is also utilized by the
+ *			clock driver to determine the corner to CPU clock
+ *			frequency mappings.
+ * @cpr_fuse_corner:	Fused corner index associated with this virtual corner
+ *			(only used by platform specific CPR3 driver for
+ *			mapping purposes)
+ * @target_quot:	Array of target quotient values to use for each ring
+ *			oscillator (RO) for this corner.  A value of 0 should be
+ *			specified as the target quotient for each RO that is
+ *			unused by this corner.
+ * @ro_scale:		Array of CPR ring oscillator (RO) scaling factors.  The
+ *			scaling factor for each RO is defined from RO0 to RO15
+ *			with units of QUOT/V.  A value of 0 may be specified for
+ *			an RO that is unused.
+ * @ro_mask:		Bitmap where each of the 16 LSBs indicate if the
+ *			corresponding ROs should be masked for this corner
+ * @irq_en:		Bitmap of the CPR interrupts to enable for this corner
+ * @aging_derate:	The amount to derate the aging voltage adjustment
+ *			determined for the reference corner in units of uV/mV.
+ *			E.g. a value of 900 would imply that the adjustment for
+ *			this corner should be 90% (900/1000) of that for the
+ *			reference corner.
+ * @use_open_loop:	Boolean indicating that open-loop (i.e CPR disabled) as
+ *			opposed to closed-loop operation must be used for this
+ *			corner on CPRh controllers.
+ * @ldo_mode_allowed:	Boolean which indicates if LDO mode is allowed for this
+ *			corner. This field is applicable for CPR4 controllers
+ *			that manage LDO300 supply regulator.
+ * @sdelta:		The CPR4 controller specific data for this corner. This
+ *			field is applicable for CPR4 controllers.
+ *
+ * The value of last_volt is initialized inside of the cpr3_regulator_register()
+ * call with the open_loop_volt value.  It can later be updated to the settled
+ * VDD supply voltage.  The values for unaged_floor_volt, unaged_ceiling_volt,
+ * and unaged_open_loop_volt are initialized inside of cpr3_regulator_register()
+ * if ctrl->aging_required == true.  These three values must be pre-initialized
+ * if cpr3_regulator_register() is called with ctrl->aging_required == false and
+ * ctrl->aging_succeeded == true.
+ *
+ * The values of ro_mask and irq_en are initialized inside of the
+ * cpr3_regulator_register() call.
+ */
+struct cpr3_corner {
+	int			floor_volt;
+	int			ceiling_volt;
+	int			open_loop_volt;
+	int			last_volt;
+	int			abs_ceiling_volt;
+	int			unaged_floor_volt;
+	int			unaged_ceiling_volt;
+	int			unaged_open_loop_volt;
+	int			system_volt;
+	int			mem_acc_volt;
+	u32			proc_freq;
+	int			cpr_fuse_corner;
+	u32			target_quot[CPR3_RO_COUNT];
+	u32			ro_scale[CPR3_RO_COUNT];
+	u32			ro_mask;
+	u32			irq_en;
+	int			aging_derate;
+	bool			use_open_loop;
+	bool			ldo_mode_allowed;
+	struct cpr4_sdelta	*sdelta;
+};
+
+/**
+ * struct cprh_corner_band - CPRh controller specific data structure which
+ *			encapsulates the range of corners and the SDELTA
+ *			adjustment table to be applied to the corners within
+ *			the min and max bounds of the corner band.
+ * @corner:		Corner number which defines the corner band boundary
+ * @sdelta:		The SDELTA adjustment table which contains core-count
+ *			and temp based margin adjustments that are applicable
+ *			to the corner band.
+ */
+struct cprh_corner_band {
+	int			corner;
+	struct cpr4_sdelta	*sdelta;
+};
+
+/**
+ * enum cpr3_ldo_type - Constants which define the LDO supply regulator
+ *	types used to manage the subsystem component rail voltage.
+ * %CPR3_LDO_KRYO:	Kryo LDO regulator used to sub-regulate the HMSS
+ *			per-cluster voltage.
+ * %CPR3_LDO300:	LDO regulator used to sub-regulate the GFX voltage.
+ */
+enum cpr3_ldo_type {
+	CPR3_LDO_KRYO	= 0,
+	CPR3_LDO300	= 1,
+};
+
+/**
+ * struct cpr3_regulator - CPR3 logical regulator instance associated with a
+ *			given CPR3 hardware thread
+ * @of_node:		Device node associated with the device tree child node
+ *			of this CPR3 regulator
+ * @thread:		Pointer to the CPR3 thread which manages this CPR3
+ *			regulator
+ * @name:		Unique name for this CPR3 regulator which is filled
+ *			using the device tree regulator-name property
+ * @rdesc:		Regulator description for this CPR3 regulator
+ * @rdev:		Regulator device pointer for the regulator registered
+ *			for this CPR3 regulator
+ * @mem_acc_regulator:	Pointer to the optional mem-acc supply regulator used
+ *			to manage memory circuitry settings based upon CPR3
+ *			regulator output voltage.
+ * @ldo_regulator:	Pointer to the LDO supply regulator used to manage
+ *			per-cluster LDO voltage and bypass state
+ * @ldo_regulator_bypass: Cached copy of the LDO regulator bypass state
+ * @ldo_ret_regulator:	Pointer to the LDO retention supply regulator used to
+ *			manage LDO retention bypass state
+ * @corner:		Array of all corners supported by this CPR3 regulator
+ * @corner_count:	The number of elements in the corner array
+ * @corner_band:	Array of all corner bands supported by CPRh compatible
+ *			controllers
+ * @corner_band_count:	The number of elements in the corner band array
+ * @platform_fuses:	Pointer to platform specific CPR fuse data (only used by
+ *			platform specific CPR3 driver)
+ * @speed_bin_fuse:	Value read from the speed bin fuse parameter
+ * @speed_bins_supported: The number of speed bins supported by the device tree
+ *			configuration for this CPR3 regulator
+ * @cpr_rev_fuse:	Value read from the CPR fusing revision fuse parameter
+ * @fuse_combo:		Platform specific enum value identifying the specific
+ *			combination of fuse values found on a given chip
+ * @fuse_combos_supported: The number of fuse combinations supported by the
+ *			device tree configuration for this CPR3 regulator
+ * @fuse_corner_count:	Number of corners defined by fuse parameters
+ * @fuse_corner_map:	Array of length fuse_corner_count which specifies the
+ *			highest corner associated with each fuse corner.  Note
+ *			that each element must correspond to a valid corner
+ *			and that element values must be strictly increasing.
+ *			Also, it is acceptable for the lowest fuse corner to map
+ *			to a corner other than the lowest.  Likewise, it is
+ *			acceptable for the highest fuse corner to map to a
+ *			corner other than the highest.
+ * @fuse_combo_corner_sum: The sum of the corner counts across all fuse combos
+ * @fuse_combo_offset:	The device tree property array offset for the selected
+ *			fuse combo
+ * @speed_bin_corner_sum: The sum of the corner counts across all speed bins
+ *			This may be specified as 0 if per speed bin parsing
+ *			support is not required.
+ * @speed_bin_offset:	The device tree property array offset for the selected
+ *			speed bin
+ * @fuse_combo_corner_band_sum: The sum of the corner band counts across all
+ *			fuse combos
+ * @fuse_combo_corner_band_offset: The device tree property array offset for
+ *			the corner band count corresponding to the selected
+ *			fuse combo
+ * @speed_bin_corner_band_sum: The sum of the corner band counts across all
+ *			speed bins. This may be specified as 0 if per speed bin
+ *			parsing support is not required
+ * @speed_bin_corner_band_offset: The device tree property array offset for the
+ *			corner band count corresponding to the selected speed
+ *			bin
+ * @pd_bypass_mask:	Bit mask of power domains associated with this CPR3
+ *			regulator
+ * @dynamic_floor_corner: Index identifying the voltage corner for the CPR3
+ *			regulator whose last_volt value should be used as the
+ *			global CPR floor voltage if all of the power domains
+ *			associated with this CPR3 regulator are bypassed
+ * @uses_dynamic_floor: Boolean flag indicating that dynamic_floor_corner should
+ *			be utilized for the CPR3 regulator
+ * @current_corner:	Index identifying the currently selected voltage corner
+ *			for the CPR3 regulator or less than 0 if no corner has
+ *			been requested
+ * @last_closed_loop_corner: Index identifying the last voltage corner for the
+ *			CPR3 regulator which was configured when operating in
+ *			CPR closed-loop mode or less than 0 if no corner has
+ *			been requested.  CPR registers are only written to when
+ *			using closed-loop mode.
+ * @aggregated:		Boolean flag indicating that this CPR3 regulator
+ *			participated in the last aggregation event
+ * @debug_corner:	Index identifying voltage corner used for displaying
+ *			corner configuration values in debugfs
+ * @ldo_type:		LDO regulator type.
+ * @ldo_min_headroom_volt: Minimum voltage difference in microvolts required
+ *			between the VDD supply voltage and the LDO output in
+ *			order for the LDO operate
+ * @ldo_max_headroom_volt: Maximum voltage difference in microvolts between
+ *			the input and output of the active LDO hardware to
+ *			maintain optimum operability.
+ * @ldo_adjust_volt:	Voltage in microvolts used to offset margin assigned
+ *			to IR drop between PMIC and CPU
+ * @ldo_ret_volt:	The lowest supported CPU retention voltage in
+ *			microvolts. This voltage may vary part-to-part based
+ *			upon the value of hardware fuses.
+ * @ldo_max_volt:	The maximum physically supported LDO voltage in
+ *			microvolts
+ * @ldo_mode_allowed:	Boolean which indicates if LDO mode is allowed for this
+ *			CPR3 regulator
+ * @vreg_enabled:	Boolean defining the enable state of the CPR3
+ *			regulator's regulator within the regulator framework.
+ * @aging_allowed:	Boolean defining if CPR aging adjustments are allowed
+ *			for this CPR3 regulator given the fuse combo of the
+ *			device
+ * @aging_allow_open_loop_adj: Boolean defining if the open-loop voltage of each
+ *			corner of this regulator should be adjusted as a result
+ *			of an aging measurement.  This flag can be set to false
+ *			when the open-loop voltage adjustments have been
+ *			specified such that they include the maximum possible
+ *			aging adjustment.  This flag is only used if
+ *			aging_allowed == true.
+ * @aging_corner:	The corner that should be configured for this regulator
+ *			when an aging measurement is performed.
+ * @aging_max_adjust_volt: The maximum aging voltage margin in microvolts that
+ *			may be added to the target quotients of this regulator.
+ *			A value of 0 may be specified if this regulator does not
+ *			require any aging adjustment.
+ * @allow_core_count_adj: Core count adjustments are allowed for this regulator.
+ * @allow_temp_adj:	Temperature based adjustments are allowed for this
+ *			regulator.
+ * @max_core_count:	Maximum number of cores considered for core count
+ *			adjustment logic.
+ * @allow_boost:	Voltage boost allowed for this regulator.
+ *
+ * This structure contains both configuration and runtime state data.  The
+ * elements current_corner, last_closed_loop_corner, aggregated, debug_corner,
+ * ldo_mode_allowed, and vreg_enabled are state variables.
+ */
+struct cpr3_regulator {
+	struct device_node	*of_node;
+	struct cpr3_thread	*thread;
+	const char		*name;
+	struct regulator_desc	rdesc;
+	struct regulator_dev	*rdev;
+	struct regulator	*mem_acc_regulator;
+	struct regulator	*ldo_regulator;
+	bool			ldo_regulator_bypass;
+	struct regulator	*ldo_ret_regulator;
+	struct cpr3_corner	*corner;
+	int			corner_count;
+	struct cprh_corner_band *corner_band;
+	u32			corner_band_count;
+
+	void			*platform_fuses;
+	int			speed_bin_fuse;
+	int			speed_bins_supported;
+	int			cpr_rev_fuse;
+	int			fuse_combo;
+	int			fuse_combos_supported;
+	int			fuse_corner_count;
+	int			*fuse_corner_map;
+	int			fuse_combo_corner_sum;
+	int			fuse_combo_offset;
+	int			speed_bin_corner_sum;
+	int			speed_bin_offset;
+	int			fuse_combo_corner_band_sum;
+	int			fuse_combo_corner_band_offset;
+	int			speed_bin_corner_band_sum;
+	int			speed_bin_corner_band_offset;
+	u32			pd_bypass_mask;
+	int			dynamic_floor_corner;
+	bool			uses_dynamic_floor;
+
+	int			current_corner;
+	int			last_closed_loop_corner;
+	bool			aggregated;
+	int			debug_corner;
+	enum cpr3_ldo_type	ldo_type;
+	int			ldo_min_headroom_volt;
+	int			ldo_max_headroom_volt;
+	int			ldo_adjust_volt;
+	int			ldo_ret_volt;
+	int			ldo_max_volt;
+	bool			ldo_mode_allowed;
+	bool			vreg_enabled;
+
+	bool			aging_allowed;
+	bool			aging_allow_open_loop_adj;
+	int			aging_corner;
+	int			aging_max_adjust_volt;
+
+	bool			allow_core_count_adj;
+	bool			allow_temp_adj;
+	int			max_core_count;
+	bool			allow_boost;
+};
+
+/**
+ * struct cpr3_thread - CPR3 hardware thread data structure
+ * @thread_id:		Hardware thread ID
+ * @of_node:		Device node associated with the device tree child node
+ *			of this CPR3 thread
+ * @ctrl:		Pointer to the CPR3 controller which manages this thread
+ * @vreg:		Array of CPR3 regulators handled by the CPR3 thread
+ * @vreg_count:		Number of elements in the vreg array
+ * @aggr_corner:	CPR corner containing the in process aggregated voltage
+ *			and target quotient configurations which will be applied
+ * @last_closed_loop_aggr_corner: CPR corner containing the most recent
+ *			configurations which were written into hardware
+ *			registers when operating in closed loop mode (i.e. with
+ *			CPR enabled)
+ * @consecutive_up:	The number of consecutive CPR step up events needed to
+ *			to trigger an up interrupt
+ * @consecutive_down:	The number of consecutive CPR step down events needed to
+ *			to trigger a down interrupt
+ * @up_threshold:	The number CPR error steps required to generate an up
+ *			event
+ * @down_threshold:	The number CPR error steps required to generate a down
+ *			event
+ *
+ * This structure contains both configuration and runtime state data.  The
+ * elements aggr_corner and last_closed_loop_aggr_corner are state variables.
+ */
+struct cpr3_thread {
+	u32			thread_id;
+	struct device_node	*of_node;
+	struct cpr3_controller	*ctrl;
+	struct cpr3_regulator	*vreg;
+	int			vreg_count;
+	struct cpr3_corner	aggr_corner;
+	struct cpr3_corner	last_closed_loop_aggr_corner;
+
+	u32			consecutive_up;
+	u32			consecutive_down;
+	u32			up_threshold;
+	u32			down_threshold;
+};
+
+/* Per CPR controller data */
+/**
+ * enum cpr3_mem_acc_corners - Constants which define the number of mem-acc
+ *		regulator corners available in the mem-acc corner map array.
+ * %CPR3_MEM_ACC_LOW_CORNER:	Index in mem-acc corner map array mapping to the
+ *				mem-acc regulator corner
+ *				to be used for low voltage vdd supply
+ * %CPR3_MEM_ACC_HIGH_CORNER:	Index in mem-acc corner map array mapping to the
+ *				mem-acc regulator corner to be used for high
+ *				voltage vdd supply
+ * %CPR3_MEM_ACC_CORNERS:	Number of elements in the mem-acc corner map
+ *				array
+ */
+enum cpr3_mem_acc_corners {
+	CPR3_MEM_ACC_LOW_CORNER		= 0,
+	CPR3_MEM_ACC_HIGH_CORNER	= 1,
+	CPR3_MEM_ACC_CORNERS		= 2,
+};
+
+/**
+ * enum cpr3_count_mode - CPR3 controller count mode which defines the
+ *		method that CPR sensor data is acquired
+ * %CPR3_COUNT_MODE_ALL_AT_ONCE_MIN:	Capture all CPR sensor readings
+ *					simultaneously and report the minimum
+ *					value seen in successive measurements
+ * %CPR3_COUNT_MODE_ALL_AT_ONCE_MAX:	Capture all CPR sensor readings
+ *					simultaneously and report the maximum
+ *					value seen in successive measurements
+ * %CPR3_COUNT_MODE_STAGGERED:		Read one sensor at a time in a
+ *					sequential fashion
+ * %CPR3_COUNT_MODE_ALL_AT_ONCE_AGE:	Capture all CPR aging sensor readings
+ *					simultaneously.
+ */
+enum cpr3_count_mode {
+	CPR3_COUNT_MODE_ALL_AT_ONCE_MIN	= 0,
+	CPR3_COUNT_MODE_ALL_AT_ONCE_MAX	= 1,
+	CPR3_COUNT_MODE_STAGGERED	= 2,
+	CPR3_COUNT_MODE_ALL_AT_ONCE_AGE	= 3,
+};
+
+/**
+ * enum cpr_controller_type - supported CPR controller hardware types
+ * %CPR_CTRL_TYPE_CPR3:	HW has CPR3 controller
+ * %CPR_CTRL_TYPE_CPR4:	HW has CPR4 controller
+ * %CPR_CTRL_TYPE_CPRH:	HW has CPRh controller
+ */
+enum cpr_controller_type {
+	CPR_CTRL_TYPE_CPR3,
+	CPR_CTRL_TYPE_CPR4,
+	CPR_CTRL_TYPE_CPRH,
+};
+
+/**
+ * struct cpr3_aging_sensor_info - CPR3 aging sensor information
+ * @sensor_id		The index of the CPR3 sensor to be used in the aging
+ *			measurement.
+ * @ro_scale		The CPR ring oscillator (RO) scaling factor for the
+ *			aging sensor with units of QUOT/V.
+ * @init_quot_diff:	The fused quotient difference between aged and un-aged
+ *			paths that was measured at manufacturing time.
+ * @measured_quot_diff: The quotient difference measured at runtime.
+ * @bypass_mask:	Bit mask of the CPR sensors that must be bypassed during
+ *			the aging measurement for this sensor
+ *
+ * This structure contains both configuration and runtime state data.  The
+ * element measured_quot_diff is a state variable.
+ */
+struct cpr3_aging_sensor_info {
+	u32			sensor_id;
+	u32			ro_scale;
+	int			init_quot_diff;
+	int			measured_quot_diff;
+	u32			bypass_mask[CPR3_MAX_SENSOR_COUNT / 32];
+};
+
+/**
+ * struct cpr3_reg_info - Register information data structure
+ * @name:	Register name
+ * @addr:	Register physical address
+ * @value:	Register content
+ * @virt_addr:	Register virtual address
+ *
+ * This data structure is used to dump some critical register contents
+ * when the device crashes due to a kernel panic.
+ */
+struct cpr3_reg_info {
+	const char	*name;
+	u32		addr;
+	u32		value;
+	void __iomem	*virt_addr;
+};
+
+/**
+ * struct cpr3_panic_regs_info - Data structure to dump critical register
+ *		contents.
+ * @reg_count:		Number of elements in the regs array
+ * @regs:		Array of critical registers information
+ *
+ * This data structure is used to dump critical register contents when
+ * the device crashes due to a kernel panic.
+ */
+struct cpr3_panic_regs_info {
+	int			reg_count;
+	struct cpr3_reg_info	*regs;
+};
+
+/**
+ * struct cpr3_controller - CPR3 controller data structure
+ * @dev:		Device pointer for the CPR3 controller device
+ * @name:		Unique name for the CPR3 controller
+ * @ctrl_id:		Controller ID corresponding to the VDD supply number
+ *			that this CPR3 controller manages.
+ * @cpr_ctrl_base:	Virtual address of the CPR3 controller base register
+ * @fuse_base:		Virtual address of fuse row 0
+ * @aging_possible_reg:	Virtual address of an optional platform-specific
+ *			register that must be ready to determine if it is
+ *			possible to perform an aging measurement.
+ * @list:		list head used in a global cpr3-regulator list so that
+ *			cpr3-regulator structs can be found easily in RAM dumps
+ * @thread:		Array of CPR3 threads managed by the CPR3 controller
+ * @thread_count:	Number of elements in the thread array
+ * @sensor_owner:	Array of thread IDs indicating which thread owns a given
+ *			CPR sensor
+ * @sensor_count:	The number of CPR sensors found on the CPR loop managed
+ *			by this CPR controller.  Must be equal to the number of
+ *			elements in the sensor_owner array
+ * @soc_revision:	Revision number of the SoC.  This may be unused by
+ *			platforms that do not have different behavior for
+ *			different SoC revisions.
+ * @lock:		Mutex lock used to ensure mutual exclusion between
+ *			all of the threads associated with the controller
+ * @vdd_regulator:	Pointer to the VDD supply regulator which this CPR3
+ *			controller manages
+ * @system_regulator:	Pointer to the optional system-supply regulator upon
+ *			which the VDD supply regulator depends.
+ * @mem_acc_regulator:	Pointer to the optional mem-acc supply regulator used
+ *			to manage memory circuitry settings based upon the
+ *			VDD supply output voltage.
+ * @vdd_limit_regulator: Pointer to the VDD supply limit regulator which is used
+ *			for hardware closed-loop in order specify ceiling and
+ *			floor voltage limits (platform specific)
+ * @system_supply_max_volt: Voltage in microvolts which corresponds to the
+ *			absolute ceiling voltage of the system-supply
+ * @mem_acc_threshold_volt: mem-acc threshold voltage in microvolts
+ * @mem_acc_corner_map: mem-acc regulator corners mapping to low and high
+ *			voltage mem-acc settings for the memories powered by
+ *			this CPR3 controller and its associated CPR3 regulators
+ * @mem_acc_crossover_volt: Voltage in microvolts corresponding to the voltage
+ *			that the VDD supply must be set to while a MEM ACC
+ *			switch is in progress. This element must be initialized
+ *			for CPRh controllers when a MEM ACC threshold voltage is
+ *			defined.
+ * @core_clk:		Pointer to the CPR3 controller core clock
+ * @iface_clk:		Pointer to the CPR3 interface clock (platform specific)
+ * @bus_clk:		Pointer to the CPR3 bus clock (platform specific)
+ * @irq:		CPR interrupt number
+ * @irq_affinity_mask:	The cpumask for the CPUs which the CPR interrupt should
+ *			have affinity for
+ * @cpu_hotplug_notifier: CPU hotplug notifier used to reset IRQ affinity when a
+ *			CPU is brought back online
+ * @ceiling_irq:	Interrupt number for the interrupt that is triggered
+ *			when hardware closed-loop attempts to exceed the ceiling
+ *			voltage
+ * @apm:		Handle to the array power mux (APM)
+ * @apm_threshold_volt:	Voltage in microvolts which defines the threshold
+ *			voltage to determine the APM supply selection for
+ *			each corner
+ * @apm_crossover_volt:	Voltage in microvolts corresponding to the voltage that
+ *			the VDD supply must be set to while an APM switch is in
+ *			progress. This element must be initialized for CPRh
+ *			controllers when an APM threshold voltage is defined
+ * @apm_adj_volt:	Minimum difference between APM threshold voltage and
+ *			open-loop voltage which allows the APM threshold voltage
+ *			to be used as a ceiling
+ * @apm_high_supply:	APM supply to configure if VDD voltage is greater than
+ *			or equal to the APM threshold voltage
+ * @apm_low_supply:	APM supply to configure if the VDD voltage is less than
+ *			the APM threshold voltage
+ * @base_volt:		Minimum voltage in microvolts supported by the VDD
+ *			supply managed by this CPR controller
+ * @corner_switch_delay_time: The delay time in nanoseconds used by the CPR
+ *			controller to wait for voltage settling before
+ *			acknowledging the OSM block after corner changes
+ * @cpr_clock_rate:	CPR reference clock frequency in Hz.
+ * @sensor_time:	The time in nanoseconds that each sensor takes to
+ *			perform a measurement.
+ * @loop_time:		The time in nanoseconds between consecutive CPR
+ *			measurements.
+ * @up_down_delay_time: The time to delay in nanoseconds between consecutive CPR
+ *			measurements when the last measurement recommended
+ *			increasing or decreasing the vdd-supply voltage.
+ *			(platform specific)
+ * @idle_clocks:	Number of CPR reference clock ticks that the CPR
+ *			controller waits in transitional states.
+ * @step_quot_init_min:	The default minimum CPR step quotient value.  The step
+ *			quotient is the number of additional ring oscillator
+ *			ticks observed when increasing one step in vdd-supply
+ *			output voltage.
+ * @step_quot_init_max:	The default maximum CPR step quotient value.
+ * @step_volt:		Step size in microvolts between available set points
+ *			of the VDD supply
+ * @down_error_step_limit: CPR4 hardware closed-loop down error step limit which
+ *			defines the maximum number of VDD supply regulator steps
+ *			that the voltage may be reduced as the result of a
+ *			single CPR measurement.
+ * @up_error_step_limit: CPR4 hardware closed-loop up error step limit which
+ *			defines the maximum number of VDD supply regulator steps
+ *			that the voltage may be increased as the result of a
+ *			single CPR measurement.
+ * @count_mode:		CPR controller count mode
+ * @count_repeat:	Number of times to perform consecutive sensor
+ *			measurements when using all-at-once count modes.
+ * @proc_clock_throttle: Defines the processor clock frequency throttling
+ *			register value to use.  This can be used to reduce the
+ *			clock frequency when a power domain exits a low power
+ *			mode until CPR settles at a new voltage.
+ *			(platform specific)
+ * @cpr_allowed_hw:	Boolean which indicates if closed-loop CPR operation is
+ *			permitted for a given chip based upon hardware fuse
+ *			values
+ * @cpr_allowed_sw:	Boolean which indicates if closed-loop CPR operation is
+ *			permitted based upon software policies
+ * @supports_hw_closed_loop: Boolean which indicates if this CPR3/4 controller
+ *			physically supports hardware closed-loop CPR operation
+ * @use_hw_closed_loop:	Boolean which indicates that this controller will be
+ *			using hardware closed-loop operation in place of
+ *			software closed-loop operation.
+ * @ctrl_type:		CPR controller type
+ * @saw_use_unit_mV:	Boolean which indicates the unit used in SAW PVC
+ *			interface is mV.
+ * @aggr_corner:	CPR corner containing the most recently aggregated
+ *			voltage configurations which are being used currently
+ * @cpr_enabled:	Boolean which indicates that the CPR controller is
+ *			enabled and operating in closed-loop mode.  CPR clocks
+ *			have been prepared and enabled whenever this flag is
+ *			true.
+ * @last_corner_was_closed_loop: Boolean indicating if the last known corners
+ *			were updated during closed loop operation.
+ * @cpr_suspended:	Boolean which indicates that CPR has been temporarily
+ *			disabled while enterring system suspend.
+ * @debugfs:		Pointer to the debugfs directory of this CPR3 controller
+ * @aging_ref_volt:	Reference voltage in microvolts to configure when
+ *			performing CPR aging measurements.
+ * @aging_vdd_mode:	vdd-supply regulator mode to configure before performing
+ *			a CPR aging measurement.  It should be one of
+ *			REGULATOR_MODE_*.
+ * @aging_complete_vdd_mode: vdd-supply regulator mode to configure after
+ *			performing a CPR aging measurement.  It should be one of
+ *			REGULATOR_MODE_*.
+ * @aging_ref_adjust_volt: The reference aging voltage margin in microvolts that
+ *			should be added to the target quotients of the
+ *			regulators managed by this controller after derating.
+ * @aging_required:	Flag which indicates that a CPR aging measurement still
+ *			needs to be performed for this CPR3 controller.
+ * @aging_succeeded:	Flag which indicates that a CPR aging measurement has
+ *			completed successfully.
+ * @aging_failed:	Flag which indicates that a CPR aging measurement has
+ *			failed to complete successfully.
+ * @aging_sensor:	Array of CPR3 aging sensors which are used to perform
+ *			aging measurements at a runtime.
+ * @aging_sensor_count:	Number of elements in the aging_sensor array
+ * @aging_possible_mask: Optional bitmask used to mask off the
+ *			aging_possible_reg register.
+ * @aging_possible_val:	Optional value that the masked aging_possible_reg
+ *			register must have in order for a CPR aging measurement
+ *			to be possible.
+ * @step_quot_fixed:	Fixed step quotient value used for target quotient
+ *			adjustment if use_dynamic_step_quot is not set.
+ *			This parameter is only relevant for CPR4 controllers
+ *			when using the per-online-core or per-temperature
+ *			adjustments.
+ * @initial_temp_band:	Temperature band used for calculation of base-line
+ *			target quotients (fused).
+ * @use_dynamic_step_quot: Boolean value which indicates that margin adjustment
+ *			of target quotient will be based on the step quotient
+ *			calculated dynamically in hardware for each RO.
+ * @allow_core_count_adj: Core count adjustments are allowed for this controller
+ * @allow_temp_adj:	Temperature based adjustments are allowed for
+ *			this controller
+ * @allow_boost:	Voltage boost allowed for this controller.
+ * @temp_band_count:	Number of temperature bands used for temperature based
+ *			adjustment logic
+ * @temp_points:	Array of temperature points in decidegrees Celsius used
+ *			to specify the ranges for selected temperature bands.
+ *			The array must have (temp_band_count - 1) elements
+ *			allocated.
+ * @temp_sensor_id_start: Start ID of temperature sensors used for temperature
+ *			based adjustments.
+ * @temp_sensor_id_end:	End ID of temperature sensors used for temperature
+ *			based adjustments.
+ * @voltage_settling_time: The time in nanoseconds that it takes for the
+ *			VDD supply voltage to settle after being increased or
+ *			decreased by step_volt microvolts which is used when
+ *			SDELTA voltage margin adjustments are applied.
+ * @panic_regs_info:	Array of panic registers information which provides the
+ *			list of registers to dump when the device crashes.
+ * @panic_notifier:	Notifier block registered to global panic notifier list.
+ * @support_ldo300_vreg: Boolean value which indicates that this CPR controller
+ *			manages an underlying LDO regulator of type LDO300.
+ *
+ * This structure contains both configuration and runtime state data.  The
+ * elements cpr_allowed_sw, use_hw_closed_loop, aggr_corner, cpr_enabled,
+ * last_corner_was_closed_loop, cpr_suspended, aging_ref_adjust_volt,
+ * aging_required, aging_succeeded, and aging_failed are state variables.
+ *
+ * The apm* elements do not need to be initialized if the VDD supply managed by
+ * the CPR3 controller does not utilize an APM.
+ *
+ * The elements step_quot_fixed, initial_temp_band, allow_core_count_adj,
+ * allow_temp_adj and temp* need to be initialized for CPR4 controllers which
+ * are using per-online-core or per-temperature adjustments.
+ */
+struct cpr3_controller {
+	struct device		*dev;
+	const char		*name;
+	int			ctrl_id;
+	void __iomem		*cpr_ctrl_base;
+	void __iomem		*fuse_base;
+	void __iomem		*aging_possible_reg;
+	struct list_head	list;
+	struct cpr3_thread	*thread;
+	int			thread_count;
+	u8			*sensor_owner;
+	int			sensor_count;
+	int			soc_revision;
+	struct mutex		lock;
+	struct regulator	*vdd_regulator;
+	struct regulator	*system_regulator;
+	struct regulator	*mem_acc_regulator;
+	struct regulator	*vdd_limit_regulator;
+	int			system_supply_max_volt;
+	int			mem_acc_threshold_volt;
+	int			mem_acc_corner_map[CPR3_MEM_ACC_CORNERS];
+	int			mem_acc_crossover_volt;
+	struct clk		*core_clk;
+	struct clk		*iface_clk;
+	struct clk		*bus_clk;
+	int			irq;
+	struct cpumask		irq_affinity_mask;
+	struct notifier_block	cpu_hotplug_notifier;
+	int			ceiling_irq;
+	struct msm_apm_ctrl_dev *apm;
+	int			apm_threshold_volt;
+	int			apm_crossover_volt;
+	int			apm_adj_volt;
+	enum msm_apm_supply	apm_high_supply;
+	enum msm_apm_supply	apm_low_supply;
+	int			base_volt;
+	u32			corner_switch_delay_time;
+	u32			cpr_clock_rate;
+	u32			sensor_time;
+	u32			loop_time;
+	u32			up_down_delay_time;
+	u32			idle_clocks;
+	u32			step_quot_init_min;
+	u32			step_quot_init_max;
+	int			step_volt;
+	u32			down_error_step_limit;
+	u32			up_error_step_limit;
+	enum cpr3_count_mode	count_mode;
+	u32			count_repeat;
+	u32			proc_clock_throttle;
+	bool			cpr_allowed_hw;
+	bool			cpr_allowed_sw;
+	bool			supports_hw_closed_loop;
+	bool			use_hw_closed_loop;
+	enum cpr_controller_type ctrl_type;
+	bool			saw_use_unit_mV;
+	struct cpr3_corner	aggr_corner;
+	bool			cpr_enabled;
+	bool			last_corner_was_closed_loop;
+	bool			cpr_suspended;
+	struct dentry		*debugfs;
+
+	int			aging_ref_volt;
+	unsigned int		aging_vdd_mode;
+	unsigned int		aging_complete_vdd_mode;
+	int			aging_ref_adjust_volt;
+	bool			aging_required;
+	bool			aging_succeeded;
+	bool			aging_failed;
+	struct cpr3_aging_sensor_info *aging_sensor;
+	int			aging_sensor_count;
+	u32			aging_possible_mask;
+	u32			aging_possible_val;
+
+	u32			step_quot_fixed;
+	u32			initial_temp_band;
+	bool			use_dynamic_step_quot;
+	bool			allow_core_count_adj;
+	bool			allow_temp_adj;
+	bool			allow_boost;
+	int			temp_band_count;
+	int			*temp_points;
+	u32			temp_sensor_id_start;
+	u32			temp_sensor_id_end;
+	u32			voltage_settling_time;
+	struct cpr3_panic_regs_info *panic_regs_info;
+	struct notifier_block	panic_notifier;
+	bool			support_ldo300_vreg;
+};
+
+/* Used for rounding voltages to the closest physically available set point. */
+#define CPR3_ROUND(n, d) (DIV_ROUND_UP(n, d) * (d))
+
+#define cpr3_err(cpr3_thread, message, ...) \
+	pr_err("%s: " message, (cpr3_thread)->name, ##__VA_ARGS__)
+#define cpr3_info(cpr3_thread, message, ...) \
+	pr_info("%s: " message, (cpr3_thread)->name, ##__VA_ARGS__)
+#define cpr3_debug(cpr3_thread, message, ...) \
+	pr_debug("%s: " message, (cpr3_thread)->name, ##__VA_ARGS__)
+
+/*
+ * Offset subtracted from voltage corner values passed in from the regulator
+ * framework in order to get internal voltage corner values.  This is needed
+ * since the regulator framework treats 0 as an error value at regulator
+ * registration time.
+ */
+#define CPR3_CORNER_OFFSET	1
+
+#ifdef CONFIG_REGULATOR_CPR3
+
+int cpr3_regulator_register(struct platform_device *pdev,
+			struct cpr3_controller *ctrl);
+int cpr3_regulator_unregister(struct cpr3_controller *ctrl);
+int cpr3_regulator_suspend(struct cpr3_controller *ctrl);
+int cpr3_regulator_resume(struct cpr3_controller *ctrl);
+
+int cpr3_allocate_threads(struct cpr3_controller *ctrl, u32 min_thread_id,
+			u32 max_thread_id);
+int cpr3_map_fuse_base(struct cpr3_controller *ctrl,
+			struct platform_device *pdev);
+int cpr3_read_fuse_param(void __iomem *fuse_base_addr,
+			const struct cpr3_fuse_param *param, u64 *param_value);
+int cpr3_convert_open_loop_voltage_fuse(int ref_volt, int step_volt, u32 fuse,
+			int fuse_len);
+u64 cpr3_interpolate(u64 x1, u64 y1, u64 x2, u64 y2, u64 x);
+int cpr3_parse_array_property(struct cpr3_regulator *vreg,
+			const char *prop_name, int tuple_size, u32 *out);
+int cpr3_parse_corner_array_property(struct cpr3_regulator *vreg,
+			const char *prop_name, int tuple_size, u32 *out);
+int cpr3_parse_corner_band_array_property(struct cpr3_regulator *vreg,
+			const char *prop_name, int tuple_size, u32 *out);
+int cpr3_parse_common_corner_data(struct cpr3_regulator *vreg);
+int cpr3_parse_thread_u32(struct cpr3_thread *thread, const char *propname,
+			u32 *out_value, u32 value_min, u32 value_max);
+int cpr3_parse_ctrl_u32(struct cpr3_controller *ctrl, const char *propname,
+			u32 *out_value, u32 value_min, u32 value_max);
+int cpr3_parse_common_thread_data(struct cpr3_thread *thread);
+int cpr3_parse_common_ctrl_data(struct cpr3_controller *ctrl);
+int cpr3_limit_open_loop_voltages(struct cpr3_regulator *vreg);
+void cpr3_open_loop_voltage_as_ceiling(struct cpr3_regulator *vreg);
+int cpr3_limit_floor_voltages(struct cpr3_regulator *vreg);
+void cpr3_print_quots(struct cpr3_regulator *vreg);
+int cpr3_adjust_fused_open_loop_voltages(struct cpr3_regulator *vreg,
+			int *fuse_volt);
+int cpr3_adjust_open_loop_voltages(struct cpr3_regulator *vreg);
+int cpr3_quot_adjustment(int ro_scale, int volt_adjust);
+int cpr3_voltage_adjustment(int ro_scale, int quot_adjust);
+int cpr3_parse_closed_loop_voltage_adjustments(struct cpr3_regulator *vreg,
+			u64 *ro_sel, int *volt_adjust,
+			int *volt_adjust_fuse, int *ro_scale);
+int cpr4_parse_core_count_temp_voltage_adj(struct cpr3_regulator *vreg,
+			bool use_corner_band);
+int cpr3_apm_init(struct cpr3_controller *ctrl);
+int cpr3_mem_acc_init(struct cpr3_regulator *vreg);
+void cprh_adjust_voltages_for_apm(struct cpr3_regulator *vreg);
+void cprh_adjust_voltages_for_mem_acc(struct cpr3_regulator *vreg);
+int cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
+			int *fuse_volt_adjust);
+
+#else
+
+static inline int cpr3_regulator_register(struct platform_device *pdev,
+			struct cpr3_controller *ctrl)
+{
+	return -ENXIO;
+}
+
+static inline int cpr3_regulator_unregister(struct cpr3_controller *ctrl)
+{
+	return -ENXIO;
+}
+
+static inline int cpr3_regulator_suspend(struct cpr3_controller *ctrl)
+{
+	return -ENXIO;
+}
+
+static inline int cpr3_regulator_resume(struct cpr3_controller *ctrl)
+{
+	return -ENXIO;
+}
+
+static inline int cpr3_get_thread_name(struct cpr3_thread *thread,
+			struct device_node *thread_node)
+{
+	return -EPERM;
+}
+
+static inline int cpr3_allocate_threads(struct cpr3_controller *ctrl,
+			u32 min_thread_id, u32 max_thread_id)
+{
+	return -EPERM;
+}
+
+static inline int cpr3_map_fuse_base(struct cpr3_controller *ctrl,
+			struct platform_device *pdev)
+{
+	return -ENXIO;
+}
+
+static inline int cpr3_read_fuse_param(void __iomem *fuse_base_addr,
+			const struct cpr3_fuse_param *param, u64 *param_value)
+{
+	return -EPERM;
+}
+
+static inline int cpr3_convert_open_loop_voltage_fuse(int ref_volt,
+			int step_volt, u32 fuse, int fuse_len)
+{
+	return -EPERM;
+}
+
+static inline u64 cpr3_interpolate(u64 x1, u64 y1, u64 x2, u64 y2, u64 x)
+{
+	return 0;
+}
+
+static inline int cpr3_parse_array_property(struct cpr3_regulator *vreg,
+			const char *prop_name, int tuple_size, u32 *out)
+{
+	return -EPERM;
+}
+
+static inline int cpr3_parse_corner_array_property(struct cpr3_regulator *vreg,
+			const char *prop_name, int tuple_size, u32 *out)
+{
+	return -EPERM;
+}
+
+static inline int cpr3_parse_corner_band_array_property(
+			struct cpr3_regulator *vreg, const char *prop_name,
+			int tuple_size, u32 *out)
+{
+	return -EPERM;
+}
+
+static inline int cpr3_parse_common_corner_data(struct cpr3_regulator *vreg)
+{
+	return -EPERM;
+}
+
+static inline int cpr3_parse_thread_u32(struct cpr3_thread *thread,
+			const char *propname, u32 *out_value, u32 value_min,
+			u32 value_max)
+{
+	return -EPERM;
+}
+
+static inline int cpr3_parse_ctrl_u32(struct cpr3_controller *ctrl,
+			const char *propname, u32 *out_value, u32 value_min,
+			u32 value_max)
+{
+	return -EPERM;
+}
+
+static inline int cpr3_parse_common_thread_data(struct cpr3_thread *thread)
+{
+	return -EPERM;
+}
+
+static inline int cpr3_parse_common_ctrl_data(struct cpr3_controller *ctrl)
+{
+	return -EPERM;
+}
+
+static inline int cpr3_limit_open_loop_voltages(struct cpr3_regulator *vreg)
+{
+	return -EPERM;
+}
+
+static inline void cpr3_open_loop_voltage_as_ceiling(
+			struct cpr3_regulator *vreg)
+{
+}
+
+static inline int cpr3_limit_floor_voltages(struct cpr3_regulator *vreg)
+{
+	return -EPERM;
+}
+
+static inline void cpr3_print_quots(struct cpr3_regulator *vreg)
+{
+}
+
+static inline int cpr3_adjust_fused_open_loop_voltages(
+			struct cpr3_regulator *vreg, int *fuse_volt)
+{
+	return -EPERM;
+}
+
+static inline int cpr3_adjust_open_loop_voltages(struct cpr3_regulator *vreg)
+{
+	return -EPERM;
+}
+
+static inline int cpr3_quot_adjustment(int ro_scale, int volt_adjust)
+{
+	return 0;
+}
+
+static inline int cpr3_voltage_adjustment(int ro_scale, int quot_adjust)
+{
+	return 0;
+}
+
+static inline int cpr3_parse_closed_loop_voltage_adjustments(
+			struct cpr3_regulator *vreg, u64 *ro_sel,
+			int *volt_adjust, int *volt_adjust_fuse, int *ro_scale)
+{
+	return 0;
+}
+
+static inline int cpr4_parse_core_count_temp_voltage_adj(
+			struct cpr3_regulator *vreg, bool use_corner_band)
+{
+	return 0;
+}
+
+static inline int cpr3_apm_init(struct cpr3_controller *ctrl)
+{
+	return 0;
+}
+
+static inline int cpr3_mem_acc_init(struct cpr3_regulator *vreg)
+{
+	return 0;
+}
+
+static inline void cprh_adjust_voltages_for_apm(struct cpr3_regulator *vreg)
+{
+}
+
+static inline void cprh_adjust_voltages_for_mem_acc(struct cpr3_regulator *vreg)
+{
+}
+
+static inline int cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
+			int *fuse_volt_adjust)
+{
+	return 0;
+}
+
+#endif /* CONFIG_REGULATOR_CPR3 */
+
+#endif /* __REGULATOR_CPR_REGULATOR_H__ */
diff --git a/drivers/regulator/cpr3-util.c b/drivers/regulator/cpr3-util.c
new file mode 100644
index 0000000..0a1a1c5
--- /dev/null
+++ b/drivers/regulator/cpr3-util.c
@@ -0,0 +1,2405 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+/*
+ * This file contains utility functions to be used by platform specific CPR3
+ * regulator drivers.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/cpumask.h>
+#include <linux/device.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+
+#include "cpr3-regulator.h"
+
+#define BYTES_PER_FUSE_ROW		8
+#define MAX_FUSE_ROW_BIT		63
+
+#define CPR3_CONSECUTIVE_UP_DOWN_MIN	0
+#define CPR3_CONSECUTIVE_UP_DOWN_MAX	15
+#define CPR3_UP_DOWN_THRESHOLD_MIN	0
+#define CPR3_UP_DOWN_THRESHOLD_MAX	31
+#define CPR3_STEP_QUOT_MIN		0
+#define CPR3_STEP_QUOT_MAX		63
+#define CPR3_IDLE_CLOCKS_MIN		0
+#define CPR3_IDLE_CLOCKS_MAX		31
+
+/* This constant has units of uV/mV so 1000 corresponds to 100%. */
+#define CPR3_AGING_DERATE_UNITY		1000
+
+/**
+ * cpr3_allocate_regulators() - allocate and initialize CPR3 regulators for a
+ *		given thread based upon device tree data
+ * @thread:		Pointer to the CPR3 thread
+ *
+ * This function allocates the thread->vreg array based upon the number of
+ * device tree regulator subnodes.  It also initializes generic elements of each
+ * regulator struct such as name, of_node, and thread.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_allocate_regulators(struct cpr3_thread *thread)
+{
+	struct device_node *node;
+	int i, rc;
+
+	thread->vreg_count = 0;
+
+	for_each_available_child_of_node(thread->of_node, node) {
+		thread->vreg_count++;
+	}
+
+	thread->vreg = devm_kcalloc(thread->ctrl->dev, thread->vreg_count,
+			sizeof(*thread->vreg), GFP_KERNEL);
+	if (!thread->vreg)
+		return -ENOMEM;
+
+	i = 0;
+	for_each_available_child_of_node(thread->of_node, node) {
+		thread->vreg[i].of_node = node;
+		thread->vreg[i].thread = thread;
+
+		rc = of_property_read_string(node, "regulator-name",
+						&thread->vreg[i].name);
+		if (rc) {
+			dev_err(thread->ctrl->dev, "could not find regulator name, rc=%d\n",
+				rc);
+			return rc;
+		}
+
+		i++;
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_allocate_threads() - allocate and initialize CPR3 threads for a given
+ *			     controller based upon device tree data
+ * @ctrl:		Pointer to the CPR3 controller
+ * @min_thread_id:	Minimum allowed hardware thread ID for this controller
+ * @max_thread_id:	Maximum allowed hardware thread ID for this controller
+ *
+ * This function allocates the ctrl->thread array based upon the number of
+ * device tree thread subnodes.  It also initializes generic elements of each
+ * thread struct such as thread_id, of_node, ctrl, and vreg array.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_allocate_threads(struct cpr3_controller *ctrl, u32 min_thread_id,
+			u32 max_thread_id)
+{
+	struct device *dev = ctrl->dev;
+	struct device_node *thread_node;
+	int i, j, rc;
+
+	ctrl->thread_count = 0;
+
+	for_each_available_child_of_node(dev->of_node, thread_node) {
+		ctrl->thread_count++;
+	}
+
+	ctrl->thread = devm_kcalloc(dev, ctrl->thread_count,
+			sizeof(*ctrl->thread), GFP_KERNEL);
+	if (!ctrl->thread)
+		return -ENOMEM;
+
+	i = 0;
+	for_each_available_child_of_node(dev->of_node, thread_node) {
+		ctrl->thread[i].of_node = thread_node;
+		ctrl->thread[i].ctrl = ctrl;
+
+		rc = of_property_read_u32(thread_node, "qcom,cpr-thread-id",
+					  &ctrl->thread[i].thread_id);
+		if (rc) {
+			dev_err(dev, "could not read DT property qcom,cpr-thread-id, rc=%d\n",
+				rc);
+			return rc;
+		}
+
+		if (ctrl->thread[i].thread_id < min_thread_id ||
+				ctrl->thread[i].thread_id > max_thread_id) {
+			dev_err(dev, "invalid thread id = %u; not within [%u, %u]\n",
+				ctrl->thread[i].thread_id, min_thread_id,
+				max_thread_id);
+			return -EINVAL;
+		}
+
+		/* Verify that the thread ID is unique for all child nodes. */
+		for (j = 0; j < i; j++) {
+			if (ctrl->thread[j].thread_id
+					== ctrl->thread[i].thread_id) {
+				dev_err(dev, "duplicate thread id = %u found\n",
+					ctrl->thread[i].thread_id);
+				return -EINVAL;
+			}
+		}
+
+		rc = cpr3_allocate_regulators(&ctrl->thread[i]);
+		if (rc)
+			return rc;
+
+		i++;
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_map_fuse_base() - ioremap the base address of the fuse region
+ * @ctrl:	Pointer to the CPR3 controller
+ * @pdev:	Platform device pointer for the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_map_fuse_base(struct cpr3_controller *ctrl,
+			struct platform_device *pdev)
+{
+	struct resource *res;
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fuse_base");
+	if (!res || !res->start) {
+		dev_err(&pdev->dev, "fuse base address is missing\n");
+		return -ENXIO;
+	}
+
+	ctrl->fuse_base = devm_ioremap(&pdev->dev, res->start,
+						resource_size(res));
+
+	return 0;
+}
+
+/**
+ * cpr3_read_fuse_param() - reads a CPR3 fuse parameter out of eFuses
+ * @fuse_base_addr:	Virtual memory address of the eFuse base address
+ * @param:		Null terminated array of fuse param segments to read
+ *			from
+ * @param_value:	Output with value read from the eFuses
+ *
+ * This function reads from each of the parameter segments listed in the param
+ * array and concatenates their values together.  Reading stops when an element
+ * is reached which has all 0 struct values.  The total number of bits specified
+ * for the fuse parameter across all segments must be less than or equal to 64.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_read_fuse_param(void __iomem *fuse_base_addr,
+		const struct cpr3_fuse_param *param, u64 *param_value)
+{
+	u64 fuse_val, val;
+	int bits;
+	int bits_total = 0;
+
+	*param_value = 0;
+
+	while (param->row || param->bit_start || param->bit_end) {
+		if (param->bit_start > param->bit_end
+		    || param->bit_end > MAX_FUSE_ROW_BIT) {
+			pr_err("Invalid fuse parameter segment: row=%u, start=%u, end=%u\n",
+				param->row, param->bit_start, param->bit_end);
+			return -EINVAL;
+		}
+
+		bits = param->bit_end - param->bit_start + 1;
+		if (bits_total + bits > 64) {
+			pr_err("Invalid fuse parameter segments; total bits = %d\n",
+				bits_total + bits);
+			return -EINVAL;
+		}
+
+		fuse_val = readq_relaxed(fuse_base_addr
+					 + param->row * BYTES_PER_FUSE_ROW);
+		val = (fuse_val >> param->bit_start) & ((1ULL << bits) - 1);
+		*param_value |= val << bits_total;
+		bits_total += bits;
+
+		param++;
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_convert_open_loop_voltage_fuse() - converts an open loop voltage fuse
+ *		value into an absolute voltage with units of microvolts
+ * @ref_volt:		Reference voltage in microvolts
+ * @step_volt:		The step size in microvolts of the fuse LSB
+ * @fuse:		Open loop voltage fuse value
+ * @fuse_len:		The bit length of the fuse value
+ *
+ * The MSB of the fuse parameter corresponds to a sign bit.  If it is set, then
+ * the lower bits correspond to the number of steps to go down from the
+ * reference voltage.  If it is not set, then the lower bits correspond to the
+ * number of steps to go up from the reference voltage.
+ */
+int cpr3_convert_open_loop_voltage_fuse(int ref_volt, int step_volt, u32 fuse,
+					int fuse_len)
+{
+	int sign, steps;
+
+	sign = (fuse & (1 << (fuse_len - 1))) ? -1 : 1;
+	steps = fuse & ((1 << (fuse_len - 1)) - 1);
+
+	return ref_volt + sign * steps * step_volt;
+}
+
+/**
+ * cpr3_interpolate() - performs linear interpolation
+ * @x1		Lower known x value
+ * @y1		Lower known y value
+ * @x2		Upper known x value
+ * @y2		Upper known y value
+ * @x		Intermediate x value
+ *
+ * Returns y where (x, y) falls on the line between (x1, y1) and (x2, y2).
+ * It is required that x1 < x2, y1 <= y2, and x1 <= x <= x2.  If these
+ * conditions are not met, then y2 will be returned.
+ */
+u64 cpr3_interpolate(u64 x1, u64 y1, u64 x2, u64 y2, u64 x)
+{
+	u64 temp;
+
+	if (x1 >= x2 || y1 > y2 || x1 > x || x > x2)
+		return y2;
+
+	temp = (x2 - x) * (y2 - y1);
+	do_div(temp, (u32)(x2 - x1));
+
+	return y2 - temp;
+}
+
+/**
+ * cpr3_parse_array_property() - fill an array from a portion of the values
+ *		specified for a device tree property
+ * @vreg:		Pointer to the CPR3 regulator
+ * @prop_name:		The name of the device tree property to read from
+ * @tuple_size:		The number of elements in each tuple
+ * @out:		Output data array which must be of size tuple_size
+ *
+ * cpr3_parse_common_corner_data() must be called for vreg before this function
+ * is called so that fuse combo and speed bin size elements are initialized.
+ *
+ * Three formats are supported for the device tree property:
+ * 1. Length == tuple_size
+ *	(reading begins at index 0)
+ * 2. Length == tuple_size * vreg->fuse_combos_supported
+ *	(reading begins at index tuple_size * vreg->fuse_combo)
+ * 3. Length == tuple_size * vreg->speed_bins_supported
+ *	(reading begins at index tuple_size * vreg->speed_bin_fuse)
+ *
+ * All other property lengths are treated as errors.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_array_property(struct cpr3_regulator *vreg,
+		const char *prop_name, int tuple_size, u32 *out)
+{
+	struct device_node *node = vreg->of_node;
+	int len = 0;
+	int i, offset, rc;
+
+	if (!of_find_property(node, prop_name, &len)) {
+		cpr3_err(vreg, "property %s is missing\n", prop_name);
+		return -EINVAL;
+	}
+
+	if (len == tuple_size * sizeof(u32)) {
+		offset = 0;
+	} else if (len == tuple_size * vreg->fuse_combos_supported
+				     * sizeof(u32)) {
+		offset = tuple_size * vreg->fuse_combo;
+	} else if (vreg->speed_bins_supported > 0 &&
+		 len == tuple_size * vreg->speed_bins_supported * sizeof(u32)) {
+		offset = tuple_size * vreg->speed_bin_fuse;
+	} else {
+		if (vreg->speed_bins_supported > 0)
+			cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n",
+				prop_name, len,
+				tuple_size * sizeof(u32),
+				tuple_size * vreg->speed_bins_supported
+					   * sizeof(u32),
+				tuple_size * vreg->fuse_combos_supported
+					   * sizeof(u32));
+		else
+			cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
+				prop_name, len,
+				tuple_size * sizeof(u32),
+				tuple_size * vreg->fuse_combos_supported
+					   * sizeof(u32));
+		return -EINVAL;
+	}
+
+	for (i = 0; i < tuple_size; i++) {
+		rc = of_property_read_u32_index(node, prop_name, offset + i,
+						&out[i]);
+		if (rc) {
+			cpr3_err(vreg, "error reading property %s, rc=%d\n",
+				prop_name, rc);
+			return rc;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_parse_corner_array_property() - fill a per-corner array from a portion
+ *		of the values specified for a device tree property
+ * @vreg:		Pointer to the CPR3 regulator
+ * @prop_name:		The name of the device tree property to read from
+ * @tuple_size:		The number of elements in each per-corner tuple
+ * @out:		Output data array which must be of size:
+ *			tuple_size * vreg->corner_count
+ *
+ * cpr3_parse_common_corner_data() must be called for vreg before this function
+ * is called so that fuse combo and speed bin size elements are initialized.
+ *
+ * Three formats are supported for the device tree property:
+ * 1. Length == tuple_size * vreg->corner_count
+ *	(reading begins at index 0)
+ * 2. Length == tuple_size * vreg->fuse_combo_corner_sum
+ *	(reading begins at index tuple_size * vreg->fuse_combo_offset)
+ * 3. Length == tuple_size * vreg->speed_bin_corner_sum
+ *	(reading begins at index tuple_size * vreg->speed_bin_offset)
+ *
+ * All other property lengths are treated as errors.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_corner_array_property(struct cpr3_regulator *vreg,
+		const char *prop_name, int tuple_size, u32 *out)
+{
+	struct device_node *node = vreg->of_node;
+	int len = 0;
+	int i, offset, rc;
+
+	if (!of_find_property(node, prop_name, &len)) {
+		cpr3_err(vreg, "property %s is missing\n", prop_name);
+		return -EINVAL;
+	}
+
+	if (len == tuple_size * vreg->corner_count * sizeof(u32)) {
+		offset = 0;
+	} else if (len == tuple_size * vreg->fuse_combo_corner_sum
+				     * sizeof(u32)) {
+		offset = tuple_size * vreg->fuse_combo_offset;
+	} else if (vreg->speed_bin_corner_sum > 0 &&
+		 len == tuple_size * vreg->speed_bin_corner_sum * sizeof(u32)) {
+		offset = tuple_size * vreg->speed_bin_offset;
+	} else {
+		if (vreg->speed_bin_corner_sum > 0)
+			cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n",
+				prop_name, len,
+				tuple_size * vreg->corner_count * sizeof(u32),
+				tuple_size * vreg->speed_bin_corner_sum
+					   * sizeof(u32),
+				tuple_size * vreg->fuse_combo_corner_sum
+					   * sizeof(u32));
+		else
+			cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
+				prop_name, len,
+				tuple_size * vreg->corner_count * sizeof(u32),
+				tuple_size * vreg->fuse_combo_corner_sum
+					   * sizeof(u32));
+		return -EINVAL;
+	}
+
+	for (i = 0; i < tuple_size * vreg->corner_count; i++) {
+		rc = of_property_read_u32_index(node, prop_name, offset + i,
+						&out[i]);
+		if (rc) {
+			cpr3_err(vreg, "error reading property %s, rc=%d\n",
+				prop_name, rc);
+			return rc;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_parse_corner_band_array_property() - fill a per-corner band array
+ *		from a portion of the values specified for a device tree
+ *		property
+ * @vreg:		Pointer to the CPR3 regulator
+ * @prop_name:		The name of the device tree property to read from
+ * @tuple_size:		The number of elements in each per-corner band tuple
+ * @out:		Output data array which must be of size:
+ *			tuple_size * vreg->corner_band_count
+ *
+ * cpr3_parse_common_corner_data() must be called for vreg before this function
+ * is called so that fuse combo and speed bin size elements are initialized.
+ * In addition, corner band fuse combo and speed bin sum and offset elements
+ * must be initialized prior to executing this function.
+ *
+ * Three formats are supported for the device tree property:
+ * 1. Length == tuple_size * vreg->corner_band_count
+ *	(reading begins at index 0)
+ * 2. Length == tuple_size * vreg->fuse_combo_corner_band_sum
+ *	(reading begins at index tuple_size *
+ *		vreg->fuse_combo_corner_band_offset)
+ * 3. Length == tuple_size * vreg->speed_bin_corner_band_sum
+ *	(reading begins at index tuple_size *
+ *		vreg->speed_bin_corner_band_offset)
+ *
+ * All other property lengths are treated as errors.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_corner_band_array_property(struct cpr3_regulator *vreg,
+		const char *prop_name, int tuple_size, u32 *out)
+{
+	struct device_node *node = vreg->of_node;
+	int len = 0;
+	int i, offset, rc;
+
+	if (!of_find_property(node, prop_name, &len)) {
+		cpr3_err(vreg, "property %s is missing\n", prop_name);
+		return -EINVAL;
+	}
+
+	if (len == tuple_size * vreg->corner_band_count * sizeof(u32)) {
+		offset = 0;
+	} else if (len == tuple_size * vreg->fuse_combo_corner_band_sum
+				     * sizeof(u32)) {
+		offset = tuple_size * vreg->fuse_combo_corner_band_offset;
+	} else if (vreg->speed_bin_corner_band_sum > 0 &&
+		 len == tuple_size * vreg->speed_bin_corner_band_sum *
+		   sizeof(u32)) {
+		offset = tuple_size * vreg->speed_bin_corner_band_offset;
+	} else {
+		if (vreg->speed_bin_corner_band_sum > 0)
+			cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n",
+				prop_name, len,
+				tuple_size * vreg->corner_band_count *
+				 sizeof(u32),
+				tuple_size * vreg->speed_bin_corner_band_sum
+					   * sizeof(u32),
+				tuple_size * vreg->fuse_combo_corner_band_sum
+					   * sizeof(u32));
+		else
+			cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
+				prop_name, len,
+				tuple_size * vreg->corner_band_count *
+				 sizeof(u32),
+				tuple_size * vreg->fuse_combo_corner_band_sum
+					   * sizeof(u32));
+		return -EINVAL;
+	}
+
+	for (i = 0; i < tuple_size * vreg->corner_band_count; i++) {
+		rc = of_property_read_u32_index(node, prop_name, offset + i,
+						&out[i]);
+		if (rc) {
+			cpr3_err(vreg, "error reading property %s, rc=%d\n",
+				prop_name, rc);
+			return rc;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_parse_common_corner_data() - parse common CPR3 properties relating to
+ *		the corners supported by a CPR3 regulator from device tree
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function reads, validates, and utilizes the following device tree
+ * properties: qcom,cpr-fuse-corners, qcom,cpr-fuse-combos, qcom,cpr-speed-bins,
+ * qcom,cpr-speed-bin-corners, qcom,cpr-corners, qcom,cpr-voltage-ceiling,
+ * qcom,cpr-voltage-floor, qcom,corner-frequencies,
+ * and qcom,cpr-corner-fmax-map.
+ *
+ * It initializes these CPR3 regulator elements: corner, corner_count,
+ * fuse_combos_supported, fuse_corner_map, and speed_bins_supported.  It
+ * initializes these elements for each corner: ceiling_volt, floor_volt,
+ * proc_freq, and cpr_fuse_corner.
+ *
+ * It requires that the following CPR3 regulator elements be initialized before
+ * being called: fuse_corner_count, fuse_combo, and speed_bin_fuse.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_common_corner_data(struct cpr3_regulator *vreg)
+{
+	struct device_node *node = vreg->of_node;
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	u32 max_fuse_combos, fuse_corners, aging_allowed = 0;
+	u32 max_speed_bins = 0;
+	u32 *combo_corners;
+	u32 *speed_bin_corners;
+	u32 *temp;
+	int i, j, rc;
+
+	rc = of_property_read_u32(node, "qcom,cpr-fuse-corners", &fuse_corners);
+	if (rc) {
+		cpr3_err(vreg, "error reading property qcom,cpr-fuse-corners, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	if (vreg->fuse_corner_count != fuse_corners) {
+		cpr3_err(vreg, "device tree config supports %d fuse corners but the hardware has %d fuse corners\n",
+			fuse_corners, vreg->fuse_corner_count);
+		return -EINVAL;
+	}
+
+	rc = of_property_read_u32(node, "qcom,cpr-fuse-combos",
+				&max_fuse_combos);
+	if (rc) {
+		cpr3_err(vreg, "error reading property qcom,cpr-fuse-combos, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	/*
+	 * Sanity check against arbitrarily large value to avoid excessive
+	 * memory allocation.
+	 */
+	if (max_fuse_combos > 100 || max_fuse_combos == 0) {
+		cpr3_err(vreg, "qcom,cpr-fuse-combos is invalid: %u\n",
+			max_fuse_combos);
+		return -EINVAL;
+	}
+
+	if (vreg->fuse_combo >= max_fuse_combos) {
+		cpr3_err(vreg, "device tree config supports fuse combos 0-%u but the hardware has combo %d\n",
+			max_fuse_combos - 1, vreg->fuse_combo);
+		BUG_ON(1);
+		return -EINVAL;
+	}
+
+	vreg->fuse_combos_supported = max_fuse_combos;
+
+	of_property_read_u32(node, "qcom,cpr-speed-bins", &max_speed_bins);
+
+	/*
+	 * Sanity check against arbitrarily large value to avoid excessive
+	 * memory allocation.
+	 */
+	if (max_speed_bins > 100) {
+		cpr3_err(vreg, "qcom,cpr-speed-bins is invalid: %u\n",
+			max_speed_bins);
+		return -EINVAL;
+	}
+
+	if (max_speed_bins && vreg->speed_bin_fuse >= max_speed_bins) {
+		cpr3_err(vreg, "device tree config supports speed bins 0-%u but the hardware has speed bin %d\n",
+			max_speed_bins - 1, vreg->speed_bin_fuse);
+		BUG();
+		return -EINVAL;
+	}
+
+	vreg->speed_bins_supported = max_speed_bins;
+
+	combo_corners = kcalloc(vreg->fuse_combos_supported,
+				sizeof(*combo_corners), GFP_KERNEL);
+	if (!combo_corners)
+		return -ENOMEM;
+
+	rc = of_property_read_u32_array(node, "qcom,cpr-corners", combo_corners,
+					vreg->fuse_combos_supported);
+	if (rc == -EOVERFLOW) {
+		/* Single value case */
+		rc = of_property_read_u32(node, "qcom,cpr-corners",
+					combo_corners);
+		for (i = 1; i < vreg->fuse_combos_supported; i++)
+			combo_corners[i] = combo_corners[0];
+	}
+	if (rc) {
+		cpr3_err(vreg, "error reading property qcom,cpr-corners, rc=%d\n",
+			rc);
+		kfree(combo_corners);
+		return rc;
+	}
+
+	vreg->fuse_combo_offset = 0;
+	vreg->fuse_combo_corner_sum = 0;
+	for (i = 0; i < vreg->fuse_combos_supported; i++) {
+		vreg->fuse_combo_corner_sum += combo_corners[i];
+		if (i < vreg->fuse_combo)
+			vreg->fuse_combo_offset += combo_corners[i];
+	}
+
+	vreg->corner_count = combo_corners[vreg->fuse_combo];
+
+	kfree(combo_corners);
+
+	vreg->speed_bin_offset = 0;
+	vreg->speed_bin_corner_sum = 0;
+	if (vreg->speed_bins_supported > 0) {
+		speed_bin_corners = kcalloc(vreg->speed_bins_supported,
+					sizeof(*speed_bin_corners), GFP_KERNEL);
+		if (!speed_bin_corners)
+			return -ENOMEM;
+
+		rc = of_property_read_u32_array(node,
+				"qcom,cpr-speed-bin-corners", speed_bin_corners,
+				vreg->speed_bins_supported);
+		if (rc) {
+			cpr3_err(vreg, "error reading property qcom,cpr-speed-bin-corners, rc=%d\n",
+				rc);
+			kfree(speed_bin_corners);
+			return rc;
+		}
+
+		for (i = 0; i < vreg->speed_bins_supported; i++) {
+			vreg->speed_bin_corner_sum += speed_bin_corners[i];
+			if (i < vreg->speed_bin_fuse)
+				vreg->speed_bin_offset += speed_bin_corners[i];
+		}
+
+		if (speed_bin_corners[vreg->speed_bin_fuse]
+		    != vreg->corner_count) {
+			cpr3_err(vreg, "qcom,cpr-corners and qcom,cpr-speed-bin-corners conflict on number of corners: %d vs %u\n",
+				vreg->corner_count,
+				speed_bin_corners[vreg->speed_bin_fuse]);
+			kfree(speed_bin_corners);
+			return -EINVAL;
+		}
+
+		kfree(speed_bin_corners);
+	}
+
+	/*
+	 * For CPRh compliant controllers two additional corners are
+	 * allocated to correspond to the APM crossover voltage and the MEM ACC
+	 * crossover voltage.
+	 */
+	vreg->corner = devm_kcalloc(ctrl->dev, ctrl->ctrl_type ==
+				    CPR_CTRL_TYPE_CPRH ?
+				    vreg->corner_count + 2 :
+				    vreg->corner_count,
+				    sizeof(*vreg->corner), GFP_KERNEL);
+	temp = kcalloc(vreg->corner_count, sizeof(*temp), GFP_KERNEL);
+	if (!vreg->corner || !temp)
+		return -ENOMEM;
+
+	rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-voltage-ceiling",
+			1, temp);
+	if (rc)
+		goto free_temp;
+	for (i = 0; i < vreg->corner_count; i++) {
+		vreg->corner[i].ceiling_volt
+			= CPR3_ROUND(temp[i], ctrl->step_volt);
+		vreg->corner[i].abs_ceiling_volt = vreg->corner[i].ceiling_volt;
+	}
+
+	rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-voltage-floor",
+			1, temp);
+	if (rc)
+		goto free_temp;
+	for (i = 0; i < vreg->corner_count; i++)
+		vreg->corner[i].floor_volt
+			= CPR3_ROUND(temp[i], ctrl->step_volt);
+
+	/* Validate ceiling and floor values */
+	for (i = 0; i < vreg->corner_count; i++) {
+		if (vreg->corner[i].floor_volt
+		    > vreg->corner[i].ceiling_volt) {
+			cpr3_err(vreg, "CPR floor[%d]=%d > ceiling[%d]=%d uV\n",
+				i, vreg->corner[i].floor_volt,
+				i, vreg->corner[i].ceiling_volt);
+			rc = -EINVAL;
+			goto free_temp;
+		}
+	}
+
+	/* Load optional system-supply voltages */
+	if (of_find_property(vreg->of_node, "qcom,system-voltage", NULL)) {
+		rc = cpr3_parse_corner_array_property(vreg,
+			"qcom,system-voltage", 1, temp);
+		if (rc)
+			goto free_temp;
+		for (i = 0; i < vreg->corner_count; i++)
+			vreg->corner[i].system_volt = temp[i];
+	}
+
+	rc = cpr3_parse_corner_array_property(vreg, "qcom,corner-frequencies",
+			1, temp);
+	if (rc)
+		goto free_temp;
+	for (i = 0; i < vreg->corner_count; i++)
+		vreg->corner[i].proc_freq = temp[i];
+
+	/* Validate frequencies */
+	for (i = 1; i < vreg->corner_count; i++) {
+		if (vreg->corner[i].proc_freq
+		    < vreg->corner[i - 1].proc_freq) {
+			cpr3_err(vreg, "invalid frequency: freq[%d]=%u < freq[%d]=%u\n",
+				i, vreg->corner[i].proc_freq, i - 1,
+				vreg->corner[i - 1].proc_freq);
+			rc = -EINVAL;
+			goto free_temp;
+		}
+	}
+
+	vreg->fuse_corner_map = devm_kcalloc(ctrl->dev, vreg->fuse_corner_count,
+				    sizeof(*vreg->fuse_corner_map), GFP_KERNEL);
+	if (!vreg->fuse_corner_map) {
+		rc = -ENOMEM;
+		goto free_temp;
+	}
+
+	rc = cpr3_parse_array_property(vreg, "qcom,cpr-corner-fmax-map",
+		vreg->fuse_corner_count, temp);
+	if (rc)
+		goto free_temp;
+	for (i = 0; i < vreg->fuse_corner_count; i++) {
+		vreg->fuse_corner_map[i] = temp[i] - CPR3_CORNER_OFFSET;
+		if (temp[i] < CPR3_CORNER_OFFSET
+		    || temp[i] > vreg->corner_count + CPR3_CORNER_OFFSET) {
+			cpr3_err(vreg, "invalid corner value specified in qcom,cpr-corner-fmax-map: %u\n",
+				temp[i]);
+			rc = -EINVAL;
+			goto free_temp;
+		} else if (i > 0 && temp[i - 1] >= temp[i]) {
+			cpr3_err(vreg, "invalid corner %u less than or equal to previous corner %u\n",
+				temp[i], temp[i - 1]);
+			rc = -EINVAL;
+			goto free_temp;
+		}
+	}
+	if (temp[vreg->fuse_corner_count - 1] != vreg->corner_count)
+		cpr3_debug(vreg, "Note: highest Fmax corner %u in qcom,cpr-corner-fmax-map does not match highest supported corner %d\n",
+			temp[vreg->fuse_corner_count - 1],
+			vreg->corner_count);
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		for (j = 0; j < vreg->fuse_corner_count; j++) {
+			if (i + CPR3_CORNER_OFFSET <= temp[j]) {
+				vreg->corner[i].cpr_fuse_corner = j;
+				break;
+			}
+		}
+		if (j == vreg->fuse_corner_count) {
+			/*
+			 * Handle the case where the highest fuse corner maps
+			 * to a corner below the highest corner.
+			 */
+			vreg->corner[i].cpr_fuse_corner
+				= vreg->fuse_corner_count - 1;
+		}
+	}
+
+	if (of_find_property(vreg->of_node,
+				"qcom,allow-aging-voltage-adjustment", NULL)) {
+		rc = cpr3_parse_array_property(vreg,
+			"qcom,allow-aging-voltage-adjustment",
+			1, &aging_allowed);
+		if (rc)
+			goto free_temp;
+
+		vreg->aging_allowed = aging_allowed;
+	}
+
+	if (of_find_property(vreg->of_node,
+		       "qcom,allow-aging-open-loop-voltage-adjustment", NULL)) {
+		rc = cpr3_parse_array_property(vreg,
+			"qcom,allow-aging-open-loop-voltage-adjustment",
+			1, &aging_allowed);
+		if (rc)
+			goto free_temp;
+
+		vreg->aging_allow_open_loop_adj = aging_allowed;
+	}
+
+	if (vreg->aging_allowed) {
+		if (ctrl->aging_ref_volt <= 0) {
+			cpr3_err(ctrl, "qcom,cpr-aging-ref-voltage must be specified\n");
+			rc = -EINVAL;
+			goto free_temp;
+		}
+
+		rc = cpr3_parse_array_property(vreg,
+			"qcom,cpr-aging-max-voltage-adjustment",
+			1, &vreg->aging_max_adjust_volt);
+		if (rc)
+			goto free_temp;
+
+		rc = cpr3_parse_array_property(vreg,
+			"qcom,cpr-aging-ref-corner", 1, &vreg->aging_corner);
+		if (rc) {
+			goto free_temp;
+		} else if (vreg->aging_corner < CPR3_CORNER_OFFSET
+			   || vreg->aging_corner > vreg->corner_count - 1
+							+ CPR3_CORNER_OFFSET) {
+			cpr3_err(vreg, "aging reference corner=%d not in range [%d, %d]\n",
+				vreg->aging_corner, CPR3_CORNER_OFFSET,
+				vreg->corner_count - 1 + CPR3_CORNER_OFFSET);
+			rc = -EINVAL;
+			goto free_temp;
+		}
+		vreg->aging_corner -= CPR3_CORNER_OFFSET;
+
+		if (of_find_property(vreg->of_node, "qcom,cpr-aging-derate",
+					NULL)) {
+			rc = cpr3_parse_corner_array_property(vreg,
+				"qcom,cpr-aging-derate", 1, temp);
+			if (rc)
+				goto free_temp;
+
+			for (i = 0; i < vreg->corner_count; i++)
+				vreg->corner[i].aging_derate = temp[i];
+		} else {
+			for (i = 0; i < vreg->corner_count; i++)
+				vreg->corner[i].aging_derate
+					= CPR3_AGING_DERATE_UNITY;
+		}
+	}
+
+free_temp:
+	kfree(temp);
+	return rc;
+}
+
+/**
+ * cpr3_parse_thread_u32() - parse the specified property from the CPR3 thread's
+ *		device tree node and verify that it is within the allowed limits
+ * @thread:		Pointer to the CPR3 thread
+ * @propname:		The name of the device tree property to read
+ * @out_value:		The output pointer to fill with the value read
+ * @value_min:		The minimum allowed property value
+ * @value_max:		The maximum allowed property value
+ *
+ * This function prints a verbose error message if the property is missing or
+ * has a value which is not within the specified range.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_thread_u32(struct cpr3_thread *thread, const char *propname,
+		       u32 *out_value, u32 value_min, u32 value_max)
+{
+	int rc;
+
+	rc = of_property_read_u32(thread->of_node, propname, out_value);
+	if (rc) {
+		cpr3_err(thread->ctrl, "thread %u error reading property %s, rc=%d\n",
+			thread->thread_id, propname, rc);
+		return rc;
+	}
+
+	if (*out_value < value_min || *out_value > value_max) {
+		cpr3_err(thread->ctrl, "thread %u %s=%u is invalid; allowed range: [%u, %u]\n",
+			thread->thread_id, propname, *out_value, value_min,
+			value_max);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_parse_ctrl_u32() - parse the specified property from the CPR3
+ *		controller's device tree node and verify that it is within the
+ *		allowed limits
+ * @ctrl:		Pointer to the CPR3 controller
+ * @propname:		The name of the device tree property to read
+ * @out_value:		The output pointer to fill with the value read
+ * @value_min:		The minimum allowed property value
+ * @value_max:		The maximum allowed property value
+ *
+ * This function prints a verbose error message if the property is missing or
+ * has a value which is not within the specified range.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_ctrl_u32(struct cpr3_controller *ctrl, const char *propname,
+		       u32 *out_value, u32 value_min, u32 value_max)
+{
+	int rc;
+
+	rc = of_property_read_u32(ctrl->dev->of_node, propname, out_value);
+	if (rc) {
+		cpr3_err(ctrl, "error reading property %s, rc=%d\n",
+			propname, rc);
+		return rc;
+	}
+
+	if (*out_value < value_min || *out_value > value_max) {
+		cpr3_err(ctrl, "%s=%u is invalid; allowed range: [%u, %u]\n",
+			propname, *out_value, value_min, value_max);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_parse_common_thread_data() - parse common CPR3 thread properties from
+ *		device tree
+ * @thread:		Pointer to the CPR3 thread
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_common_thread_data(struct cpr3_thread *thread)
+{
+	int rc;
+
+	rc = cpr3_parse_thread_u32(thread, "qcom,cpr-consecutive-up",
+			&thread->consecutive_up, CPR3_CONSECUTIVE_UP_DOWN_MIN,
+			CPR3_CONSECUTIVE_UP_DOWN_MAX);
+	if (rc)
+		return rc;
+
+	rc = cpr3_parse_thread_u32(thread, "qcom,cpr-consecutive-down",
+			&thread->consecutive_down, CPR3_CONSECUTIVE_UP_DOWN_MIN,
+			CPR3_CONSECUTIVE_UP_DOWN_MAX);
+	if (rc)
+		return rc;
+
+	rc = cpr3_parse_thread_u32(thread, "qcom,cpr-up-threshold",
+			&thread->up_threshold, CPR3_UP_DOWN_THRESHOLD_MIN,
+			CPR3_UP_DOWN_THRESHOLD_MAX);
+	if (rc)
+		return rc;
+
+	rc = cpr3_parse_thread_u32(thread, "qcom,cpr-down-threshold",
+			&thread->down_threshold, CPR3_UP_DOWN_THRESHOLD_MIN,
+			CPR3_UP_DOWN_THRESHOLD_MAX);
+	if (rc)
+		return rc;
+
+	return rc;
+}
+
+/**
+ * cpr3_parse_irq_affinity() - parse CPR IRQ affinity information
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_parse_irq_affinity(struct cpr3_controller *ctrl)
+{
+	struct device_node *cpu_node;
+	int i, cpu;
+	int len = 0;
+
+	if (!of_find_property(ctrl->dev->of_node, "qcom,cpr-interrupt-affinity",
+				&len)) {
+		/* No IRQ affinity required */
+		return 0;
+	}
+
+	len /= sizeof(u32);
+
+	for (i = 0; i < len; i++) {
+		cpu_node = of_parse_phandle(ctrl->dev->of_node,
+					    "qcom,cpr-interrupt-affinity", i);
+		if (!cpu_node) {
+			cpr3_err(ctrl, "could not find CPU node %d\n", i);
+			return -EINVAL;
+		}
+
+		for_each_possible_cpu(cpu) {
+			if (of_get_cpu_node(cpu, NULL) == cpu_node) {
+				cpumask_set_cpu(cpu, &ctrl->irq_affinity_mask);
+				break;
+			}
+		}
+		of_node_put(cpu_node);
+	}
+
+	return 0;
+}
+
+static int cpr3_panic_notifier_init(struct cpr3_controller *ctrl)
+{
+	struct device_node *node = ctrl->dev->of_node;
+	struct cpr3_panic_regs_info *panic_regs_info;
+	struct cpr3_reg_info *regs;
+	int i, reg_count, len, rc = 0;
+
+	if (!of_find_property(node, "qcom,cpr-panic-reg-addr-list", &len)) {
+		/* panic register address list not specified */
+		return rc;
+	}
+
+	reg_count = len / sizeof(u32);
+	if (!reg_count) {
+		cpr3_err(ctrl, "qcom,cpr-panic-reg-addr-list has invalid len = %d\n",
+			len);
+		return -EINVAL;
+	}
+
+	if (!of_find_property(node, "qcom,cpr-panic-reg-name-list", NULL)) {
+		cpr3_err(ctrl, "property qcom,cpr-panic-reg-name-list not specified\n");
+		return -EINVAL;
+	}
+
+	len = of_property_count_strings(node, "qcom,cpr-panic-reg-name-list");
+	if (reg_count != len) {
+		cpr3_err(ctrl, "qcom,cpr-panic-reg-name-list should have %d strings\n",
+			reg_count);
+		return -EINVAL;
+	}
+
+	panic_regs_info = devm_kzalloc(ctrl->dev, sizeof(*panic_regs_info),
+					GFP_KERNEL);
+	if (!panic_regs_info)
+		return -ENOMEM;
+
+	regs = devm_kcalloc(ctrl->dev, reg_count, sizeof(*regs), GFP_KERNEL);
+	if (!regs)
+		return -ENOMEM;
+
+	for (i = 0; i < reg_count; i++) {
+		rc = of_property_read_string_index(node,
+				"qcom,cpr-panic-reg-name-list", i,
+				&(regs[i].name));
+		if (rc) {
+			cpr3_err(ctrl, "error reading property qcom,cpr-panic-reg-name-list, rc=%d\n",
+				rc);
+			return rc;
+		}
+
+		rc = of_property_read_u32_index(node,
+				"qcom,cpr-panic-reg-addr-list", i,
+				&(regs[i].addr));
+		if (rc) {
+			cpr3_err(ctrl, "error reading property qcom,cpr-panic-reg-addr-list, rc=%d\n",
+				rc);
+			return rc;
+		}
+		regs[i].virt_addr = devm_ioremap(ctrl->dev, regs[i].addr, 0x4);
+		if (!regs[i].virt_addr) {
+			pr_err("Unable to map panic register addr 0x%08x\n",
+				regs[i].addr);
+			return -EINVAL;
+		}
+		regs[i].value = 0xFFFFFFFF;
+	}
+
+	panic_regs_info->reg_count = reg_count;
+	panic_regs_info->regs = regs;
+	ctrl->panic_regs_info = panic_regs_info;
+
+	return rc;
+}
+
+/**
+ * cpr3_parse_common_ctrl_data() - parse common CPR3 controller properties from
+ *		device tree
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_common_ctrl_data(struct cpr3_controller *ctrl)
+{
+	int rc;
+
+	rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-sensor-time",
+			&ctrl->sensor_time, 0, UINT_MAX);
+	if (rc)
+		return rc;
+
+	rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-loop-time",
+			&ctrl->loop_time, 0, UINT_MAX);
+	if (rc)
+		return rc;
+
+	rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-idle-cycles",
+			&ctrl->idle_clocks, CPR3_IDLE_CLOCKS_MIN,
+			CPR3_IDLE_CLOCKS_MAX);
+	if (rc)
+		return rc;
+
+	rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-step-quot-init-min",
+			&ctrl->step_quot_init_min, CPR3_STEP_QUOT_MIN,
+			CPR3_STEP_QUOT_MAX);
+	if (rc)
+		return rc;
+
+	rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-step-quot-init-max",
+			&ctrl->step_quot_init_max, CPR3_STEP_QUOT_MIN,
+			CPR3_STEP_QUOT_MAX);
+	if (rc)
+		return rc;
+
+	rc = of_property_read_u32(ctrl->dev->of_node, "qcom,voltage-step",
+				&ctrl->step_volt);
+	if (rc) {
+		cpr3_err(ctrl, "error reading property qcom,voltage-step, rc=%d\n",
+			rc);
+		return rc;
+	}
+	if (ctrl->step_volt <= 0) {
+		cpr3_err(ctrl, "qcom,voltage-step=%d is invalid\n",
+			ctrl->step_volt);
+		return -EINVAL;
+	}
+
+	rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-count-mode",
+			&ctrl->count_mode, CPR3_COUNT_MODE_ALL_AT_ONCE_MIN,
+			CPR3_COUNT_MODE_STAGGERED);
+	if (rc)
+		return rc;
+
+	/* Count repeat is optional */
+	ctrl->count_repeat = 0;
+	of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-count-repeat",
+			&ctrl->count_repeat);
+
+	ctrl->cpr_allowed_sw = of_property_read_bool(ctrl->dev->of_node,
+			"qcom,cpr-enable");
+
+	rc = cpr3_parse_irq_affinity(ctrl);
+	if (rc)
+		return rc;
+
+	/* Aging reference voltage is optional */
+	ctrl->aging_ref_volt = 0;
+	of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-aging-ref-voltage",
+			&ctrl->aging_ref_volt);
+
+	/* Aging possible bitmask is optional */
+	ctrl->aging_possible_mask = 0;
+	of_property_read_u32(ctrl->dev->of_node,
+			"qcom,cpr-aging-allowed-reg-mask",
+			&ctrl->aging_possible_mask);
+
+	if (ctrl->aging_possible_mask) {
+		/*
+		 * Aging possible register value required if bitmask is
+		 * specified
+		 */
+		rc = cpr3_parse_ctrl_u32(ctrl,
+				"qcom,cpr-aging-allowed-reg-value",
+				&ctrl->aging_possible_val, 0, UINT_MAX);
+		if (rc)
+			return rc;
+	}
+
+	if (of_find_property(ctrl->dev->of_node, "clock-names", NULL)) {
+		ctrl->core_clk = devm_clk_get(ctrl->dev, "core_clk");
+		if (IS_ERR(ctrl->core_clk)) {
+			rc = PTR_ERR(ctrl->core_clk);
+			if (rc != -EPROBE_DEFER)
+				cpr3_err(ctrl, "unable request core clock, rc=%d\n",
+				rc);
+			return rc;
+		}
+	}
+
+	rc = cpr3_panic_notifier_init(ctrl);
+	if (rc)
+		return rc;
+
+	if (of_find_property(ctrl->dev->of_node, "vdd-supply", NULL)) {
+		ctrl->vdd_regulator = devm_regulator_get(ctrl->dev, "vdd");
+		if (IS_ERR(ctrl->vdd_regulator)) {
+			rc = PTR_ERR(ctrl->vdd_regulator);
+			if (rc != -EPROBE_DEFER)
+				cpr3_err(ctrl, "unable to request vdd regulator, rc=%d\n",
+					 rc);
+			return rc;
+		}
+	} else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) {
+		/* vdd-supply is optional for CPRh controllers. */
+		ctrl->vdd_regulator = NULL;
+	} else {
+		cpr3_err(ctrl, "vdd supply is not defined\n");
+		return -ENODEV;
+	}
+
+	/*
+	 * Regulator device handles are not necessary for CPRh controllers
+	 * since communication with the regulators is completely managed
+	 * in hardware.
+	 */
+	if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH)
+		return rc;
+
+	ctrl->system_regulator = devm_regulator_get_optional(ctrl->dev,
+								"system");
+	if (IS_ERR(ctrl->system_regulator)) {
+		rc = PTR_ERR(ctrl->system_regulator);
+		if (rc != -EPROBE_DEFER) {
+			rc = 0;
+			ctrl->system_regulator = NULL;
+		} else {
+			return rc;
+		}
+	}
+
+	ctrl->mem_acc_regulator = devm_regulator_get_optional(ctrl->dev,
+							      "mem-acc");
+	if (IS_ERR(ctrl->mem_acc_regulator)) {
+		rc = PTR_ERR(ctrl->mem_acc_regulator);
+		if (rc != -EPROBE_DEFER) {
+			rc = 0;
+			ctrl->mem_acc_regulator = NULL;
+		} else {
+			return rc;
+		}
+	}
+
+	return rc;
+}
+
+/**
+ * cpr3_limit_open_loop_voltages() - modify the open-loop voltage of each corner
+ *				so that it fits within the floor to ceiling
+ *				voltage range of the corner
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function clips the open-loop voltage for each corner so that it is
+ * limited to the floor to ceiling range.  It also rounds each open-loop voltage
+ * so that it corresponds to a set point available to the underlying regulator.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_limit_open_loop_voltages(struct cpr3_regulator *vreg)
+{
+	int i, volt;
+
+	cpr3_debug(vreg, "open-loop voltages after trimming and rounding:\n");
+	for (i = 0; i < vreg->corner_count; i++) {
+		volt = CPR3_ROUND(vreg->corner[i].open_loop_volt,
+					vreg->thread->ctrl->step_volt);
+		if (volt < vreg->corner[i].floor_volt)
+			volt = vreg->corner[i].floor_volt;
+		else if (volt > vreg->corner[i].ceiling_volt)
+			volt = vreg->corner[i].ceiling_volt;
+		vreg->corner[i].open_loop_volt = volt;
+		cpr3_debug(vreg, "corner[%2d]: open-loop=%d uV\n", i, volt);
+	}
+
+	return 0;
+}
+
+/**
+ * cpr3_open_loop_voltage_as_ceiling() - configures the ceiling voltage for each
+ *		corner to equal the open-loop voltage if the relevant device
+ *		tree property is found for the CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function assumes that the the open-loop voltage for each corner has
+ * already been rounded to the nearest allowed set point and that it falls
+ * within the floor to ceiling range.
+ *
+ * Return: none
+ */
+void cpr3_open_loop_voltage_as_ceiling(struct cpr3_regulator *vreg)
+{
+	int i;
+
+	if (!of_property_read_bool(vreg->of_node,
+				"qcom,cpr-scaled-open-loop-voltage-as-ceiling"))
+		return;
+
+	for (i = 0; i < vreg->corner_count; i++)
+		vreg->corner[i].ceiling_volt
+			= vreg->corner[i].open_loop_volt;
+}
+
+/**
+ * cpr3_limit_floor_voltages() - raise the floor voltage of each corner so that
+ *		the optional maximum floor to ceiling voltage range specified in
+ *		device tree is satisfied
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function also ensures that the open-loop voltage for each corner falls
+ * within the final floor to ceiling voltage range and that floor voltages
+ * increase monotonically.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_limit_floor_voltages(struct cpr3_regulator *vreg)
+{
+	char *prop = "qcom,cpr-floor-to-ceiling-max-range";
+	int i, floor_new;
+	u32 *floor_range;
+	int rc = 0;
+
+	if (!of_find_property(vreg->of_node, prop, NULL))
+		goto enforce_monotonicity;
+
+	floor_range = kcalloc(vreg->corner_count, sizeof(*floor_range),
+				GFP_KERNEL);
+	if (!floor_range)
+		return -ENOMEM;
+
+	rc = cpr3_parse_corner_array_property(vreg, prop, 1, floor_range);
+	if (rc)
+		goto free_floor_adjust;
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		if ((s32)floor_range[i] >= 0) {
+			floor_new = CPR3_ROUND(vreg->corner[i].ceiling_volt
+							- floor_range[i],
+						vreg->thread->ctrl->step_volt);
+
+			vreg->corner[i].floor_volt = max(floor_new,
+						vreg->corner[i].floor_volt);
+			if (vreg->corner[i].open_loop_volt
+			    < vreg->corner[i].floor_volt)
+				vreg->corner[i].open_loop_volt
+					= vreg->corner[i].floor_volt;
+		}
+	}
+
+free_floor_adjust:
+	kfree(floor_range);
+
+enforce_monotonicity:
+	/* Ensure that floor voltages increase monotonically. */
+	for (i = 1; i < vreg->corner_count; i++) {
+		if (vreg->corner[i].floor_volt
+		    < vreg->corner[i - 1].floor_volt) {
+			cpr3_debug(vreg, "corner %d floor voltage=%d uV < corner %d voltage=%d uV; overriding: corner %d voltage=%d\n",
+				i, vreg->corner[i].floor_volt,
+				i - 1, vreg->corner[i - 1].floor_volt,
+				i, vreg->corner[i - 1].floor_volt);
+			vreg->corner[i].floor_volt
+				= vreg->corner[i - 1].floor_volt;
+
+			if (vreg->corner[i].open_loop_volt
+			    < vreg->corner[i].floor_volt)
+				vreg->corner[i].open_loop_volt
+					= vreg->corner[i].floor_volt;
+			if (vreg->corner[i].ceiling_volt
+			    < vreg->corner[i].floor_volt)
+				vreg->corner[i].ceiling_volt
+					= vreg->corner[i].floor_volt;
+		}
+	}
+
+	return rc;
+}
+
+/**
+ * cpr3_print_quots() - print CPR target quotients into the kernel log for
+ *		debugging purposes
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: none
+ */
+void cpr3_print_quots(struct cpr3_regulator *vreg)
+{
+	int i, j, pos;
+	size_t buflen;
+	char *buf;
+
+	buflen = sizeof(*buf) * CPR3_RO_COUNT * (MAX_CHARS_PER_INT + 2);
+	buf = kzalloc(buflen, GFP_KERNEL);
+	if (!buf)
+		return;
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		for (j = 0, pos = 0; j < CPR3_RO_COUNT; j++)
+			pos += scnprintf(buf + pos, buflen - pos, " %u",
+				vreg->corner[i].target_quot[j]);
+		cpr3_debug(vreg, "target quots[%2d]:%s\n", i, buf);
+	}
+
+	kfree(buf);
+}
+
+/**
+ * cpr3_adjust_fused_open_loop_voltages() - adjust the fused open-loop voltages
+ *		for each fuse corner according to device tree values
+ * @vreg:		Pointer to the CPR3 regulator
+ * @fuse_volt:		Pointer to an array of the fused open-loop voltage
+ *			values
+ *
+ * Voltage values in fuse_volt are modified in place.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_adjust_fused_open_loop_voltages(struct cpr3_regulator *vreg,
+		int *fuse_volt)
+{
+	int i, rc, prev_volt;
+	int *volt_adjust;
+
+	if (!of_find_property(vreg->of_node,
+			"qcom,cpr-open-loop-voltage-fuse-adjustment", NULL)) {
+		/* No adjustment required. */
+		return 0;
+	}
+
+	volt_adjust = kcalloc(vreg->fuse_corner_count, sizeof(*volt_adjust),
+				GFP_KERNEL);
+	if (!volt_adjust)
+		return -ENOMEM;
+
+	rc = cpr3_parse_array_property(vreg,
+		"qcom,cpr-open-loop-voltage-fuse-adjustment",
+		vreg->fuse_corner_count, volt_adjust);
+	if (rc) {
+		cpr3_err(vreg, "could not load open-loop fused voltage adjustments, rc=%d\n",
+			rc);
+		goto done;
+	}
+
+	for (i = 0; i < vreg->fuse_corner_count; i++) {
+		if (volt_adjust[i]) {
+			prev_volt = fuse_volt[i];
+			fuse_volt[i] += volt_adjust[i];
+			cpr3_debug(vreg, "adjusted fuse corner %d open-loop voltage: %d --> %d uV\n",
+				i, prev_volt, fuse_volt[i]);
+		}
+	}
+
+done:
+	kfree(volt_adjust);
+	return rc;
+}
+
+/**
+ * cpr3_adjust_open_loop_voltages() - adjust the open-loop voltages for each
+ *		corner according to device tree values
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_adjust_open_loop_voltages(struct cpr3_regulator *vreg)
+{
+	int i, rc, prev_volt, min_volt;
+	int *volt_adjust, *volt_diff;
+
+	if (!of_find_property(vreg->of_node,
+			"qcom,cpr-open-loop-voltage-adjustment", NULL)) {
+		/* No adjustment required. */
+		return 0;
+	}
+
+	volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
+				GFP_KERNEL);
+	volt_diff = kcalloc(vreg->corner_count, sizeof(*volt_diff), GFP_KERNEL);
+	if (!volt_adjust || !volt_diff) {
+		rc = -ENOMEM;
+		goto done;
+	}
+
+	rc = cpr3_parse_corner_array_property(vreg,
+		"qcom,cpr-open-loop-voltage-adjustment", 1, volt_adjust);
+	if (rc) {
+		cpr3_err(vreg, "could not load open-loop voltage adjustments, rc=%d\n",
+			rc);
+		goto done;
+	}
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		if (volt_adjust[i]) {
+			prev_volt = vreg->corner[i].open_loop_volt;
+			vreg->corner[i].open_loop_volt += volt_adjust[i];
+			cpr3_debug(vreg, "adjusted corner %d open-loop voltage: %d --> %d uV\n",
+				i, prev_volt, vreg->corner[i].open_loop_volt);
+		}
+	}
+
+	if (of_find_property(vreg->of_node,
+			"qcom,cpr-open-loop-voltage-min-diff", NULL)) {
+		rc = cpr3_parse_corner_array_property(vreg,
+			"qcom,cpr-open-loop-voltage-min-diff", 1, volt_diff);
+		if (rc) {
+			cpr3_err(vreg, "could not load minimum open-loop voltage differences, rc=%d\n",
+				rc);
+			goto done;
+		}
+	}
+
+	/*
+	 * Ensure that open-loop voltages increase monotonically with respect
+	 * to configurable minimum allowed differences.
+	 */
+	for (i = 1; i < vreg->corner_count; i++) {
+		min_volt = vreg->corner[i - 1].open_loop_volt + volt_diff[i];
+		if (vreg->corner[i].open_loop_volt < min_volt) {
+			cpr3_debug(vreg, "adjusted corner %d open-loop voltage=%d uV < corner %d voltage=%d uV + min diff=%d uV; overriding: corner %d voltage=%d\n",
+				i, vreg->corner[i].open_loop_volt,
+				i - 1, vreg->corner[i - 1].open_loop_volt,
+				volt_diff[i], i, min_volt);
+			vreg->corner[i].open_loop_volt = min_volt;
+		}
+	}
+
+done:
+	kfree(volt_diff);
+	kfree(volt_adjust);
+	return rc;
+}
+
+/**
+ * cpr3_quot_adjustment() - returns the quotient adjustment value resulting from
+ *		the specified voltage adjustment and RO scaling factor
+ * @ro_scale:		The CPR ring oscillator (RO) scaling factor with units
+ *			of QUOT/V
+ * @volt_adjust:	The amount to adjust the voltage by in units of
+ *			microvolts.  This value may be positive or negative.
+ */
+int cpr3_quot_adjustment(int ro_scale, int volt_adjust)
+{
+	unsigned long long temp;
+	int quot_adjust;
+	int sign = 1;
+
+	if (ro_scale < 0) {
+		sign = -sign;
+		ro_scale = -ro_scale;
+	}
+
+	if (volt_adjust < 0) {
+		sign = -sign;
+		volt_adjust = -volt_adjust;
+	}
+
+	temp = (unsigned long long)ro_scale * (unsigned long long)volt_adjust;
+	do_div(temp, 1000000);
+
+	quot_adjust = temp;
+	quot_adjust *= sign;
+
+	return quot_adjust;
+}
+
+/**
+ * cpr3_voltage_adjustment() - returns the voltage adjustment value resulting
+ *		from the specified quotient adjustment and RO scaling factor
+ * @ro_scale:		The CPR ring oscillator (RO) scaling factor with units
+ *			of QUOT/V
+ * @quot_adjust:	The amount to adjust the quotient by in units of
+ *			QUOT.  This value may be positive or negative.
+ */
+int cpr3_voltage_adjustment(int ro_scale, int quot_adjust)
+{
+	unsigned long long temp;
+	int volt_adjust;
+	int sign = 1;
+
+	if (ro_scale < 0) {
+		sign = -sign;
+		ro_scale = -ro_scale;
+	}
+
+	if (quot_adjust < 0) {
+		sign = -sign;
+		quot_adjust = -quot_adjust;
+	}
+
+	if (ro_scale == 0)
+		return 0;
+
+	temp = (unsigned long long)quot_adjust * 1000000;
+	do_div(temp, ro_scale);
+
+	volt_adjust = temp;
+	volt_adjust *= sign;
+
+	return volt_adjust;
+}
+
+/**
+ * cpr3_parse_closed_loop_voltage_adjustments() - load per-fuse-corner and
+ *		per-corner closed-loop adjustment values from device tree
+ * @vreg:		Pointer to the CPR3 regulator
+ * @ro_sel:		Array of ring oscillator values selected for each
+ *			fuse corner
+ * @volt_adjust:	Pointer to array which will be filled with the
+ *			per-corner closed-loop adjustment voltages
+ * @volt_adjust_fuse:	Pointer to array which will be filled with the
+ *			per-fuse-corner closed-loop adjustment voltages
+ * @ro_scale:		Pointer to array which will be filled with the
+ *			per-fuse-corner RO scaling factor values with units of
+ *			QUOT/V
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_closed_loop_voltage_adjustments(
+			struct cpr3_regulator *vreg, u64 *ro_sel,
+			int *volt_adjust, int *volt_adjust_fuse, int *ro_scale)
+{
+	int i, rc;
+	u32 *ro_all_scale;
+
+	if (!of_find_property(vreg->of_node,
+			"qcom,cpr-closed-loop-voltage-adjustment", NULL)
+	    && !of_find_property(vreg->of_node,
+			"qcom,cpr-closed-loop-voltage-fuse-adjustment", NULL)
+	    && !vreg->aging_allowed) {
+		/* No adjustment required. */
+		return 0;
+	} else if (!of_find_property(vreg->of_node,
+			"qcom,cpr-ro-scaling-factor", NULL)) {
+		cpr3_err(vreg, "qcom,cpr-ro-scaling-factor is required for closed-loop voltage adjustment, but is missing\n");
+		return -EINVAL;
+	}
+
+	ro_all_scale = kcalloc(vreg->fuse_corner_count * CPR3_RO_COUNT,
+				sizeof(*ro_all_scale), GFP_KERNEL);
+	if (!ro_all_scale)
+		return -ENOMEM;
+
+	rc = cpr3_parse_array_property(vreg, "qcom,cpr-ro-scaling-factor",
+		vreg->fuse_corner_count * CPR3_RO_COUNT, ro_all_scale);
+	if (rc) {
+		cpr3_err(vreg, "could not load RO scaling factors, rc=%d\n",
+			rc);
+		goto done;
+	}
+
+	for (i = 0; i < vreg->fuse_corner_count; i++)
+		ro_scale[i] = ro_all_scale[i * CPR3_RO_COUNT + ro_sel[i]];
+
+	for (i = 0; i < vreg->corner_count; i++)
+		memcpy(vreg->corner[i].ro_scale,
+		 &ro_all_scale[vreg->corner[i].cpr_fuse_corner * CPR3_RO_COUNT],
+		 sizeof(*ro_all_scale) * CPR3_RO_COUNT);
+
+	if (of_find_property(vreg->of_node,
+			"qcom,cpr-closed-loop-voltage-fuse-adjustment", NULL)) {
+		rc = cpr3_parse_array_property(vreg,
+			"qcom,cpr-closed-loop-voltage-fuse-adjustment",
+			vreg->fuse_corner_count, volt_adjust_fuse);
+		if (rc) {
+			cpr3_err(vreg, "could not load closed-loop fused voltage adjustments, rc=%d\n",
+				rc);
+			goto done;
+		}
+	}
+
+	if (of_find_property(vreg->of_node,
+			"qcom,cpr-closed-loop-voltage-adjustment", NULL)) {
+		rc = cpr3_parse_corner_array_property(vreg,
+			"qcom,cpr-closed-loop-voltage-adjustment",
+			1, volt_adjust);
+		if (rc) {
+			cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
+				rc);
+			goto done;
+		}
+	}
+
+done:
+	kfree(ro_all_scale);
+	return rc;
+}
+
+/**
+ * cpr3_apm_init() - initialize APM data for a CPR3 controller
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * This function loads memory array power mux (APM) data from device tree
+ * if it is present and requests a handle to the appropriate APM controller
+ * device.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_apm_init(struct cpr3_controller *ctrl)
+{
+	struct device_node *node = ctrl->dev->of_node;
+	int rc;
+
+	if (!of_find_property(node, "qcom,apm-ctrl", NULL)) {
+		/* No APM used */
+		return 0;
+	}
+
+	ctrl->apm = msm_apm_ctrl_dev_get(ctrl->dev);
+	if (IS_ERR(ctrl->apm)) {
+		rc = PTR_ERR(ctrl->apm);
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "APM get failed, rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(node, "qcom,apm-threshold-voltage",
+				&ctrl->apm_threshold_volt);
+	if (rc) {
+		cpr3_err(ctrl, "error reading qcom,apm-threshold-voltage, rc=%d\n",
+			rc);
+		return rc;
+	}
+	ctrl->apm_threshold_volt
+		= CPR3_ROUND(ctrl->apm_threshold_volt, ctrl->step_volt);
+
+	/* No error check since this is an optional property. */
+	of_property_read_u32(node, "qcom,apm-hysteresis-voltage",
+				&ctrl->apm_adj_volt);
+	ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt);
+
+	ctrl->apm_high_supply = MSM_APM_SUPPLY_APCC;
+	ctrl->apm_low_supply = MSM_APM_SUPPLY_MX;
+
+	return 0;
+}
+
+/**
+ * cpr3_mem_acc_init() - initialize mem-acc regulator data for
+ *		a CPR3 regulator
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_mem_acc_init(struct cpr3_regulator *vreg)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	u32 *temp;
+	int i, rc;
+
+	if (!ctrl->mem_acc_regulator) {
+		cpr3_info(ctrl, "not using memory accelerator regulator\n");
+		return 0;
+	}
+
+	temp = kcalloc(vreg->corner_count, sizeof(*temp), GFP_KERNEL);
+	if (!temp)
+		return -ENOMEM;
+
+	rc = cpr3_parse_corner_array_property(vreg, "qcom,mem-acc-voltage",
+					      1, temp);
+	if (rc) {
+		cpr3_err(ctrl, "could not load mem-acc corners, rc=%d\n", rc);
+	} else {
+		for (i = 0; i < vreg->corner_count; i++)
+			vreg->corner[i].mem_acc_volt = temp[i];
+	}
+
+	kfree(temp);
+	return rc;
+}
+
+/**
+ * cpr4_load_core_and_temp_adj() - parse amount of voltage adjustment for
+ *		per-online-core and per-temperature voltage adjustment for a
+ *		given corner or corner band from device tree.
+ * @vreg:	Pointer to the CPR3 regulator
+ * @num:	Corner number or corner band number
+ * @use_corner_band:	Boolean indicating if the CPR3 regulator supports
+ *			adjustments per corner band
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_load_core_and_temp_adj(struct cpr3_regulator *vreg,
+					int num, bool use_corner_band)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	struct cpr4_sdelta *sdelta;
+	int sdelta_size, i, j, pos, rc = 0;
+	char str[75];
+	size_t buflen;
+	char *buf;
+
+	sdelta = use_corner_band ? vreg->corner_band[num].sdelta :
+		vreg->corner[num].sdelta;
+
+	if (!sdelta->allow_core_count_adj && !sdelta->allow_temp_adj) {
+		/* corner doesn't need sdelta table */
+		sdelta->max_core_count = 0;
+		sdelta->temp_band_count = 0;
+		return rc;
+	}
+
+	sdelta_size = sdelta->max_core_count * sdelta->temp_band_count;
+	snprintf(str, sizeof(str), use_corner_band ?
+	 "corner_band=%d core_config_count=%d temp_band_count=%d sdelta_size=%d\n"
+	 : "corner=%d core_config_count=%d temp_band_count=%d sdelta_size=%d\n",
+		 num, sdelta->max_core_count,
+		 sdelta->temp_band_count, sdelta_size);
+
+	cpr3_debug(vreg, "%s", str);
+
+	sdelta->table = devm_kcalloc(ctrl->dev, sdelta_size,
+				sizeof(*sdelta->table), GFP_KERNEL);
+	if (!sdelta->table)
+		return -ENOMEM;
+
+	snprintf(str, sizeof(str), use_corner_band ?
+		 "qcom,cpr-corner-band%d-temp-core-voltage-adjustment" :
+		 "qcom,cpr-corner%d-temp-core-voltage-adjustment",
+		 num + CPR3_CORNER_OFFSET);
+
+	rc = cpr3_parse_array_property(vreg, str, sdelta_size,
+				sdelta->table);
+	if (rc) {
+		cpr3_err(vreg, "could not load %s, rc=%d\n", str, rc);
+		return rc;
+	}
+
+	/*
+	 * Convert sdelta margins from uV to PMIC steps and apply negation to
+	 * follow the SDELTA register semantics.
+	 */
+	for (i = 0; i < sdelta_size; i++)
+		sdelta->table[i] = -(sdelta->table[i] / ctrl->step_volt);
+
+	buflen = sizeof(*buf) * sdelta_size * (MAX_CHARS_PER_INT + 2);
+	buf = kzalloc(buflen, GFP_KERNEL);
+	if (!buf)
+		return rc;
+
+	for (i = 0; i < sdelta->max_core_count; i++) {
+		for (j = 0, pos = 0; j < sdelta->temp_band_count; j++)
+			pos += scnprintf(buf + pos, buflen - pos, " %u",
+			 sdelta->table[i * sdelta->temp_band_count + j]);
+		cpr3_debug(vreg, "sdelta[%d]:%s\n", i, buf);
+	}
+
+	kfree(buf);
+	return rc;
+}
+
+/**
+ * cpr4_parse_core_count_temp_voltage_adj() - parse configuration data for
+ *		per-online-core and per-temperature voltage adjustment for
+ *		a CPR3 regulator from device tree.
+ * @vreg:	Pointer to the CPR3 regulator
+ * @use_corner_band:	Boolean indicating if the CPR3 regulator supports
+ *			adjustments per corner band
+ *
+ * This function supports parsing of per-online-core and per-temperature
+ * adjustments per corner or per corner band. CPR controllers which support
+ * corner bands apply the same adjustments to all corners within a corner band.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr4_parse_core_count_temp_voltage_adj(
+			struct cpr3_regulator *vreg, bool use_corner_band)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	struct device_node *node = vreg->of_node;
+	struct cpr3_corner *corner;
+	struct cpr4_sdelta *sdelta;
+	int i, sdelta_table_count, rc = 0;
+	int *allow_core_count_adj = NULL, *allow_temp_adj = NULL;
+	char prop_str[75];
+
+	if (of_find_property(node, use_corner_band ?
+			     "qcom,corner-band-allow-temp-adjustment"
+			     : "qcom,corner-allow-temp-adjustment", NULL)) {
+		if (!ctrl->allow_temp_adj) {
+			cpr3_err(ctrl, "Temperature adjustment configurations missing\n");
+			return -EINVAL;
+		}
+
+		vreg->allow_temp_adj = true;
+	}
+
+	if (of_find_property(node, use_corner_band ?
+			     "qcom,corner-band-allow-core-count-adjustment"
+			     : "qcom,corner-allow-core-count-adjustment",
+			     NULL)) {
+		rc = of_property_read_u32(node, "qcom,max-core-count",
+				&vreg->max_core_count);
+		if (rc) {
+			cpr3_err(vreg, "error reading qcom,max-core-count, rc=%d\n",
+				rc);
+			return -EINVAL;
+		}
+
+		vreg->allow_core_count_adj = true;
+		ctrl->allow_core_count_adj = true;
+	}
+
+	if (!vreg->allow_temp_adj && !vreg->allow_core_count_adj) {
+		/*
+		 * Both per-online-core and temperature based adjustments are
+		 * disabled for this regulator.
+		 */
+		return 0;
+	} else if (!vreg->allow_core_count_adj) {
+		/*
+		 * Only per-temperature voltage adjusments are allowed.
+		 * Keep max core count value as 1 to allocate SDELTA.
+		 */
+		vreg->max_core_count = 1;
+	}
+
+	if (vreg->allow_core_count_adj) {
+		allow_core_count_adj = kcalloc(vreg->corner_count,
+					sizeof(*allow_core_count_adj),
+					GFP_KERNEL);
+		if (!allow_core_count_adj)
+			return -ENOMEM;
+
+		snprintf(prop_str, sizeof(prop_str), use_corner_band ?
+			 "qcom,corner-band-allow-core-count-adjustment" :
+			 "qcom,corner-allow-core-count-adjustment");
+
+		rc = use_corner_band ?
+			cpr3_parse_corner_band_array_property(vreg, prop_str,
+					      1, allow_core_count_adj) :
+			cpr3_parse_corner_array_property(vreg, prop_str,
+						 1, allow_core_count_adj);
+		if (rc) {
+			cpr3_err(vreg, "error reading %s, rc=%d\n", prop_str,
+				 rc);
+			goto done;
+		}
+	}
+
+	if (vreg->allow_temp_adj) {
+		allow_temp_adj = kcalloc(vreg->corner_count,
+					sizeof(*allow_temp_adj), GFP_KERNEL);
+		if (!allow_temp_adj) {
+			rc = -ENOMEM;
+			goto done;
+		}
+
+		snprintf(prop_str, sizeof(prop_str), use_corner_band ?
+			 "qcom,corner-band-allow-temp-adjustment" :
+			 "qcom,corner-allow-temp-adjustment");
+
+		rc = use_corner_band ?
+			cpr3_parse_corner_band_array_property(vreg, prop_str,
+						      1, allow_temp_adj) :
+			cpr3_parse_corner_array_property(vreg, prop_str,
+						 1, allow_temp_adj);
+		if (rc) {
+			cpr3_err(vreg, "error reading %s, rc=%d\n", prop_str,
+				 rc);
+			goto done;
+		}
+	}
+
+	sdelta_table_count = use_corner_band ? vreg->corner_band_count :
+		vreg->corner_count;
+
+	for (i = 0; i < sdelta_table_count; i++) {
+		sdelta = devm_kzalloc(ctrl->dev, sizeof(*corner->sdelta),
+				      GFP_KERNEL);
+		if (!sdelta) {
+			rc = -ENOMEM;
+			goto done;
+		}
+
+		if (allow_core_count_adj)
+			sdelta->allow_core_count_adj = allow_core_count_adj[i];
+		if (allow_temp_adj)
+			sdelta->allow_temp_adj = allow_temp_adj[i];
+		sdelta->max_core_count = vreg->max_core_count;
+		sdelta->temp_band_count = ctrl->temp_band_count;
+
+		if (use_corner_band)
+			vreg->corner_band[i].sdelta = sdelta;
+		else
+			vreg->corner[i].sdelta = sdelta;
+
+		rc = cpr4_load_core_and_temp_adj(vreg, i, use_corner_band);
+		if (rc) {
+			cpr3_err(vreg, "corner/band %d core and temp adjustment loading failed, rc=%d\n",
+				 i, rc);
+			goto done;
+		}
+	}
+
+done:
+	kfree(allow_core_count_adj);
+	kfree(allow_temp_adj);
+
+	return rc;
+}
+
+/**
+ * cprh_adjust_voltages_for_apm() - adjust per-corner floor and ceiling voltages
+ *		so that they do not overlap the APM threshold voltage.
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * The memory array power mux (APM) must be configured for a specific supply
+ * based upon where the VDD voltage lies with respect to the APM threshold
+ * voltage.  When using CPR hardware closed-loop, the voltage may vary anywhere
+ * between the floor and ceiling voltage without software notification.
+ * Therefore, it is required that the floor to ceiling range for every corner
+ * not intersect the APM threshold voltage.  This function adjusts the floor to
+ * ceiling range for each corner which violates this requirement.
+ *
+ * The following algorithm is applied:
+ *	if floor < threshold <= ceiling:
+ *		if open_loop >= threshold, then floor = threshold - adj
+ *		else ceiling = threshold - step
+ * where:
+ *	adj = APM hysteresis voltage established to minimize the number of
+ *	      corners with artificially increased floor voltages
+ *	step = voltage in microvolts of a single step of the VDD supply
+ *
+ * The open-loop voltage is also bounded by the new floor or ceiling value as
+ * needed.
+ *
+ * Return: none
+ */
+void cprh_adjust_voltages_for_apm(struct cpr3_regulator *vreg)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	struct cpr3_corner *corner;
+	int i, adj, threshold, prev_ceiling, prev_floor, prev_open_loop;
+
+	if (!ctrl->apm_threshold_volt) {
+		/* APM not being used. */
+		return;
+	}
+
+	ctrl->apm_threshold_volt = CPR3_ROUND(ctrl->apm_threshold_volt,
+						ctrl->step_volt);
+	ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt);
+
+	threshold = ctrl->apm_threshold_volt;
+	adj = ctrl->apm_adj_volt;
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		corner = &vreg->corner[i];
+
+		if (threshold <= corner->floor_volt
+		    || threshold > corner->ceiling_volt)
+			continue;
+
+		prev_floor = corner->floor_volt;
+		prev_ceiling = corner->ceiling_volt;
+		prev_open_loop = corner->open_loop_volt;
+
+		if (corner->open_loop_volt >= threshold) {
+			corner->floor_volt = max(corner->floor_volt,
+						 threshold - adj);
+			if (corner->open_loop_volt < corner->floor_volt)
+				corner->open_loop_volt = corner->floor_volt;
+		} else {
+			corner->ceiling_volt = threshold - ctrl->step_volt;
+		}
+
+		if (corner->floor_volt != prev_floor
+		    || corner->ceiling_volt != prev_ceiling
+		    || corner->open_loop_volt != prev_open_loop)
+			cpr3_debug(vreg, "APM threshold=%d, APM adj=%d changed corner %d voltages; prev: floor=%d, ceiling=%d, open-loop=%d; new: floor=%d, ceiling=%d, open-loop=%d\n",
+				threshold, adj, i, prev_floor, prev_ceiling,
+				prev_open_loop, corner->floor_volt,
+				corner->ceiling_volt, corner->open_loop_volt);
+	}
+}
+
+/**
+ * cprh_adjust_voltages_for_mem_acc() - adjust per-corner floor and ceiling
+ *		voltages so that they do not intersect the MEM ACC threshold
+ *		voltage
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * The following algorithm is applied:
+ *	if floor < threshold <= ceiling:
+ *		if open_loop >= threshold, then floor = threshold
+ *		else ceiling = threshold - step
+ * where:
+ *	step = voltage in microvolts of a single step of the VDD supply
+ *
+ * The open-loop voltage is also bounded by the new floor or ceiling value as
+ * needed.
+ *
+ * Return: none
+ */
+void cprh_adjust_voltages_for_mem_acc(struct cpr3_regulator *vreg)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	struct cpr3_corner *corner;
+	int i, threshold, prev_ceiling, prev_floor, prev_open_loop;
+
+	if (!ctrl->mem_acc_threshold_volt) {
+		/* MEM ACC not being used. */
+		return;
+	}
+
+	ctrl->mem_acc_threshold_volt = CPR3_ROUND(ctrl->mem_acc_threshold_volt,
+						ctrl->step_volt);
+
+	threshold = ctrl->mem_acc_threshold_volt;
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		corner = &vreg->corner[i];
+
+		if (threshold <= corner->floor_volt
+		    || threshold > corner->ceiling_volt)
+			continue;
+
+		prev_floor = corner->floor_volt;
+		prev_ceiling = corner->ceiling_volt;
+		prev_open_loop = corner->open_loop_volt;
+
+		if (corner->open_loop_volt >= threshold) {
+			corner->floor_volt = max(corner->floor_volt, threshold);
+			if (corner->open_loop_volt < corner->floor_volt)
+				corner->open_loop_volt = corner->floor_volt;
+		} else {
+			corner->ceiling_volt = threshold - ctrl->step_volt;
+		}
+
+		if (corner->floor_volt != prev_floor
+		    || corner->ceiling_volt != prev_ceiling
+		    || corner->open_loop_volt != prev_open_loop)
+			cpr3_debug(vreg, "MEM ACC threshold=%d changed corner %d voltages; prev: floor=%d, ceiling=%d, open-loop=%d; new: floor=%d, ceiling=%d, open-loop=%d\n",
+				threshold, i, prev_floor, prev_ceiling,
+				prev_open_loop, corner->floor_volt,
+				corner->ceiling_volt, corner->open_loop_volt);
+	}
+}
+
+/**
+ * cpr3_apply_closed_loop_offset_voltages() - modify the closed-loop voltage
+ *		adjustments by the amounts that are needed for this
+ *		fuse combo
+ * @vreg:		Pointer to the CPR3 regulator
+ * @volt_adjust:	Array of closed-loop voltage adjustment values of length
+ *			vreg->corner_count which is further adjusted based upon
+ *			offset voltage fuse values.
+ * @fuse_volt_adjust:	Fused closed-loop voltage adjustment values of length
+ *			vreg->fuse_corner_count.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_apply_closed_loop_offset_voltages(struct cpr3_regulator *vreg,
+			int *volt_adjust, int *fuse_volt_adjust)
+{
+	u32 *corner_map;
+	int rc = 0, i;
+
+	if (!of_find_property(vreg->of_node,
+		"qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL)) {
+		/* No closed-loop offset required. */
+		return 0;
+	}
+
+	corner_map = kcalloc(vreg->corner_count, sizeof(*corner_map),
+				GFP_KERNEL);
+	if (!corner_map)
+		return -ENOMEM;
+
+	rc = cpr3_parse_corner_array_property(vreg,
+		"qcom,cpr-fused-closed-loop-voltage-adjustment-map",
+		1, corner_map);
+	if (rc)
+		goto done;
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		if (corner_map[i] == 0) {
+			continue;
+		} else if (corner_map[i] > vreg->fuse_corner_count) {
+			cpr3_err(vreg, "corner %d mapped to invalid fuse corner: %u\n",
+				i, corner_map[i]);
+			rc = -EINVAL;
+			goto done;
+		}
+
+		volt_adjust[i] += fuse_volt_adjust[corner_map[i] - 1];
+	}
+
+done:
+	kfree(corner_map);
+	return rc;
+}
+
+/**
+ * cpr3_enforce_inc_quotient_monotonicity() - Ensure that target quotients
+ *		increase monotonically from lower to higher corners
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static void cpr3_enforce_inc_quotient_monotonicity(struct cpr3_regulator *vreg)
+{
+	int i, j;
+
+	for (i = 1; i < vreg->corner_count; i++) {
+		for (j = 0; j < CPR3_RO_COUNT; j++) {
+			if (vreg->corner[i].target_quot[j]
+			    && vreg->corner[i].target_quot[j]
+					< vreg->corner[i - 1].target_quot[j]) {
+				cpr3_debug(vreg, "corner %d RO%u target quot=%u < corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
+					i, j,
+					vreg->corner[i].target_quot[j],
+					i - 1, j,
+					vreg->corner[i - 1].target_quot[j],
+					i, j,
+					vreg->corner[i - 1].target_quot[j]);
+				vreg->corner[i].target_quot[j]
+					= vreg->corner[i - 1].target_quot[j];
+			}
+		}
+	}
+}
+
+/**
+ * cpr3_enforce_dec_quotient_monotonicity() - Ensure that target quotients
+ *		decrease monotonically from higher to lower corners
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static void cpr3_enforce_dec_quotient_monotonicity(struct cpr3_regulator *vreg)
+{
+	int i, j;
+
+	for (i = vreg->corner_count - 2; i >= 0; i--) {
+		for (j = 0; j < CPR3_RO_COUNT; j++) {
+			if (vreg->corner[i + 1].target_quot[j]
+			    && vreg->corner[i].target_quot[j]
+					> vreg->corner[i + 1].target_quot[j]) {
+				cpr3_debug(vreg, "corner %d RO%u target quot=%u > corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
+					i, j,
+					vreg->corner[i].target_quot[j],
+					i + 1, j,
+					vreg->corner[i + 1].target_quot[j],
+					i, j,
+					vreg->corner[i + 1].target_quot[j]);
+				vreg->corner[i].target_quot[j]
+					= vreg->corner[i + 1].target_quot[j];
+			}
+		}
+	}
+}
+
+/**
+ * _cpr3_adjust_target_quotients() - adjust the target quotients for each
+ *		corner of the regulator according to input adjustment and
+ *		scaling arrays
+ * @vreg:		Pointer to the CPR3 regulator
+ * @volt_adjust:	Pointer to an array of closed-loop voltage adjustments
+ *			with units of microvolts.  The array must have
+ *			vreg->corner_count number of elements.
+ * @ro_scale:		Pointer to a flattened 2D array of RO scaling factors.
+ *			The array must have an inner dimension of CPR3_RO_COUNT
+ *			and an outer dimension of vreg->corner_count
+ * @label:		Null terminated string providing a label for the type
+ *			of adjustment.
+ *
+ * Return: true if any corners received a positive voltage adjustment (> 0),
+ *	   else false
+ */
+static bool _cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
+		const int *volt_adjust, const int *ro_scale, const char *label)
+{
+	int i, j, quot_adjust;
+	bool is_increasing = false;
+	u32 prev_quot;
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		for (j = 0; j < CPR3_RO_COUNT; j++) {
+			if (vreg->corner[i].target_quot[j]) {
+				quot_adjust = cpr3_quot_adjustment(
+					ro_scale[i * CPR3_RO_COUNT + j],
+					volt_adjust[i]);
+				if (quot_adjust) {
+					prev_quot = vreg->corner[i].
+							target_quot[j];
+					vreg->corner[i].target_quot[j]
+						+= quot_adjust;
+					cpr3_debug(vreg, "adjusted corner %d RO%d target quot %s: %u --> %u (%d uV)\n",
+						i, j, label, prev_quot,
+						vreg->corner[i].target_quot[j],
+						volt_adjust[i]);
+				}
+			}
+		}
+		if (volt_adjust[i] > 0)
+			is_increasing = true;
+	}
+
+	return is_increasing;
+}
+
+/**
+ * cpr3_adjust_target_quotients() - adjust the target quotients for each
+ *			corner according to device tree values and fuse values
+ * @vreg:		Pointer to the CPR3 regulator
+ * @fuse_volt_adjust:	Fused closed-loop voltage adjustment values of length
+ *			vreg->fuse_corner_count. This parameter could be null
+ *			pointer when no fused adjustments are needed.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
+			int *fuse_volt_adjust)
+{
+	int i, rc;
+	int *volt_adjust, *ro_scale;
+	bool explicit_adjustment, fused_adjustment, is_increasing;
+
+	explicit_adjustment = of_find_property(vreg->of_node,
+		"qcom,cpr-closed-loop-voltage-adjustment", NULL);
+	fused_adjustment = of_find_property(vreg->of_node,
+		"qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL);
+
+	if (!explicit_adjustment && !fused_adjustment && !vreg->aging_allowed) {
+		/* No adjustment required. */
+		return 0;
+	} else if (!of_find_property(vreg->of_node,
+			"qcom,cpr-ro-scaling-factor", NULL)) {
+		cpr3_err(vreg, "qcom,cpr-ro-scaling-factor is required for closed-loop voltage adjustment, but is missing\n");
+		return -EINVAL;
+	}
+
+	volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
+				GFP_KERNEL);
+	ro_scale = kcalloc(vreg->corner_count * CPR3_RO_COUNT,
+				sizeof(*ro_scale), GFP_KERNEL);
+	if (!volt_adjust || !ro_scale) {
+		rc = -ENOMEM;
+		goto done;
+	}
+
+	rc = cpr3_parse_corner_array_property(vreg,
+			"qcom,cpr-ro-scaling-factor", CPR3_RO_COUNT, ro_scale);
+	if (rc) {
+		cpr3_err(vreg, "could not load RO scaling factors, rc=%d\n",
+			rc);
+		goto done;
+	}
+
+	for (i = 0; i < vreg->corner_count; i++)
+		memcpy(vreg->corner[i].ro_scale, &ro_scale[i * CPR3_RO_COUNT],
+			sizeof(*ro_scale) * CPR3_RO_COUNT);
+
+	if (explicit_adjustment) {
+		rc = cpr3_parse_corner_array_property(vreg,
+			"qcom,cpr-closed-loop-voltage-adjustment",
+			1, volt_adjust);
+		if (rc) {
+			cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
+				rc);
+			goto done;
+		}
+
+		_cpr3_adjust_target_quotients(vreg, volt_adjust, ro_scale,
+			"from DT");
+		cpr3_enforce_inc_quotient_monotonicity(vreg);
+	}
+
+	if (fused_adjustment && fuse_volt_adjust) {
+		memset(volt_adjust, 0,
+			sizeof(*volt_adjust) * vreg->corner_count);
+
+		rc = cpr3_apply_closed_loop_offset_voltages(vreg, volt_adjust,
+				fuse_volt_adjust);
+		if (rc) {
+			cpr3_err(vreg, "could not apply fused closed-loop voltage reductions, rc=%d\n",
+				rc);
+			goto done;
+		}
+
+		is_increasing = _cpr3_adjust_target_quotients(vreg, volt_adjust,
+					ro_scale, "from fuse");
+		if (is_increasing)
+			cpr3_enforce_inc_quotient_monotonicity(vreg);
+		else
+			cpr3_enforce_dec_quotient_monotonicity(vreg);
+	}
+
+done:
+	kfree(volt_adjust);
+	kfree(ro_scale);
+	return rc;
+}
diff --git a/drivers/regulator/cpr4-apss-regulator.c b/drivers/regulator/cpr4-apss-regulator.c
new file mode 100644
index 0000000..cfc09ba
--- /dev/null
+++ b/drivers/regulator/cpr4-apss-regulator.c
@@ -0,0 +1,1436 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/bitops.h>
+#include <linux/debugfs.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_opp.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/regulator/of_regulator.h>
+
+#include "cpr3-regulator.h"
+
+#define MSM8953_APSS_FUSE_CORNERS	4
+
+/**
+ * struct cpr4_msm8953_apss_fuses - APSS specific fuse data for MSM8953
+ * @ro_sel:		Ring oscillator select fuse parameter value for each
+ *			fuse corner
+ * @init_voltage:	Initial (i.e. open-loop) voltage fuse parameter value
+ *			for each fuse corner (raw, not converted to a voltage)
+ * @target_quot:	CPR target quotient fuse parameter value for each fuse
+ *			corner
+ * @quot_offset:	CPR target quotient offset fuse parameter value for each
+ *			fuse corner (raw, not unpacked) used for target quotient
+ *			interpolation
+ * @speed_bin:		Application processor speed bin fuse parameter value for
+ *			the given chip
+ * @cpr_fusing_rev:	CPR fusing revision fuse parameter value
+ * @boost_cfg:		CPR boost configuration fuse parameter value
+ * @boost_voltage:	CPR boost voltage fuse parameter value (raw, not
+ *			converted to a voltage)
+ *
+ * This struct holds the values for all of the fuses read from memory.
+ */
+struct cpr4_msm8953_apss_fuses {
+	u64	ro_sel[MSM8953_APSS_FUSE_CORNERS];
+	u64	init_voltage[MSM8953_APSS_FUSE_CORNERS];
+	u64	target_quot[MSM8953_APSS_FUSE_CORNERS];
+	u64	quot_offset[MSM8953_APSS_FUSE_CORNERS];
+	u64	speed_bin;
+	u64	cpr_fusing_rev;
+	u64	boost_cfg;
+	u64	boost_voltage;
+	u64	misc;
+};
+
+/*
+ * fuse combo = fusing revision + 8 * (speed bin)
+ * where: fusing revision = 0 - 7 and speed bin = 0 - 7
+ */
+#define CPR4_MSM8953_APSS_FUSE_COMBO_COUNT	64
+
+/*
+ * Constants which define the name of each fuse corner.
+ */
+enum cpr4_msm8953_apss_fuse_corner {
+	CPR4_MSM8953_APSS_FUSE_CORNER_LOWSVS	= 0,
+	CPR4_MSM8953_APSS_FUSE_CORNER_SVS		= 1,
+	CPR4_MSM8953_APSS_FUSE_CORNER_NOM		= 2,
+	CPR4_MSM8953_APSS_FUSE_CORNER_TURBO_L1	= 3,
+};
+
+static const char * const cpr4_msm8953_apss_fuse_corner_name[] = {
+	[CPR4_MSM8953_APSS_FUSE_CORNER_LOWSVS]	= "LowSVS",
+	[CPR4_MSM8953_APSS_FUSE_CORNER_SVS]		= "SVS",
+	[CPR4_MSM8953_APSS_FUSE_CORNER_NOM]		= "NOM",
+	[CPR4_MSM8953_APSS_FUSE_CORNER_TURBO_L1]	= "TURBO_L1",
+};
+
+/*
+ * MSM8953 APSS fuse parameter locations:
+ *
+ * Structs are organized with the following dimensions:
+ *	Outer: 0 to 3 for fuse corners from lowest to highest corner
+ *	Inner: large enough to hold the longest set of parameter segments which
+ *		fully defines a fuse parameter, +1 (for NULL termination).
+ *		Each segment corresponds to a contiguous group of bits from a
+ *		single fuse row.  These segments are concatentated together in
+ *		order to form the full fuse parameter value.  The segments for
+ *		a given parameter may correspond to different fuse rows.
+ */
+static const struct cpr3_fuse_param
+msm8953_apss_ro_sel_param[MSM8953_APSS_FUSE_CORNERS][2] = {
+	{{73, 12, 15}, {} },
+	{{73,  8, 11}, {} },
+	{{73,  4,  7}, {} },
+	{{73,  0,  3}, {} },
+};
+
+static const struct cpr3_fuse_param
+msm8953_apss_init_voltage_param[MSM8953_APSS_FUSE_CORNERS][2] = {
+	{{71, 24, 29}, {} },
+	{{71, 18, 23}, {} },
+	{{71, 12, 17}, {} },
+	{{71,  6, 11}, {} },
+};
+
+static const struct cpr3_fuse_param
+msm8953_apss_target_quot_param[MSM8953_APSS_FUSE_CORNERS][2] = {
+	{{72, 44, 55}, {} },
+	{{72, 32, 43}, {} },
+	{{72, 20, 31}, {} },
+	{{72,  8, 19}, {} },
+};
+
+static const struct cpr3_fuse_param
+msm8953_apss_quot_offset_param[MSM8953_APSS_FUSE_CORNERS][2] = {
+	{{} },
+	{{71, 46, 52}, {} },
+	{{71, 39, 45}, {} },
+	{{71, 32, 38}, {} },
+};
+
+static const struct cpr3_fuse_param msm8953_cpr_fusing_rev_param[] = {
+	{71, 53, 55},
+	{},
+};
+
+static const struct cpr3_fuse_param msm8953_apss_speed_bin_param[] = {
+	{36, 40, 42},
+	{},
+};
+
+static const struct cpr3_fuse_param msm8953_cpr_boost_fuse_cfg_param[] = {
+	{36, 43, 45},
+	{},
+};
+
+static const struct cpr3_fuse_param msm8953_apss_boost_fuse_volt_param[] = {
+	{71, 0, 5},
+	{},
+};
+
+static const struct cpr3_fuse_param msm8953_misc_fuse_volt_adj_param[] = {
+	{36, 54, 54},
+	{},
+};
+
+/*
+ * The number of possible values for misc fuse is
+ * 2^(#bits defined for misc fuse)
+ */
+#define MSM8953_MISC_FUSE_VAL_COUNT		BIT(1)
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for MSM8953
+ */
+static const int msm8953_apss_fuse_ref_volt
+	[MSM8953_APSS_FUSE_CORNERS] = {
+	645000,
+	720000,
+	865000,
+	1065000,
+};
+
+#define MSM8953_APSS_FUSE_STEP_VOLT		10000
+#define MSM8953_APSS_VOLTAGE_FUSE_SIZE	6
+#define MSM8953_APSS_QUOT_OFFSET_SCALE	5
+
+#define MSM8953_APSS_CPR_SENSOR_COUNT	13
+
+#define MSM8953_APSS_CPR_CLOCK_RATE		19200000
+
+#define MSM8953_APSS_MAX_TEMP_POINTS	3
+#define MSM8953_APSS_TEMP_SENSOR_ID_START	4
+#define MSM8953_APSS_TEMP_SENSOR_ID_END	13
+/*
+ * Boost voltage fuse reference and ceiling voltages in microvolts for
+ * MSM8953.
+ */
+#define MSM8953_APSS_BOOST_FUSE_REF_VOLT	1140000
+#define MSM8953_APSS_BOOST_CEILING_VOLT	1140000
+#define MSM8953_APSS_BOOST_FLOOR_VOLT	900000
+#define MAX_BOOST_CONFIG_FUSE_VALUE		8
+
+#define MSM8953_APSS_CPR_SDELTA_CORE_COUNT	15
+
+/*
+ * Array of integer values mapped to each of the boost config fuse values to
+ * indicate boost enable/disable status.
+ */
+static bool boost_fuse[MAX_BOOST_CONFIG_FUSE_VALUE] = {0, 1, 1, 1, 1, 1, 1, 1};
+
+/**
+ * cpr4_msm8953_apss_read_fuse_data() - load APSS specific fuse parameter values
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function allocates a cpr4_msm8953_apss_fuses struct, fills it with
+ * values read out of hardware fuses, and finally copies common fuse values
+ * into the CPR3 regulator struct.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_msm8953_apss_read_fuse_data(struct cpr3_regulator *vreg)
+{
+	void __iomem *base = vreg->thread->ctrl->fuse_base;
+	struct cpr4_msm8953_apss_fuses *fuse;
+	int i, rc;
+
+	fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
+	if (!fuse)
+		return -ENOMEM;
+
+	rc = cpr3_read_fuse_param(base, msm8953_apss_speed_bin_param,
+				&fuse->speed_bin);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc);
+		return rc;
+	}
+	cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin);
+
+	rc = cpr3_read_fuse_param(base, msm8953_cpr_fusing_rev_param,
+				&fuse->cpr_fusing_rev);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+	cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
+
+	rc = cpr3_read_fuse_param(base, msm8953_misc_fuse_volt_adj_param,
+				&fuse->misc);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read misc voltage adjustment fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+	cpr3_info(vreg, "CPR misc fuse value = %llu\n", fuse->misc);
+	if (fuse->misc >= MSM8953_MISC_FUSE_VAL_COUNT) {
+		cpr3_err(vreg, "CPR misc fuse value = %llu, should be < %lu\n",
+			fuse->misc, MSM8953_MISC_FUSE_VAL_COUNT);
+		return -EINVAL;
+	}
+
+	for (i = 0; i < MSM8953_APSS_FUSE_CORNERS; i++) {
+		rc = cpr3_read_fuse_param(base,
+				msm8953_apss_init_voltage_param[i],
+				&fuse->init_voltage[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+				msm8953_apss_target_quot_param[i],
+				&fuse->target_quot[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+				msm8953_apss_ro_sel_param[i],
+				&fuse->ro_sel[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+				msm8953_apss_quot_offset_param[i],
+				&fuse->quot_offset[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+	}
+
+	rc = cpr3_read_fuse_param(base, msm8953_cpr_boost_fuse_cfg_param,
+				&fuse->boost_cfg);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read CPR boost config fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+	cpr3_info(vreg, "Voltage boost fuse config = %llu boost = %s\n",
+			fuse->boost_cfg, boost_fuse[fuse->boost_cfg]
+			? "enable" : "disable");
+
+	rc = cpr3_read_fuse_param(base,
+				msm8953_apss_boost_fuse_volt_param,
+				&fuse->boost_voltage);
+	if (rc) {
+		cpr3_err(vreg, "failed to read boost fuse voltage, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
+	if (vreg->fuse_combo >= CPR4_MSM8953_APSS_FUSE_COMBO_COUNT) {
+		cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
+			vreg->fuse_combo);
+		return -EINVAL;
+	}
+
+	vreg->speed_bin_fuse	= fuse->speed_bin;
+	vreg->cpr_rev_fuse	= fuse->cpr_fusing_rev;
+	vreg->fuse_corner_count	= MSM8953_APSS_FUSE_CORNERS;
+	vreg->platform_fuses	= fuse;
+
+	return 0;
+}
+
+/**
+ * cpr4_apss_parse_corner_data() - parse APSS corner data from device tree
+ *		properties of the CPR3 regulator's device node
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_parse_corner_data(struct cpr3_regulator *vreg)
+{
+	int rc;
+
+	rc = cpr3_parse_common_corner_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
+		return rc;
+	}
+
+	return rc;
+}
+
+/**
+ * cpr4_apss_parse_misc_fuse_voltage_adjustments() - fill an array from a
+ *		portion of the voltage adjustments specified based on
+ *		miscellaneous fuse bits.
+ * @vreg:		Pointer to the CPR3 regulator
+ * @volt_adjust:	Voltage adjustment output data array which must be
+ *			of size vreg->corner_count
+ *
+ * cpr3_parse_common_corner_data() must be called for vreg before this function
+ * is called so that speed bin size elements are initialized.
+ *
+ * Two formats are supported for the device tree property:
+ * 1. Length == tuple_list_size * vreg->corner_count
+ *	(reading begins at index 0)
+ * 2. Length == tuple_list_size * vreg->speed_bin_corner_sum
+ *	(reading begins at index tuple_list_size * vreg->speed_bin_offset)
+ *
+ * Here, tuple_list_size is the number of possible values for misc fuse.
+ * All other property lengths are treated as errors.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_parse_misc_fuse_voltage_adjustments(
+	struct cpr3_regulator *vreg, u32 *volt_adjust)
+{
+	struct device_node *node = vreg->of_node;
+	struct cpr4_msm8953_apss_fuses *fuse = vreg->platform_fuses;
+	int tuple_list_size = MSM8953_MISC_FUSE_VAL_COUNT;
+	int i, offset, rc, len = 0;
+	const char *prop_name = "qcom,cpr-misc-fuse-voltage-adjustment";
+
+	if (!of_find_property(node, prop_name, &len)) {
+		cpr3_err(vreg, "property %s is missing\n", prop_name);
+		return -EINVAL;
+	}
+
+	if (len == tuple_list_size * vreg->corner_count * sizeof(u32)) {
+		offset = 0;
+	} else if (vreg->speed_bin_corner_sum > 0 &&
+			len == tuple_list_size * vreg->speed_bin_corner_sum
+			* sizeof(u32)) {
+		offset = tuple_list_size * vreg->speed_bin_offset
+			+ fuse->misc * vreg->corner_count;
+	} else {
+		if (vreg->speed_bin_corner_sum > 0)
+			cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
+				prop_name, len,
+				tuple_list_size * vreg->corner_count
+					* sizeof(u32),
+				tuple_list_size * vreg->speed_bin_corner_sum
+					* sizeof(u32));
+		else
+			cpr3_err(vreg, "property %s has invalid length=%d, should be %zu\n",
+				prop_name, len,
+				tuple_list_size * vreg->corner_count
+				* sizeof(u32));
+		return -EINVAL;
+	}
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		rc = of_property_read_u32_index(node, prop_name, offset + i,
+						&volt_adjust[i]);
+		if (rc) {
+			cpr3_err(vreg, "error reading property %s, rc=%d\n",
+				prop_name, rc);
+			return rc;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * cpr4_msm8953_apss_calculate_open_loop_voltages() - calculate the open-loop
+ *		voltage for each corner of a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * If open-loop voltage interpolation is allowed in device tree, then
+ * this function calculates the open-loop voltage for a given corner using
+ * linear interpolation.  This interpolation is performed using the processor
+ * frequencies of the lower and higher Fmax corners along with their fused
+ * open-loop voltages.
+ *
+ * If open-loop voltage interpolation is not allowed, then this function uses
+ * the Fmax fused open-loop voltage for all of the corners associated with a
+ * given fuse corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_msm8953_apss_calculate_open_loop_voltages(
+			struct cpr3_regulator *vreg)
+{
+	struct device_node *node = vreg->of_node;
+	struct cpr4_msm8953_apss_fuses *fuse = vreg->platform_fuses;
+	int i, j, rc = 0;
+	bool allow_interpolation;
+	u64 freq_low, volt_low, freq_high, volt_high;
+	int *fuse_volt, *misc_adj_volt;
+	int *fmax_corner;
+
+	fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
+				GFP_KERNEL);
+	fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
+				GFP_KERNEL);
+	if (!fuse_volt || !fmax_corner) {
+		rc = -ENOMEM;
+		goto done;
+	}
+
+	for (i = 0; i < vreg->fuse_corner_count; i++) {
+		fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(
+			msm8953_apss_fuse_ref_volt[i],
+			MSM8953_APSS_FUSE_STEP_VOLT, fuse->init_voltage[i],
+			MSM8953_APSS_VOLTAGE_FUSE_SIZE);
+
+		/* Log fused open-loop voltage values for debugging purposes. */
+		cpr3_info(vreg, "fused %8s: open-loop=%7d uV\n",
+			  cpr4_msm8953_apss_fuse_corner_name[i],
+			  fuse_volt[i]);
+	}
+
+	rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
+	if (rc) {
+		cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
+			rc);
+		goto done;
+	}
+
+	allow_interpolation = of_property_read_bool(node,
+				"qcom,allow-voltage-interpolation");
+
+	for (i = 1; i < vreg->fuse_corner_count; i++) {
+		if (fuse_volt[i] < fuse_volt[i - 1]) {
+			cpr3_info(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
+				i, fuse_volt[i], i - 1, fuse_volt[i - 1],
+				i, fuse_volt[i - 1]);
+			fuse_volt[i] = fuse_volt[i - 1];
+		}
+	}
+
+	if (!allow_interpolation) {
+		/* Use fused open-loop voltage for lower frequencies. */
+		for (i = 0; i < vreg->corner_count; i++)
+			vreg->corner[i].open_loop_volt
+				= fuse_volt[vreg->corner[i].cpr_fuse_corner];
+		goto done;
+	}
+
+	/* Determine highest corner mapped to each fuse corner */
+	j = vreg->fuse_corner_count - 1;
+	for (i = vreg->corner_count - 1; i >= 0; i--) {
+		if (vreg->corner[i].cpr_fuse_corner == j) {
+			fmax_corner[j] = i;
+			j--;
+		}
+	}
+	if (j >= 0) {
+		cpr3_err(vreg, "invalid fuse corner mapping\n");
+		rc = -EINVAL;
+		goto done;
+	}
+
+	/*
+	 * Interpolation is not possible for corners mapped to the lowest fuse
+	 * corner so use the fuse corner value directly.
+	 */
+	for (i = 0; i <= fmax_corner[0]; i++)
+		vreg->corner[i].open_loop_volt = fuse_volt[0];
+
+	/* Interpolate voltages for the higher fuse corners. */
+	for (i = 1; i < vreg->fuse_corner_count; i++) {
+		freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
+		volt_low = fuse_volt[i - 1];
+		freq_high = vreg->corner[fmax_corner[i]].proc_freq;
+		volt_high = fuse_volt[i];
+
+		for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
+			vreg->corner[j].open_loop_volt = cpr3_interpolate(
+				freq_low, volt_low, freq_high, volt_high,
+				vreg->corner[j].proc_freq);
+	}
+
+done:
+	if (rc == 0) {
+		cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
+		for (i = 0; i < vreg->corner_count; i++)
+			cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
+				vreg->corner[i].open_loop_volt);
+
+		rc = cpr3_adjust_open_loop_voltages(vreg);
+		if (rc)
+			cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
+				rc);
+
+		if (of_find_property(node,
+			"qcom,cpr-misc-fuse-voltage-adjustment",
+			NULL)) {
+			misc_adj_volt = kcalloc(vreg->corner_count,
+					sizeof(*misc_adj_volt), GFP_KERNEL);
+			if (!misc_adj_volt) {
+				rc = -ENOMEM;
+				goto _exit;
+			}
+
+			rc = cpr4_apss_parse_misc_fuse_voltage_adjustments(vreg,
+				misc_adj_volt);
+			if (rc) {
+				cpr3_err(vreg, "qcom,cpr-misc-fuse-voltage-adjustment reading failed, rc=%d\n",
+					rc);
+				kfree(misc_adj_volt);
+				goto _exit;
+			}
+
+			for (i = 0; i < vreg->corner_count; i++)
+				vreg->corner[i].open_loop_volt
+						+= misc_adj_volt[i];
+			kfree(misc_adj_volt);
+		}
+	}
+
+_exit:
+	kfree(fuse_volt);
+	kfree(fmax_corner);
+	return rc;
+}
+
+/**
+ * cpr4_msm8953_apss_set_no_interpolation_quotients() - use the fused target
+ *		quotient values for lower frequencies.
+ * @vreg:		Pointer to the CPR3 regulator
+ * @volt_adjust:	Pointer to array of per-corner closed-loop adjustment
+ *			voltages
+ * @volt_adjust_fuse:	Pointer to array of per-fuse-corner closed-loop
+ *			adjustment voltages
+ * @ro_scale:		Pointer to array of per-fuse-corner RO scaling factor
+ *			values with units of QUOT/V
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_msm8953_apss_set_no_interpolation_quotients(
+			struct cpr3_regulator *vreg, int *volt_adjust,
+			int *volt_adjust_fuse, int *ro_scale)
+{
+	struct cpr4_msm8953_apss_fuses *fuse = vreg->platform_fuses;
+	u32 quot, ro;
+	int quot_adjust;
+	int i, fuse_corner;
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		fuse_corner = vreg->corner[i].cpr_fuse_corner;
+		quot = fuse->target_quot[fuse_corner];
+		quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
+					   volt_adjust_fuse[fuse_corner] +
+					   volt_adjust[i]);
+		ro = fuse->ro_sel[fuse_corner];
+		vreg->corner[i].target_quot[ro] = quot + quot_adjust;
+		cpr3_debug(vreg, "corner=%d RO=%u target quot=%u\n",
+			  i, ro, quot);
+
+		if (quot_adjust)
+			cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %u --> %u (%d uV)\n",
+				  i, ro, quot, vreg->corner[i].target_quot[ro],
+				  volt_adjust_fuse[fuse_corner] +
+				  volt_adjust[i]);
+	}
+
+	return 0;
+}
+
+/**
+ * cpr4_msm8953_apss_calculate_target_quotients() - calculate the CPR target
+ *		quotient for each corner of a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * If target quotient interpolation is allowed in device tree, then this
+ * function calculates the target quotient for a given corner using linear
+ * interpolation.  This interpolation is performed using the processor
+ * frequencies of the lower and higher Fmax corners along with the fused
+ * target quotient and quotient offset of the higher Fmax corner.
+ *
+ * If target quotient interpolation is not allowed, then this function uses
+ * the Fmax fused target quotient for all of the corners associated with a
+ * given fuse corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_msm8953_apss_calculate_target_quotients(
+			struct cpr3_regulator *vreg)
+{
+	struct cpr4_msm8953_apss_fuses *fuse = vreg->platform_fuses;
+	int rc;
+	bool allow_interpolation;
+	u64 freq_low, freq_high, prev_quot;
+	u64 *quot_low;
+	u64 *quot_high;
+	u32 quot, ro;
+	int i, j, fuse_corner, quot_adjust;
+	int *fmax_corner;
+	int *volt_adjust, *volt_adjust_fuse, *ro_scale;
+	int *voltage_adj_misc;
+
+	/* Log fused quotient values for debugging purposes. */
+	cpr3_info(vreg, "fused   LowSVS: quot[%2llu]=%4llu\n",
+		fuse->ro_sel[CPR4_MSM8953_APSS_FUSE_CORNER_LOWSVS],
+		fuse->target_quot[CPR4_MSM8953_APSS_FUSE_CORNER_LOWSVS]);
+	for (i = CPR4_MSM8953_APSS_FUSE_CORNER_SVS;
+		i <= CPR4_MSM8953_APSS_FUSE_CORNER_TURBO_L1; i++)
+		cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu, quot_offset[%2llu]=%4llu\n",
+			cpr4_msm8953_apss_fuse_corner_name[i],
+			fuse->ro_sel[i], fuse->target_quot[i],
+			fuse->ro_sel[i], fuse->quot_offset[i] *
+			MSM8953_APSS_QUOT_OFFSET_SCALE);
+
+	allow_interpolation = of_property_read_bool(vreg->of_node,
+					"qcom,allow-quotient-interpolation");
+
+	volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
+					GFP_KERNEL);
+	volt_adjust_fuse = kcalloc(vreg->fuse_corner_count,
+					sizeof(*volt_adjust_fuse), GFP_KERNEL);
+	ro_scale = kcalloc(vreg->fuse_corner_count, sizeof(*ro_scale),
+					GFP_KERNEL);
+	fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
+					GFP_KERNEL);
+	quot_low = kcalloc(vreg->fuse_corner_count, sizeof(*quot_low),
+					GFP_KERNEL);
+	quot_high = kcalloc(vreg->fuse_corner_count, sizeof(*quot_high),
+					GFP_KERNEL);
+	if (!volt_adjust || !volt_adjust_fuse || !ro_scale ||
+	    !fmax_corner || !quot_low || !quot_high) {
+		rc = -ENOMEM;
+		goto done;
+	}
+
+	rc = cpr3_parse_closed_loop_voltage_adjustments(vreg, &fuse->ro_sel[0],
+				volt_adjust, volt_adjust_fuse, ro_scale);
+	if (rc) {
+		cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
+			rc);
+		goto done;
+	}
+
+	if (of_find_property(vreg->of_node,
+		"qcom,cpr-misc-fuse-voltage-adjustment", NULL)) {
+		voltage_adj_misc = kcalloc(vreg->corner_count,
+				sizeof(*voltage_adj_misc), GFP_KERNEL);
+		if (!voltage_adj_misc) {
+			rc = -ENOMEM;
+			goto done;
+		}
+
+		rc = cpr4_apss_parse_misc_fuse_voltage_adjustments(vreg,
+			voltage_adj_misc);
+		if (rc) {
+			cpr3_err(vreg, "qcom,cpr-misc-fuse-voltage-adjustment reading failed, rc=%d\n",
+				rc);
+			kfree(voltage_adj_misc);
+			goto done;
+		}
+
+		for (i = 0; i < vreg->corner_count; i++)
+			volt_adjust[i] += voltage_adj_misc[i];
+
+		kfree(voltage_adj_misc);
+	}
+
+	if (!allow_interpolation) {
+		/* Use fused target quotients for lower frequencies. */
+		return cpr4_msm8953_apss_set_no_interpolation_quotients(
+				vreg, volt_adjust, volt_adjust_fuse, ro_scale);
+	}
+
+	/* Determine highest corner mapped to each fuse corner */
+	j = vreg->fuse_corner_count - 1;
+	for (i = vreg->corner_count - 1; i >= 0; i--) {
+		if (vreg->corner[i].cpr_fuse_corner == j) {
+			fmax_corner[j] = i;
+			j--;
+		}
+	}
+	if (j >= 0) {
+		cpr3_err(vreg, "invalid fuse corner mapping\n");
+		rc = -EINVAL;
+		goto done;
+	}
+
+	/*
+	 * Interpolation is not possible for corners mapped to the lowest fuse
+	 * corner so use the fuse corner value directly.
+	 */
+	i = CPR4_MSM8953_APSS_FUSE_CORNER_LOWSVS;
+	quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]);
+	quot = fuse->target_quot[i] + quot_adjust;
+	quot_high[i] = quot_low[i] = quot;
+	ro = fuse->ro_sel[i];
+	if (quot_adjust)
+		cpr3_debug(vreg, "adjusted fuse corner %d RO%u target quot: %llu --> %u (%d uV)\n",
+			i, ro, fuse->target_quot[i], quot, volt_adjust_fuse[i]);
+
+	for (i = 0; i <= fmax_corner[CPR4_MSM8953_APSS_FUSE_CORNER_LOWSVS];
+		i++)
+		vreg->corner[i].target_quot[ro] = quot;
+
+	for (i = CPR4_MSM8953_APSS_FUSE_CORNER_SVS;
+	     i < vreg->fuse_corner_count; i++) {
+		quot_high[i] = fuse->target_quot[i];
+		if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
+			quot_low[i] = quot_high[i - 1];
+		else
+			quot_low[i] = quot_high[i]
+					- fuse->quot_offset[i]
+					  * MSM8953_APSS_QUOT_OFFSET_SCALE;
+		if (quot_high[i] < quot_low[i]) {
+			cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu; overriding: quot_high[%d]=%llu\n",
+				i, quot_high[i], i, quot_low[i],
+				i, quot_low[i]);
+			quot_high[i] = quot_low[i];
+		}
+	}
+
+	/* Perform per-fuse-corner target quotient adjustment */
+	for (i = 1; i < vreg->fuse_corner_count; i++) {
+		quot_adjust = cpr3_quot_adjustment(ro_scale[i],
+						   volt_adjust_fuse[i]);
+		if (quot_adjust) {
+			prev_quot = quot_high[i];
+			quot_high[i] += quot_adjust;
+			cpr3_debug(vreg, "adjusted fuse corner %d RO%llu target quot: %llu --> %llu (%d uV)\n",
+				i, fuse->ro_sel[i], prev_quot, quot_high[i],
+				volt_adjust_fuse[i]);
+		}
+
+		if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
+			quot_low[i] = quot_high[i - 1];
+		else
+			quot_low[i] += cpr3_quot_adjustment(ro_scale[i],
+						    volt_adjust_fuse[i - 1]);
+
+		if (quot_high[i] < quot_low[i]) {
+			cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu after adjustment; overriding: quot_high[%d]=%llu\n",
+				i, quot_high[i], i, quot_low[i],
+				i, quot_low[i]);
+			quot_high[i] = quot_low[i];
+		}
+	}
+
+	/* Interpolate voltages for the higher fuse corners. */
+	for (i = 1; i < vreg->fuse_corner_count; i++) {
+		freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
+		freq_high = vreg->corner[fmax_corner[i]].proc_freq;
+
+		ro = fuse->ro_sel[i];
+		for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
+			vreg->corner[j].target_quot[ro] = cpr3_interpolate(
+				freq_low, quot_low[i], freq_high, quot_high[i],
+				vreg->corner[j].proc_freq);
+	}
+
+	/* Perform per-corner target quotient adjustment */
+	for (i = 0; i < vreg->corner_count; i++) {
+		fuse_corner = vreg->corner[i].cpr_fuse_corner;
+		ro = fuse->ro_sel[fuse_corner];
+		quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
+						   volt_adjust[i]);
+		if (quot_adjust) {
+			prev_quot = vreg->corner[i].target_quot[ro];
+			vreg->corner[i].target_quot[ro] += quot_adjust;
+			cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %llu --> %u (%d uV)\n",
+				i, ro, prev_quot,
+				vreg->corner[i].target_quot[ro],
+				volt_adjust[i]);
+		}
+	}
+
+	/* Ensure that target quotients increase monotonically */
+	for (i = 1; i < vreg->corner_count; i++) {
+		ro = fuse->ro_sel[vreg->corner[i].cpr_fuse_corner];
+		if (fuse->ro_sel[vreg->corner[i - 1].cpr_fuse_corner] == ro
+		    && vreg->corner[i].target_quot[ro]
+				< vreg->corner[i - 1].target_quot[ro]) {
+			cpr3_debug(vreg, "adjusted corner %d RO%u target quot=%u < adjusted corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
+				i, ro, vreg->corner[i].target_quot[ro],
+				i - 1, ro, vreg->corner[i - 1].target_quot[ro],
+				i, ro, vreg->corner[i - 1].target_quot[ro]);
+			vreg->corner[i].target_quot[ro]
+				= vreg->corner[i - 1].target_quot[ro];
+		}
+	}
+
+done:
+	kfree(volt_adjust);
+	kfree(volt_adjust_fuse);
+	kfree(ro_scale);
+	kfree(fmax_corner);
+	kfree(quot_low);
+	kfree(quot_high);
+	return rc;
+}
+
+/**
+ * cpr4_apss_print_settings() - print out APSS CPR configuration settings into
+ *		the kernel log for debugging purposes
+ * @vreg:		Pointer to the CPR3 regulator
+ */
+static void cpr4_apss_print_settings(struct cpr3_regulator *vreg)
+{
+	struct cpr3_corner *corner;
+	int i;
+
+	cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
+	for (i = 0; i < vreg->corner_count; i++) {
+		corner = &vreg->corner[i];
+		cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
+			i, corner->proc_freq, corner->cpr_fuse_corner,
+			corner->floor_volt, corner->open_loop_volt,
+			corner->ceiling_volt);
+	}
+
+	if (vreg->thread->ctrl->apm)
+		cpr3_debug(vreg, "APM threshold = %d uV, APM adjust = %d uV\n",
+			vreg->thread->ctrl->apm_threshold_volt,
+			vreg->thread->ctrl->apm_adj_volt);
+}
+
+/**
+ * cpr4_apss_init_thread() - perform steps necessary to initialize the
+ *		configuration data for a CPR3 thread
+ * @thread:		Pointer to the CPR3 thread
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_init_thread(struct cpr3_thread *thread)
+{
+	int rc;
+
+	rc = cpr3_parse_common_thread_data(thread);
+	if (rc) {
+		cpr3_err(thread->ctrl, "thread %u unable to read CPR thread data from device tree, rc=%d\n",
+			thread->thread_id, rc);
+		return rc;
+	}
+
+	return 0;
+}
+
+/**
+ * cpr4_apss_parse_temp_adj_properties() - parse temperature based
+ *		adjustment properties from device tree.
+ * @ctrl:	Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_parse_temp_adj_properties(struct cpr3_controller *ctrl)
+{
+	struct device_node *of_node = ctrl->dev->of_node;
+	int rc, i, len, temp_point_count;
+
+	if (!of_find_property(of_node, "qcom,cpr-temp-point-map", &len)) {
+		/*
+		 * Temperature based adjustments are not defined. Single
+		 * temperature band is still valid for per-online-core
+		 * adjustments.
+		 */
+		ctrl->temp_band_count = 1;
+		return 0;
+	}
+
+	temp_point_count = len / sizeof(u32);
+	if (temp_point_count <= 0
+		|| temp_point_count > MSM8953_APSS_MAX_TEMP_POINTS) {
+		cpr3_err(ctrl, "invalid number of temperature points %d > %d (max)\n",
+			 temp_point_count, MSM8953_APSS_MAX_TEMP_POINTS);
+		return -EINVAL;
+	}
+
+	ctrl->temp_points = devm_kcalloc(ctrl->dev, temp_point_count,
+					sizeof(*ctrl->temp_points), GFP_KERNEL);
+	if (!ctrl->temp_points)
+		return -ENOMEM;
+
+	rc = of_property_read_u32_array(of_node, "qcom,cpr-temp-point-map",
+					ctrl->temp_points, temp_point_count);
+	if (rc) {
+		cpr3_err(ctrl, "error reading property qcom,cpr-temp-point-map, rc=%d\n",
+			 rc);
+		return rc;
+	}
+
+	for (i = 0; i < temp_point_count; i++)
+		cpr3_debug(ctrl, "Temperature Point %d=%d\n", i,
+				   ctrl->temp_points[i]);
+
+	/*
+	 * If t1, t2, and t3 are the temperature points, then the temperature
+	 * bands are: (-inf, t1], (t1, t2], (t2, t3], and (t3, inf).
+	 */
+	ctrl->temp_band_count = temp_point_count + 1;
+	cpr3_debug(ctrl, "Number of temp bands =%d\n", ctrl->temp_band_count);
+
+	rc = of_property_read_u32(of_node, "qcom,cpr-initial-temp-band",
+				  &ctrl->initial_temp_band);
+	if (rc) {
+		cpr3_err(ctrl, "error reading qcom,cpr-initial-temp-band, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	if (ctrl->initial_temp_band >= ctrl->temp_band_count) {
+		cpr3_err(ctrl, "Initial temperature band value %d should be in range [0 - %d]\n",
+			ctrl->initial_temp_band, ctrl->temp_band_count - 1);
+		return -EINVAL;
+	}
+
+	ctrl->temp_sensor_id_start = MSM8953_APSS_TEMP_SENSOR_ID_START;
+	ctrl->temp_sensor_id_end = MSM8953_APSS_TEMP_SENSOR_ID_END;
+	ctrl->allow_temp_adj = true;
+	return rc;
+}
+
+/**
+ * cpr4_apss_parse_boost_properties() - parse configuration data for boost
+ *		voltage adjustment for CPR3 regulator from device tree.
+ * @vreg:	Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_parse_boost_properties(struct cpr3_regulator *vreg)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	struct cpr4_msm8953_apss_fuses *fuse = vreg->platform_fuses;
+	struct cpr3_corner *corner;
+	int i, boost_voltage, final_boost_volt, rc = 0;
+	int *boost_table = NULL, *boost_temp_adj = NULL;
+	int boost_voltage_adjust = 0, boost_num_cores = 0;
+	u32 boost_allowed = 0;
+
+	if (!boost_fuse[fuse->boost_cfg])
+		/* Voltage boost is disabled in fuse */
+		return 0;
+
+	if (of_find_property(vreg->of_node, "qcom,allow-boost", NULL)) {
+		rc = cpr3_parse_array_property(vreg, "qcom,allow-boost", 1,
+				&boost_allowed);
+		if (rc)
+			return rc;
+	}
+
+	if (!boost_allowed) {
+		/* Voltage boost is not enabled for this regulator */
+		return 0;
+	}
+
+	boost_voltage = cpr3_convert_open_loop_voltage_fuse(
+				MSM8953_APSS_BOOST_FUSE_REF_VOLT,
+				MSM8953_APSS_FUSE_STEP_VOLT,
+				fuse->boost_voltage,
+				MSM8953_APSS_VOLTAGE_FUSE_SIZE);
+
+	/* Log boost voltage value for debugging purposes. */
+	cpr3_info(vreg, "Boost open-loop=%7d uV\n", boost_voltage);
+
+	if (of_find_property(vreg->of_node,
+			"qcom,cpr-boost-voltage-fuse-adjustment", NULL)) {
+		rc = cpr3_parse_array_property(vreg,
+			"qcom,cpr-boost-voltage-fuse-adjustment",
+			1, &boost_voltage_adjust);
+		if (rc) {
+			cpr3_err(vreg, "qcom,cpr-boost-voltage-fuse-adjustment reading failed, rc=%d\n",
+				rc);
+			return rc;
+		}
+
+		boost_voltage += boost_voltage_adjust;
+		/* Log boost voltage value for debugging purposes. */
+		cpr3_info(vreg, "Adjusted boost open-loop=%7d uV\n",
+			boost_voltage);
+	}
+
+	/* Limit boost voltage value between ceiling and floor voltage limits */
+	boost_voltage = min(boost_voltage, MSM8953_APSS_BOOST_CEILING_VOLT);
+	boost_voltage = max(boost_voltage, MSM8953_APSS_BOOST_FLOOR_VOLT);
+
+	/*
+	 * The boost feature can only be used for the highest voltage corner.
+	 * Also, keep core-count adjustments disabled when the boost feature
+	 * is enabled.
+	 */
+	corner = &vreg->corner[vreg->corner_count - 1];
+	if (!corner->sdelta) {
+		/*
+		 * If core-count/temp adjustments are not defined, the cpr4
+		 * sdelta for this corner will not be allocated. Allocate it
+		 * here for boost configuration.
+		 */
+		corner->sdelta = devm_kzalloc(ctrl->dev,
+					sizeof(*corner->sdelta), GFP_KERNEL);
+		if (!corner->sdelta)
+			return -ENOMEM;
+	}
+	corner->sdelta->temp_band_count = ctrl->temp_band_count;
+
+	rc = of_property_read_u32(vreg->of_node, "qcom,cpr-num-boost-cores",
+				&boost_num_cores);
+	if (rc) {
+		cpr3_err(vreg, "qcom,cpr-num-boost-cores reading failed, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	if (boost_num_cores <= 0
+		|| boost_num_cores > MSM8953_APSS_CPR_SDELTA_CORE_COUNT) {
+		cpr3_err(vreg, "Invalid boost number of cores = %d\n",
+			boost_num_cores);
+		return -EINVAL;
+	}
+	corner->sdelta->boost_num_cores = boost_num_cores;
+
+	boost_table = devm_kcalloc(ctrl->dev, corner->sdelta->temp_band_count,
+					sizeof(*boost_table), GFP_KERNEL);
+	if (!boost_table)
+		return -ENOMEM;
+
+	if (of_find_property(vreg->of_node,
+				"qcom,cpr-boost-temp-adjustment", NULL)) {
+		boost_temp_adj = kcalloc(corner->sdelta->temp_band_count,
+					sizeof(*boost_temp_adj), GFP_KERNEL);
+		if (!boost_temp_adj)
+			return -ENOMEM;
+
+		rc = cpr3_parse_array_property(vreg,
+				"qcom,cpr-boost-temp-adjustment",
+				corner->sdelta->temp_band_count,
+				boost_temp_adj);
+		if (rc) {
+			cpr3_err(vreg, "qcom,cpr-boost-temp-adjustment reading failed, rc=%d\n",
+				rc);
+			goto done;
+		}
+	}
+
+	for (i = 0; i < corner->sdelta->temp_band_count; i++) {
+		/* Apply static adjustments to boost voltage */
+		final_boost_volt = boost_voltage + (boost_temp_adj == NULL
+						? 0 : boost_temp_adj[i]);
+		/*
+		 * Limit final adjusted boost voltage value between ceiling
+		 * and floor voltage limits
+		 */
+		final_boost_volt = min(final_boost_volt,
+					MSM8953_APSS_BOOST_CEILING_VOLT);
+		final_boost_volt = max(final_boost_volt,
+					MSM8953_APSS_BOOST_FLOOR_VOLT);
+
+		boost_table[i] = (corner->open_loop_volt - final_boost_volt)
+					/ ctrl->step_volt;
+		cpr3_debug(vreg, "Adjusted boost voltage margin for temp band %d = %d steps\n",
+			i, boost_table[i]);
+	}
+
+	corner->ceiling_volt = MSM8953_APSS_BOOST_CEILING_VOLT;
+	corner->sdelta->boost_table = boost_table;
+	corner->sdelta->allow_boost = true;
+	corner->sdelta->allow_core_count_adj = false;
+	vreg->allow_boost = true;
+	ctrl->allow_boost = true;
+done:
+	kfree(boost_temp_adj);
+	return rc;
+}
+
+/**
+ * cpr4_apss_init_regulator() - perform all steps necessary to initialize the
+ *		configuration data for a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_init_regulator(struct cpr3_regulator *vreg)
+{
+	struct cpr4_msm8953_apss_fuses *fuse;
+	int rc;
+
+	rc = cpr4_msm8953_apss_read_fuse_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
+		return rc;
+	}
+
+	fuse = vreg->platform_fuses;
+
+	rc = cpr4_apss_parse_corner_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_mem_acc_init(vreg);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(vreg, "unable to initialize mem-acc regulator settings, rc=%d\n",
+				 rc);
+		return rc;
+	}
+
+	rc = cpr4_msm8953_apss_calculate_open_loop_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_limit_open_loop_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	cpr3_open_loop_voltage_as_ceiling(vreg);
+
+	rc = cpr3_limit_floor_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = cpr4_msm8953_apss_calculate_target_quotients(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to calculate target quotients, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr4_parse_core_count_temp_voltage_adj(vreg, false);
+	if (rc) {
+		cpr3_err(vreg, "unable to parse temperature and core count voltage adjustments, rc=%d\n",
+			 rc);
+		return rc;
+	}
+
+	if (vreg->allow_core_count_adj && (vreg->max_core_count <= 0
+				   || vreg->max_core_count >
+				   MSM8953_APSS_CPR_SDELTA_CORE_COUNT)) {
+		cpr3_err(vreg, "qcom,max-core-count has invalid value = %d\n",
+			 vreg->max_core_count);
+		return -EINVAL;
+	}
+
+	rc = cpr4_apss_parse_boost_properties(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to parse boost adjustments, rc=%d\n",
+			 rc);
+		return rc;
+	}
+
+	cpr4_apss_print_settings(vreg);
+
+	return rc;
+}
+
+/**
+ * cpr4_apss_init_controller() - perform APSS CPR4 controller specific
+ *		initializations
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_init_controller(struct cpr3_controller *ctrl)
+{
+	int rc;
+
+	rc = cpr3_parse_common_ctrl_data(ctrl);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(ctrl->dev->of_node,
+				  "qcom,cpr-down-error-step-limit",
+				  &ctrl->down_error_step_limit);
+	if (rc) {
+		cpr3_err(ctrl, "error reading qcom,cpr-down-error-step-limit, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(ctrl->dev->of_node,
+				  "qcom,cpr-up-error-step-limit",
+				  &ctrl->up_error_step_limit);
+	if (rc) {
+		cpr3_err(ctrl, "error reading qcom,cpr-up-error-step-limit, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	/*
+	 * Use fixed step quotient if specified otherwise use dynamic
+	 * calculated per RO step quotient
+	 */
+	of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-step-quot-fixed",
+			&ctrl->step_quot_fixed);
+	ctrl->use_dynamic_step_quot = ctrl->step_quot_fixed ? false : true;
+
+	ctrl->saw_use_unit_mV = of_property_read_bool(ctrl->dev->of_node,
+					"qcom,cpr-saw-use-unit-mV");
+
+	of_property_read_u32(ctrl->dev->of_node,
+			"qcom,cpr-voltage-settling-time",
+			&ctrl->voltage_settling_time);
+
+	ctrl->vdd_limit_regulator = devm_regulator_get(ctrl->dev, "vdd-limit");
+	if (IS_ERR(ctrl->vdd_limit_regulator)) {
+		rc = PTR_ERR(ctrl->vdd_limit_regulator);
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "unable to request vdd-limit regulator, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	rc = cpr3_apm_init(ctrl);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "unable to initialize APM settings, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	rc = cpr4_apss_parse_temp_adj_properties(ctrl);
+	if (rc) {
+		cpr3_err(ctrl, "unable to parse temperature adjustment properties, rc=%d\n",
+			 rc);
+		return rc;
+	}
+
+	ctrl->sensor_count = MSM8953_APSS_CPR_SENSOR_COUNT;
+
+	/*
+	 * APSS only has one thread (0) per controller so the zeroed
+	 * array does not need further modification.
+	 */
+	ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
+		sizeof(*ctrl->sensor_owner), GFP_KERNEL);
+	if (!ctrl->sensor_owner)
+		return -ENOMEM;
+
+	ctrl->cpr_clock_rate = MSM8953_APSS_CPR_CLOCK_RATE;
+	ctrl->ctrl_type = CPR_CTRL_TYPE_CPR4;
+	ctrl->supports_hw_closed_loop = true;
+	ctrl->use_hw_closed_loop = of_property_read_bool(ctrl->dev->of_node,
+						"qcom,cpr-hw-closed-loop");
+	return 0;
+}
+
+static int cpr4_apss_regulator_suspend(struct platform_device *pdev,
+				pm_message_t state)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_suspend(ctrl);
+}
+
+static int cpr4_apss_regulator_resume(struct platform_device *pdev)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_resume(ctrl);
+}
+
+static int cpr4_apss_regulator_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct cpr3_controller *ctrl;
+	int i, rc;
+
+	if (!dev->of_node) {
+		dev_err(dev, "Device tree node is missing\n");
+		return -EINVAL;
+	}
+
+	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
+	if (!ctrl)
+		return -ENOMEM;
+
+	ctrl->dev = dev;
+	/* Set to false later if anything precludes CPR operation. */
+	ctrl->cpr_allowed_hw = true;
+
+	rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
+					&ctrl->name);
+	if (rc) {
+		cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_map_fuse_base(ctrl, pdev);
+	if (rc) {
+		cpr3_err(ctrl, "could not map fuse base address\n");
+		return rc;
+	}
+
+	rc = cpr3_allocate_threads(ctrl, 0, 0);
+	if (rc) {
+		cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	if (ctrl->thread_count != 1) {
+		cpr3_err(ctrl, "expected 1 thread but found %d\n",
+			ctrl->thread_count);
+		return -EINVAL;
+	}
+
+	rc = cpr4_apss_init_controller(ctrl);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	rc = cpr4_apss_init_thread(&ctrl->thread[0]);
+	if (rc) {
+		cpr3_err(ctrl, "thread initialization failed, rc=%d\n", rc);
+		return rc;
+	}
+
+	for (i = 0; i < ctrl->thread[0].vreg_count; i++) {
+		rc = cpr4_apss_init_regulator(&ctrl->thread[0].vreg[i]);
+		if (rc) {
+			cpr3_err(&ctrl->thread[0].vreg[i], "regulator initialization failed, rc=%d\n",
+				 rc);
+			return rc;
+		}
+	}
+
+	platform_set_drvdata(pdev, ctrl);
+
+	return cpr3_regulator_register(pdev, ctrl);
+}
+
+static int cpr4_apss_regulator_remove(struct platform_device *pdev)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_unregister(ctrl);
+}
+
+static const struct of_device_id cpr4_regulator_match_table[] = {
+	{ .compatible = "qcom,cpr4-msm8953-apss-regulator", },
+	{}
+};
+
+static struct platform_driver cpr4_apss_regulator_driver = {
+	.driver		= {
+		.name		= "qcom,cpr4-apss-regulator",
+		.of_match_table	= cpr4_regulator_match_table,
+		.owner		= THIS_MODULE,
+	},
+	.probe		= cpr4_apss_regulator_probe,
+	.remove		= cpr4_apss_regulator_remove,
+	.suspend	= cpr4_apss_regulator_suspend,
+	.resume		= cpr4_apss_regulator_resume,
+};
+
+static int cpr4_regulator_init(void)
+{
+	return platform_driver_register(&cpr4_apss_regulator_driver);
+}
+
+static void cpr4_regulator_exit(void)
+{
+	platform_driver_unregister(&cpr4_apss_regulator_driver);
+}
+
+MODULE_DESCRIPTION("CPR4 APSS regulator driver");
+MODULE_LICENSE("GPL v2");
+
+arch_initcall(cpr4_regulator_init);
+module_exit(cpr4_regulator_exit);
diff --git a/drivers/regulator/cpr4-mmss-ldo-regulator.c b/drivers/regulator/cpr4-mmss-ldo-regulator.c
new file mode 100644
index 0000000..c4aef84
--- /dev/null
+++ b/drivers/regulator/cpr4-mmss-ldo-regulator.c
@@ -0,0 +1,769 @@
+/*
+ * Copyright (c) 2016-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/bitops.h>
+#include <linux/debugfs.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_opp.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/regulator/of_regulator.h>
+#include <linux/regulator/msm-ldo-regulator.h>
+
+#include "cpr3-regulator.h"
+
+#define SDM660_MMSS_FUSE_CORNERS	6
+
+/**
+ * struct cpr4_sdm660_mmss_fuses - MMSS specific fuse data for SDM660
+ * @init_voltage:	Initial (i.e. open-loop) voltage fuse parameter value
+ *			for each fuse corner (raw, not converted to a voltage)
+ * @offset_voltage:	The closed-loop voltage margin adjustment fuse parameter
+ *			value for each fuse corner (raw, not converted to a
+ *			voltage)
+ * @cpr_fusing_rev:	CPR fusing revision fuse parameter value
+ * @ldo_enable:		The ldo enable fuse parameter for each fuse corner
+ *			indicates that VDD_GFX can be configured to LDO mode in
+ *			the corresponding fuse corner.
+ * @ldo_cpr_cl_enable:	A fuse parameter indicates that GFX CPR can be
+ *			configured to operate in closed-loop mode when VDD_GFX
+ *			is configured for LDO sub-regulated mode.
+ *
+ * This struct holds the values for all of the fuses read from memory.
+ */
+struct cpr4_sdm660_mmss_fuses {
+	u64	init_voltage[SDM660_MMSS_FUSE_CORNERS];
+	u64	offset_voltage[SDM660_MMSS_FUSE_CORNERS];
+	u64	cpr_fusing_rev;
+	u64	ldo_enable[SDM660_MMSS_FUSE_CORNERS];
+	u64	ldo_cpr_cl_enable;
+};
+
+/* Fuse combos 0 -  7 map to CPR fusing revision 0 - 7 */
+#define CPR4_SDM660_MMSS_FUSE_COMBO_COUNT	8
+
+/*
+ * SDM660 MMSS fuse parameter locations:
+ *
+ * Structs are organized with the following dimensions:
+ *	Outer: 0 to 3 for fuse corners from lowest to highest corner
+ *	Inner: large enough to hold the longest set of parameter segments which
+ *		fully defines a fuse parameter, +1 (for NULL termination).
+ *		Each segment corresponds to a contiguous group of bits from a
+ *		single fuse row.  These segments are concatentated together in
+ *		order to form the full fuse parameter value.  The segments for
+ *		a given parameter may correspond to different fuse rows.
+ */
+static const struct cpr3_fuse_param
+sdm660_mmss_init_voltage_param[SDM660_MMSS_FUSE_CORNERS][2] = {
+	{{65, 39, 43}, {} },
+	{{65, 39, 43}, {} },
+	{{65, 34, 38}, {} },
+	{{65, 34, 38}, {} },
+	{{65, 29, 33}, {} },
+	{{65, 24, 28}, {} },
+};
+
+static const struct cpr3_fuse_param sdm660_cpr_fusing_rev_param[] = {
+	{71, 34, 36},
+	{},
+};
+
+static const struct cpr3_fuse_param
+sdm660_mmss_offset_voltage_param[SDM660_MMSS_FUSE_CORNERS][2] = {
+	{{} },
+	{{} },
+	{{} },
+	{{65, 52, 55}, {} },
+	{{65, 48, 51}, {} },
+	{{65, 44, 47}, {} },
+};
+
+static const struct cpr3_fuse_param
+sdm660_mmss_ldo_enable_param[SDM660_MMSS_FUSE_CORNERS][2] = {
+	{{73, 62, 62}, {} },
+	{{73, 61, 61}, {} },
+	{{73, 60, 60}, {} },
+	{{73, 59, 59}, {} },
+	{{73, 58, 58}, {} },
+	{{73, 57, 57}, {} },
+};
+
+static const struct cpr3_fuse_param sdm660_ldo_cpr_cl_enable_param[] = {
+	{71, 38, 38},
+	{},
+};
+
+/* Additional SDM660 specific data: */
+
+/* Open loop voltage fuse reference voltages in microvolts */
+static const int sdm660_mmss_fuse_ref_volt[SDM660_MMSS_FUSE_CORNERS] = {
+	585000,
+	645000,
+	725000,
+	790000,
+	870000,
+	925000,
+};
+
+#define SDM660_MMSS_FUSE_STEP_VOLT		10000
+#define SDM660_MMSS_OFFSET_FUSE_STEP_VOLT	10000
+#define SDM660_MMSS_VOLTAGE_FUSE_SIZE	5
+
+#define SDM660_MMSS_CPR_SENSOR_COUNT		11
+
+#define SDM660_MMSS_CPR_CLOCK_RATE		19200000
+
+/**
+ * cpr4_sdm660_mmss_read_fuse_data() - load MMSS specific fuse parameter
+ *		values
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function allocates a cpr4_sdm660_mmss_fuses struct, fills it with
+ * values read out of hardware fuses, and finally copies common fuse values
+ * into the regulator struct.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_sdm660_mmss_read_fuse_data(struct cpr3_regulator *vreg)
+{
+	void __iomem *base = vreg->thread->ctrl->fuse_base;
+	struct cpr4_sdm660_mmss_fuses *fuse;
+	int i, rc;
+
+	fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
+	if (!fuse)
+		return -ENOMEM;
+
+	rc = cpr3_read_fuse_param(base, sdm660_cpr_fusing_rev_param,
+			&fuse->cpr_fusing_rev);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+	cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
+
+	rc = cpr3_read_fuse_param(base, sdm660_ldo_cpr_cl_enable_param,
+			&fuse->ldo_cpr_cl_enable);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read ldo cpr closed-loop enable fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	for (i = 0; i < SDM660_MMSS_FUSE_CORNERS; i++) {
+		rc = cpr3_read_fuse_param(base,
+			sdm660_mmss_init_voltage_param[i],
+			&fuse->init_voltage[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+			sdm660_mmss_offset_voltage_param[i],
+			&fuse->offset_voltage[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d offset voltage fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+			sdm660_mmss_ldo_enable_param[i],
+			&fuse->ldo_enable[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d ldo enable fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+	}
+
+	vreg->fuse_combo = fuse->cpr_fusing_rev;
+	if (vreg->fuse_combo >= CPR4_SDM660_MMSS_FUSE_COMBO_COUNT) {
+		cpr3_err(vreg, "invalid CPR fuse combo = %d found, not in range 0 - %d\n",
+			vreg->fuse_combo,
+			CPR4_SDM660_MMSS_FUSE_COMBO_COUNT - 1);
+		return -EINVAL;
+	}
+
+	vreg->cpr_rev_fuse	= fuse->cpr_fusing_rev;
+	vreg->fuse_corner_count	= SDM660_MMSS_FUSE_CORNERS;
+	vreg->platform_fuses	= fuse;
+
+	return 0;
+}
+
+/**
+ * cpr3_sdm660_mmss_calculate_open_loop_voltages() - calculate the open-loop
+ *		voltage for each corner of a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_sdm660_mmss_calculate_open_loop_voltages(
+			struct cpr3_regulator *vreg)
+{
+	struct cpr4_sdm660_mmss_fuses *fuse = vreg->platform_fuses;
+	int i, rc = 0;
+	const int *ref_volt;
+	int *fuse_volt;
+
+	fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
+				GFP_KERNEL);
+	if (!fuse_volt)
+		return -ENOMEM;
+
+	ref_volt = sdm660_mmss_fuse_ref_volt;
+	for (i = 0; i < vreg->fuse_corner_count; i++) {
+		fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(ref_volt[i],
+			SDM660_MMSS_FUSE_STEP_VOLT, fuse->init_voltage[i],
+			SDM660_MMSS_VOLTAGE_FUSE_SIZE);
+		cpr3_info(vreg, "fuse_corner[%d] open-loop=%7d uV\n",
+			i, fuse_volt[i]);
+	}
+
+	rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
+	if (rc) {
+		cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
+			rc);
+		goto done;
+	}
+
+	for (i = 1; i < vreg->fuse_corner_count; i++) {
+		if (fuse_volt[i] < fuse_volt[i - 1]) {
+			cpr3_debug(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
+				i, fuse_volt[i], i - 1, fuse_volt[i - 1],
+				i, fuse_volt[i - 1]);
+			fuse_volt[i] = fuse_volt[i - 1];
+		}
+	}
+
+	for (i = 0; i < vreg->corner_count; i++)
+		vreg->corner[i].open_loop_volt
+			= fuse_volt[vreg->corner[i].cpr_fuse_corner];
+
+	cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
+	for (i = 0; i < vreg->corner_count; i++)
+		cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
+			vreg->corner[i].open_loop_volt);
+
+	rc = cpr3_adjust_open_loop_voltages(vreg);
+	if (rc)
+		cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
+			rc);
+
+done:
+	kfree(fuse_volt);
+	return rc;
+}
+
+/**
+ * cpr4_mmss_parse_ldo_mode_data() - Parse the LDO mode enable state for each
+ *		corner of a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function considers 2 sets of data: one set from device node and other
+ * set from fuses and applies set intersection to decide the final LDO mode
+ * enable state of each corner. If the device node configuration is not
+ * specified, then the function applies LDO mode disable for all corners.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_mmss_parse_ldo_mode_data(struct cpr3_regulator *vreg)
+{
+	struct cpr4_sdm660_mmss_fuses *fuse = vreg->platform_fuses;
+	int i, rc = 0;
+	u32 *ldo_allowed;
+	char *prop_str = "qcom,cpr-corner-allow-ldo-mode";
+
+	if (!of_find_property(vreg->of_node, prop_str, NULL)) {
+		cpr3_debug(vreg, "%s property is missing. LDO mode is disabled for all corners\n",
+			prop_str);
+		return 0;
+	}
+
+	ldo_allowed = kcalloc(vreg->corner_count, sizeof(*ldo_allowed),
+			GFP_KERNEL);
+	if (!ldo_allowed)
+		return -ENOMEM;
+
+	rc = cpr3_parse_corner_array_property(vreg, prop_str, 1, ldo_allowed);
+	if (rc) {
+		cpr3_err(vreg, "%s read failed, rc=%d\n", prop_str, rc);
+		goto done;
+	}
+
+	for (i = 0; i < vreg->corner_count; i++)
+		vreg->corner[i].ldo_mode_allowed
+			= (ldo_allowed[i] && fuse->ldo_enable[i]);
+
+done:
+	kfree(ldo_allowed);
+	return rc;
+}
+
+/**
+ * cpr4_mmss_parse_corner_operating_mode() - Parse the CPR closed-loop operation
+ *		enable state for each corner of a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function ensures that closed-loop operation is enabled only for LDO
+ * mode allowed corners.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_mmss_parse_corner_operating_mode(struct cpr3_regulator *vreg)
+{
+	struct cpr4_sdm660_mmss_fuses *fuse = vreg->platform_fuses;
+	int i, rc = 0;
+	u32 *use_closed_loop;
+	char *prop_str = "qcom,cpr-corner-allow-closed-loop";
+
+	if (!of_find_property(vreg->of_node, prop_str, NULL)) {
+		cpr3_debug(vreg, "%s property is missing. Use open-loop for all corners\n",
+			prop_str);
+		for (i = 0; i < vreg->corner_count; i++)
+			vreg->corner[i].use_open_loop = true;
+
+		return 0;
+	}
+
+	use_closed_loop = kcalloc(vreg->corner_count, sizeof(*use_closed_loop),
+				GFP_KERNEL);
+	if (!use_closed_loop)
+		return -ENOMEM;
+
+	rc = cpr3_parse_corner_array_property(vreg, prop_str, 1,
+			use_closed_loop);
+	if (rc) {
+		cpr3_err(vreg, "%s read failed, rc=%d\n", prop_str, rc);
+		goto done;
+	}
+
+	for (i = 0; i < vreg->corner_count; i++)
+		vreg->corner[i].use_open_loop
+			= !(fuse->ldo_cpr_cl_enable && use_closed_loop[i]
+				&& vreg->corner[i].ldo_mode_allowed);
+
+done:
+	kfree(use_closed_loop);
+	return rc;
+}
+
+/**
+ * cpr4_mmss_parse_corner_data() - parse MMSS corner data from device tree
+ *		properties of the regulator's device node
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_mmss_parse_corner_data(struct cpr3_regulator *vreg)
+{
+	int i, rc;
+	u32 *temp;
+
+	rc = cpr3_parse_common_corner_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
+		return rc;
+	}
+
+	temp = kcalloc(vreg->corner_count * CPR3_RO_COUNT, sizeof(*temp),
+			GFP_KERNEL);
+	if (!temp)
+		return -ENOMEM;
+
+	rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-target-quotients",
+			CPR3_RO_COUNT, temp);
+	if (rc) {
+		cpr3_err(vreg, "could not load target quotients, rc=%d\n", rc);
+		goto done;
+	}
+
+	for (i = 0; i < vreg->corner_count; i++)
+		memcpy(vreg->corner[i].target_quot, &temp[i * CPR3_RO_COUNT],
+			sizeof(*temp) * CPR3_RO_COUNT);
+
+done:
+	kfree(temp);
+	return rc;
+}
+
+/**
+ * cpr4_sdm660_mmss_adjust_target_quotients() - adjust the target quotients for
+ *		each corner according to device tree values and fuse values
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_sdm660_mmss_adjust_target_quotients(struct cpr3_regulator *vreg)
+{
+	struct cpr4_sdm660_mmss_fuses *fuse = vreg->platform_fuses;
+	const struct cpr3_fuse_param (*offset_param)[2];
+	int *volt_offset;
+	int i, fuse_len, rc = 0;
+
+	volt_offset = kcalloc(vreg->fuse_corner_count, sizeof(*volt_offset),
+				GFP_KERNEL);
+	if (!volt_offset)
+		return -ENOMEM;
+
+	offset_param = sdm660_mmss_offset_voltage_param;
+	for (i = 0; i < vreg->fuse_corner_count; i++) {
+		fuse_len = offset_param[i][0].bit_end + 1
+			   - offset_param[i][0].bit_start;
+		volt_offset[i] = cpr3_convert_open_loop_voltage_fuse(
+			0, SDM660_MMSS_OFFSET_FUSE_STEP_VOLT,
+			fuse->offset_voltage[i], fuse_len);
+		if (volt_offset[i])
+			cpr3_info(vreg, "fuse_corner[%d] offset=%7d uV\n",
+				i, volt_offset[i]);
+	}
+
+	rc = cpr3_adjust_target_quotients(vreg, volt_offset);
+	if (rc)
+		cpr3_err(vreg, "adjust target quotients failed, rc=%d\n", rc);
+
+	kfree(volt_offset);
+	return rc;
+}
+
+/**
+ * cpr4_mmss_print_settings() - print out MMSS CPR configuration settings into
+ *		the kernel log for debugging purposes
+ * @vreg:		Pointer to the CPR3 regulator
+ */
+static void cpr4_mmss_print_settings(struct cpr3_regulator *vreg)
+{
+	struct cpr3_corner *corner;
+	int i;
+
+	cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
+	for (i = 0; i < vreg->corner_count; i++) {
+		corner = &vreg->corner[i];
+		cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
+			i, corner->proc_freq, corner->cpr_fuse_corner,
+			corner->floor_volt, corner->open_loop_volt,
+			corner->ceiling_volt);
+	}
+}
+
+/**
+ * cpr4_mmss_init_thread() - perform all steps necessary to initialize the
+ *		configuration data for a CPR3 thread
+ * @thread:		Pointer to the CPR3 thread
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_mmss_init_thread(struct cpr3_thread *thread)
+{
+	struct cpr3_controller *ctrl = thread->ctrl;
+	struct cpr3_regulator *vreg = &thread->vreg[0];
+	int rc;
+
+	rc = cpr3_parse_common_thread_data(thread);
+	if (rc) {
+		cpr3_err(vreg, "unable to read CPR thread data from device tree, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	if (!of_find_property(ctrl->dev->of_node, "vdd-thread0-ldo-supply",
+		NULL)) {
+		cpr3_err(vreg, "ldo supply regulator is not specified\n");
+		return -EINVAL;
+	}
+
+	vreg->ldo_regulator = devm_regulator_get(ctrl->dev, "vdd-thread0-ldo");
+	if (IS_ERR(vreg->ldo_regulator)) {
+		rc = PTR_ERR(vreg->ldo_regulator);
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(vreg, "unable to request vdd-thread0-ldo regulator, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	vreg->ldo_mode_allowed = !of_property_read_bool(vreg->of_node,
+							"qcom,ldo-disable");
+	vreg->ldo_regulator_bypass = BHS_MODE;
+	vreg->ldo_type = CPR3_LDO300;
+
+	rc = cpr4_sdm660_mmss_read_fuse_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = cpr4_mmss_parse_corner_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr4_sdm660_mmss_adjust_target_quotients(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to adjust target quotients, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr4_sdm660_mmss_calculate_open_loop_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_limit_open_loop_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	cpr3_open_loop_voltage_as_ceiling(vreg);
+
+	rc = cpr3_limit_floor_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = cpr4_mmss_parse_ldo_mode_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to parse ldo mode data, rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = cpr4_mmss_parse_corner_operating_mode(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to parse closed-loop operating mode data, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	cpr4_mmss_print_settings(vreg);
+
+	return 0;
+}
+
+/**
+ * cpr4_mmss_init_controller() - perform MMSS CPR4 controller specific
+ *		initializations
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_mmss_init_controller(struct cpr3_controller *ctrl)
+{
+	int rc;
+
+	rc = cpr3_parse_common_ctrl_data(ctrl);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	ctrl->sensor_count = SDM660_MMSS_CPR_SENSOR_COUNT;
+
+	/*
+	 * MMSS only has one thread (0) so the zeroed array does not need
+	 * further modification.
+	 */
+	ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
+				sizeof(*ctrl->sensor_owner), GFP_KERNEL);
+	if (!ctrl->sensor_owner)
+		return -ENOMEM;
+
+	ctrl->cpr_clock_rate = SDM660_MMSS_CPR_CLOCK_RATE;
+	ctrl->ctrl_type = CPR_CTRL_TYPE_CPR4;
+	ctrl->support_ldo300_vreg = true;
+
+	/*
+	 * Use fixed step quotient if specified otherwise use dynamic
+	 * calculated per RO step quotient
+	 */
+	of_property_read_u32(ctrl->dev->of_node,
+			     "qcom,cpr-step-quot-fixed",
+			     &ctrl->step_quot_fixed);
+	ctrl->use_dynamic_step_quot = !ctrl->step_quot_fixed;
+
+	/* iface_clk is optional for sdm660 */
+	ctrl->iface_clk = NULL;
+	ctrl->bus_clk = devm_clk_get(ctrl->dev, "bus_clk");
+	if (IS_ERR(ctrl->bus_clk)) {
+		rc = PTR_ERR(ctrl->bus_clk);
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "unable request bus clock, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	return 0;
+}
+
+static int cpr4_mmss_regulator_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct cpr3_controller *ctrl;
+	int rc;
+
+	if (!dev->of_node) {
+		dev_err(dev, "Device tree node is missing\n");
+		return -EINVAL;
+	}
+
+	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
+	if (!ctrl)
+		return -ENOMEM;
+
+	ctrl->dev = dev;
+	/* Set to false later if anything precludes CPR operation. */
+	ctrl->cpr_allowed_hw = true;
+
+	rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
+					&ctrl->name);
+	if (rc) {
+		cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_map_fuse_base(ctrl, pdev);
+	if (rc) {
+		cpr3_err(ctrl, "could not map fuse base address\n");
+		return rc;
+	}
+
+	rc = cpr3_allocate_threads(ctrl, 0, 0);
+	if (rc) {
+		cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	if (ctrl->thread_count != 1) {
+		cpr3_err(ctrl, "expected 1 thread but found %d\n",
+			ctrl->thread_count);
+		return -EINVAL;
+	} else if (ctrl->thread[0].vreg_count != 1) {
+		cpr3_err(ctrl, "expected 1 regulator but found %d\n",
+			ctrl->thread[0].vreg_count);
+		return -EINVAL;
+	}
+
+	rc = cpr4_mmss_init_controller(ctrl);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	rc = cpr4_mmss_init_thread(&ctrl->thread[0]);
+	if (rc) {
+		cpr3_err(&ctrl->thread[0].vreg[0], "thread initialization failed, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_mem_acc_init(&ctrl->thread[0].vreg[0]);
+	if (rc) {
+		cpr3_err(ctrl, "failed to initialize mem-acc configuration, rc=%d\n",
+			 rc);
+		return rc;
+	}
+
+	platform_set_drvdata(pdev, ctrl);
+
+	return cpr3_regulator_register(pdev, ctrl);
+}
+
+static int cpr4_mmss_regulator_remove(struct platform_device *pdev)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_unregister(ctrl);
+}
+
+static int cpr4_mmss_regulator_suspend(struct platform_device *pdev,
+				pm_message_t state)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_suspend(ctrl);
+}
+
+static int cpr4_mmss_regulator_resume(struct platform_device *pdev)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_resume(ctrl);
+}
+
+/* Data corresponds to the SoC revision */
+static const struct of_device_id cpr4_mmss_regulator_match_table[] = {
+	{
+		.compatible = "qcom,cpr4-sdm660-mmss-ldo-regulator",
+		.data = (void *)NULL,
+	},
+	{ },
+};
+
+static struct platform_driver cpr4_mmss_regulator_driver = {
+	.driver		= {
+		.name		= "qcom,cpr4-mmss-ldo-regulator",
+		.of_match_table	= cpr4_mmss_regulator_match_table,
+		.owner		= THIS_MODULE,
+	},
+	.probe		= cpr4_mmss_regulator_probe,
+	.remove		= cpr4_mmss_regulator_remove,
+	.suspend	= cpr4_mmss_regulator_suspend,
+	.resume		= cpr4_mmss_regulator_resume,
+};
+
+static int cpr_regulator_init(void)
+{
+	return platform_driver_register(&cpr4_mmss_regulator_driver);
+}
+
+static void cpr_regulator_exit(void)
+{
+	platform_driver_unregister(&cpr4_mmss_regulator_driver);
+}
+
+MODULE_DESCRIPTION("CPR4 MMSS LDO regulator driver");
+MODULE_LICENSE("GPL v2");
+
+arch_initcall(cpr_regulator_init);
+module_exit(cpr_regulator_exit);
diff --git a/drivers/regulator/cprh-kbss-regulator.c b/drivers/regulator/cprh-kbss-regulator.c
new file mode 100644
index 0000000..f21800e
--- /dev/null
+++ b/drivers/regulator/cprh-kbss-regulator.c
@@ -0,0 +1,2156 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/bitops.h>
+#include <linux/debugfs.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_opp.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/regulator/of_regulator.h>
+
+#include "cpr3-regulator.h"
+
+#define MSM8998_KBSS_FUSE_CORNERS	4
+#define SDM660_KBSS_FUSE_CORNERS	5
+
+/**
+ * struct cprh_kbss_fuses - KBSS specific fuse data
+ * @ro_sel:		Ring oscillator select fuse parameter value for each
+ *			fuse corner
+ * @init_voltage:	Initial (i.e. open-loop) voltage fuse parameter value
+ *			for each fuse corner (raw, not converted to a voltage)
+ * @target_quot:	CPR target quotient fuse parameter value for each fuse
+ *			corner
+ * @quot_offset:	CPR target quotient offset fuse parameter value for each
+ *			fuse corner (raw, not unpacked) used for target quotient
+ *			interpolation
+ * @speed_bin:		Application processor speed bin fuse parameter value for
+ *			the given chip
+ * @cpr_fusing_rev:	CPR fusing revision fuse parameter value
+ * @force_highest_corner:	Flag indicating that all corners must operate
+ *			at the voltage of the highest corner.  This is
+ *			applicable to MSM8998 only.
+ * @aging_init_quot_diff:	Initial quotient difference between CPR aging
+ *			min and max sensors measured at time of manufacturing
+ *
+ * This struct holds the values for all of the fuses read from memory.
+ */
+struct cprh_kbss_fuses {
+	u64	*ro_sel;
+	u64	*init_voltage;
+	u64	*target_quot;
+	u64	*quot_offset;
+	u64	speed_bin;
+	u64	cpr_fusing_rev;
+	u64	force_highest_corner;
+	u64	aging_init_quot_diff;
+};
+
+/*
+ * Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 with speed bin fuse = 0.
+ * Fuse combos 8 - 15 map to CPR fusing revision 0 - 7 with speed bin fuse = 1.
+ * Fuse combos 16 - 23 map to CPR fusing revision 0 - 7 with speed bin fuse = 2.
+ * Fuse combos 24 - 31 map to CPR fusing revision 0 - 7 with speed bin fuse = 3.
+ */
+#define CPRH_MSM8998_KBSS_FUSE_COMBO_COUNT	32
+#define CPRH_SDM660_KBSS_FUSE_COMBO_COUNT	16
+
+/*
+ * Constants which define the name of each fuse corner.
+ */
+enum cprh_msm8998_kbss_fuse_corner {
+	CPRH_MSM8998_KBSS_FUSE_CORNER_LOWSVS		= 0,
+	CPRH_MSM8998_KBSS_FUSE_CORNER_SVS		= 1,
+	CPRH_MSM8998_KBSS_FUSE_CORNER_NOM		= 2,
+	CPRH_MSM8998_KBSS_FUSE_CORNER_TURBO_L1	= 3,
+};
+
+static const char * const cprh_msm8998_kbss_fuse_corner_name[] = {
+	[CPRH_MSM8998_KBSS_FUSE_CORNER_LOWSVS]	= "LowSVS",
+	[CPRH_MSM8998_KBSS_FUSE_CORNER_SVS]		= "SVS",
+	[CPRH_MSM8998_KBSS_FUSE_CORNER_NOM]		= "NOM",
+	[CPRH_MSM8998_KBSS_FUSE_CORNER_TURBO_L1]	= "TURBO_L1",
+};
+
+enum cprh_sdm660_power_kbss_fuse_corner {
+	CPRH_SDM660_POWER_KBSS_FUSE_CORNER_LOWSVS	= 0,
+	CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVS		= 1,
+	CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVSPLUS	= 2,
+	CPRH_SDM660_POWER_KBSS_FUSE_CORNER_NOM		= 3,
+	CPRH_SDM660_POWER_KBSS_FUSE_CORNER_TURBO_L1	= 4,
+};
+
+static const char * const cprh_sdm660_power_kbss_fuse_corner_name[] = {
+	[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_LOWSVS]	= "LowSVS",
+	[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVS]	= "SVS",
+	[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVSPLUS]	= "SVSPLUS",
+	[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_NOM]	= "NOM",
+	[CPRH_SDM660_POWER_KBSS_FUSE_CORNER_TURBO_L1]	= "TURBO_L1",
+};
+
+enum cprh_sdm660_perf_kbss_fuse_corner {
+	CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVS		= 0,
+	CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVSPLUS	= 1,
+	CPRH_SDM660_PERF_KBSS_FUSE_CORNER_NOM		= 2,
+	CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO		= 3,
+	CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO_L2	= 4,
+};
+
+static const char * const cprh_sdm660_perf_kbss_fuse_corner_name[] = {
+	[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVS]		= "SVS",
+	[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVSPLUS]	= "SVSPLUS",
+	[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_NOM]		= "NOM",
+	[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO]	= "TURBO",
+	[CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO_L2]	= "TURBO_L2",
+};
+
+/* KBSS cluster IDs */
+#define CPRH_KBSS_POWER_CLUSTER_ID 0
+#define CPRH_KBSS_PERFORMANCE_CLUSTER_ID 1
+
+/* KBSS controller IDs */
+#define CPRH_KBSS_MIN_CONTROLLER_ID 0
+#define CPRH_KBSS_MAX_CONTROLLER_ID 1
+
+/*
+ * MSM8998 KBSS fuse parameter locations:
+ *
+ * Structs are organized with the following dimensions:
+ *	Outer:  0 or 1 for power or performance cluster
+ *	Middle: 0 to 3 for fuse corners from lowest to highest corner
+ *	Inner:  large enough to hold the longest set of parameter segments which
+ *		fully defines a fuse parameter, +1 (for NULL termination).
+ *		Each segment corresponds to a contiguous group of bits from a
+ *		single fuse row.  These segments are concatentated together in
+ *		order to form the full fuse parameter value.  The segments for
+ *		a given parameter may correspond to different fuse rows.
+ *
+ */
+static const struct cpr3_fuse_param
+msm8998_kbss_ro_sel_param[2][MSM8998_KBSS_FUSE_CORNERS][2] = {
+	[CPRH_KBSS_POWER_CLUSTER_ID] = {
+		{{67, 12, 15}, {} },
+		{{67,  8, 11}, {} },
+		{{67,  4,  7}, {} },
+		{{67,  0,  3}, {} },
+	},
+	[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
+		{{69, 26, 29}, {} },
+		{{69, 22, 25}, {} },
+		{{69, 18, 21}, {} },
+		{{69, 14, 17}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param
+sdm660_kbss_ro_sel_param[2][SDM660_KBSS_FUSE_CORNERS][3] = {
+	[CPRH_KBSS_POWER_CLUSTER_ID] = {
+		{{67, 12, 15}, {} },
+		{{67,  8, 11}, {} },
+		{{65, 56, 59}, {} },
+		{{67,  4,  7}, {} },
+		{{67,  0,  3}, {} },
+	},
+	[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
+		{{68, 61, 63}, {69,  0,  0} },
+		{{69,  1,  4}, {} },
+		{{68, 57, 60}, {} },
+		{{68, 53, 56}, {} },
+		{{66, 14, 17}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param
+msm8998_kbss_init_voltage_param[2][MSM8998_KBSS_FUSE_CORNERS][2] = {
+	[CPRH_KBSS_POWER_CLUSTER_ID] = {
+		{{67, 34, 39}, {} },
+		{{67, 28, 33}, {} },
+		{{67, 22, 27}, {} },
+		{{67, 16, 21}, {} },
+	},
+	[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
+		{{69, 48, 53}, {} },
+		{{69, 42, 47}, {} },
+		{{69, 36, 41}, {} },
+		{{69, 30, 35}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param
+sdm660_kbss_init_voltage_param[2][SDM660_KBSS_FUSE_CORNERS][2] = {
+	[CPRH_KBSS_POWER_CLUSTER_ID] = {
+		{{67, 34, 39}, {} },
+		{{67, 28, 33}, {} },
+		{{71,  3,  8}, {} },
+		{{67, 22, 27}, {} },
+		{{67, 16, 21}, {} },
+	},
+	[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
+		{{69, 17, 22}, {} },
+		{{69, 23, 28}, {} },
+		{{69, 11, 16}, {} },
+		{{69,  5, 10}, {} },
+		{{70, 42, 47}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param
+msm8998_kbss_target_quot_param[2][MSM8998_KBSS_FUSE_CORNERS][3] = {
+	[CPRH_KBSS_POWER_CLUSTER_ID] = {
+		{{68, 18, 29}, {} },
+		{{68,  6, 17}, {} },
+		{{67, 58, 63}, {68,  0,  5} },
+		{{67, 46, 57}, {} },
+	},
+	[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
+		{{70, 32, 43}, {} },
+		{{70, 20, 31}, {} },
+		{{70,  8, 19}, {} },
+		{{69, 60, 63}, {70,  0,  7}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param
+sdm660_kbss_target_quot_param[2][SDM660_KBSS_FUSE_CORNERS][3] = {
+	[CPRH_KBSS_POWER_CLUSTER_ID] = {
+		{{68, 12, 23}, {} },
+		{{68,  0, 11}, {} },
+		{{71,  9, 20}, {} },
+		{{67, 52, 63}, {} },
+		{{67, 40, 51}, {} },
+	},
+	[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
+		{{69, 53, 63}, {70,  0,  0}, {} },
+		{{70,  1, 12}, {} },
+		{{69, 41, 52}, {} },
+		{{69, 29, 40}, {} },
+		{{70, 48, 59}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param
+msm8998_kbss_quot_offset_param[2][MSM8998_KBSS_FUSE_CORNERS][3] = {
+	[CPRH_KBSS_POWER_CLUSTER_ID] = {
+		{{} },
+		{{68, 63, 63}, {69, 0, 5}, {} },
+		{{68, 56, 62}, {} },
+		{{68, 49, 55}, {} },
+	},
+	[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
+		{{} },
+		{{71, 13, 15}, {71, 21, 24}, {} },
+		{{71,  6, 12}, {} },
+		{{70, 63, 63}, {71,  0,  5}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param
+sdm660_kbss_quot_offset_param[2][SDM660_KBSS_FUSE_CORNERS][3] = {
+	[CPRH_KBSS_POWER_CLUSTER_ID] = {
+		{{} },
+		{{68, 38, 44}, {} },
+		{{71, 21, 27}, {} },
+		{{68, 31, 37}, {} },
+		{{68, 24, 30}, {} },
+	},
+	[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
+		{{} },
+		{{70, 27, 33}, {} },
+		{{70, 20, 26}, {} },
+		{{70, 13, 19}, {} },
+		{{70, 60, 63}, {71,  0,  2}, {} },
+	},
+};
+
+static const struct cpr3_fuse_param msm8998_cpr_fusing_rev_param[] = {
+	{39, 51, 53},
+	{},
+};
+
+static const struct cpr3_fuse_param sdm660_cpr_fusing_rev_param[] = {
+	{71, 28, 30},
+	{},
+};
+
+static const struct cpr3_fuse_param kbss_speed_bin_param[] = {
+	{38, 29, 31},
+	{},
+};
+
+static const struct cpr3_fuse_param
+msm8998_cpr_force_highest_corner_param[] = {
+	{100, 45, 45},
+	{},
+};
+
+static const struct cpr3_fuse_param
+msm8998_kbss_aging_init_quot_diff_param[2][2] = {
+	[CPRH_KBSS_POWER_CLUSTER_ID] = {
+		{69, 6, 13},
+		{},
+	},
+	[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
+		{71, 25, 32},
+		{},
+	},
+};
+
+static const struct cpr3_fuse_param
+sdm660_kbss_aging_init_quot_diff_param[2][2] = {
+	[CPRH_KBSS_POWER_CLUSTER_ID] = {
+		{68, 45, 52},
+		{},
+	},
+	[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
+		{70, 34, 41},
+		{},
+	},
+};
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for MSM8998 v1
+ */
+static const int
+msm8998_v1_kbss_fuse_ref_volt[MSM8998_KBSS_FUSE_CORNERS] = {
+	696000,
+	768000,
+	896000,
+	1112000,
+};
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for MSM8998 v2
+ */
+static const int
+msm8998_v2_kbss_fuse_ref_volt[2][MSM8998_KBSS_FUSE_CORNERS] = {
+	[CPRH_KBSS_POWER_CLUSTER_ID] = {
+		688000,
+		756000,
+		828000,
+		1056000,
+	},
+	[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
+		756000,
+		756000,
+		828000,
+		1056000,
+	},
+};
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for SDM660
+ */
+static const int
+sdm660_kbss_fuse_ref_volt[2][SDM660_KBSS_FUSE_CORNERS] = {
+	[CPRH_KBSS_POWER_CLUSTER_ID] = {
+		644000,
+		724000,
+		788000,
+		868000,
+		1068000,
+	},
+	[CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = {
+		724000,
+		788000,
+		868000,
+		988000,
+		1068000,
+	},
+};
+
+#define CPRH_KBSS_FUSE_STEP_VOLT		10000
+#define CPRH_KBSS_VOLTAGE_FUSE_SIZE		6
+#define CPRH_KBSS_QUOT_OFFSET_SCALE		5
+#define CPRH_KBSS_AGING_INIT_QUOT_DIFF_SIZE	8
+#define CPRH_KBSS_AGING_INIT_QUOT_DIFF_SCALE	1
+
+#define CPRH_KBSS_CPR_CLOCK_RATE		19200000
+
+#define CPRH_KBSS_MAX_CORNER_BAND_COUNT		4
+#define CPRH_KBSS_MAX_CORNER_COUNT		40
+
+#define CPRH_KBSS_CPR_SDELTA_CORE_COUNT		4
+
+#define CPRH_KBSS_MAX_TEMP_POINTS		3
+
+/*
+ * msm8998 configuration
+ */
+#define MSM8998_KBSS_POWER_CPR_SENSOR_COUNT		6
+#define MSM8998_KBSS_PERFORMANCE_CPR_SENSOR_COUNT	9
+
+#define MSM8998_KBSS_POWER_TEMP_SENSOR_ID_START		1
+#define MSM8998_KBSS_POWER_TEMP_SENSOR_ID_END		5
+#define MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START	6
+#define MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END	10
+
+#define MSM8998_KBSS_POWER_AGING_SENSOR_ID		0
+#define MSM8998_KBSS_POWER_AGING_BYPASS_MASK0		0
+
+#define MSM8998_KBSS_PERFORMANCE_AGING_SENSOR_ID	0
+#define MSM8998_KBSS_PERFORMANCE_AGING_BYPASS_MASK0	0
+
+/*
+ * sdm660 configuration
+ */
+#define SDM660_KBSS_POWER_CPR_SENSOR_COUNT		6
+#define SDM660_KBSS_PERFORMANCE_CPR_SENSOR_COUNT	9
+
+#define SDM660_KBSS_POWER_TEMP_SENSOR_ID_START		10
+#define SDM660_KBSS_POWER_TEMP_SENSOR_ID_END		11
+#define SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START	4
+#define SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END	9
+
+#define SDM660_KBSS_POWER_AGING_SENSOR_ID		0
+#define SDM660_KBSS_POWER_AGING_BYPASS_MASK0		0
+
+#define SDM660_KBSS_PERFORMANCE_AGING_SENSOR_ID		0
+#define SDM660_KBSS_PERFORMANCE_AGING_BYPASS_MASK0	0
+
+/*
+ * SOC IDs
+ */
+enum soc_id {
+	MSM8998_V1_SOC_ID = 1,
+	MSM8998_V2_SOC_ID = 2,
+	SDM660_SOC_ID     = 3,
+};
+
+/**
+ * cprh_msm8998_kbss_read_fuse_data() - load msm8998 KBSS specific fuse
+ *		parameter values
+ * @vreg:		Pointer to the CPR3 regulator
+ * @fuse:		KBSS specific fuse data
+ *
+ * This function fills cprh_kbss_fuses struct with values read out of hardware
+ * fuses.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_msm8998_kbss_read_fuse_data(struct cpr3_regulator *vreg,
+		struct cprh_kbss_fuses *fuse)
+{
+	void __iomem *base = vreg->thread->ctrl->fuse_base;
+	int i, id, rc;
+
+	rc = cpr3_read_fuse_param(base, msm8998_cpr_fusing_rev_param,
+				&fuse->cpr_fusing_rev);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+	cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
+
+	id = vreg->thread->ctrl->ctrl_id;
+	for (i = 0; i < MSM8998_KBSS_FUSE_CORNERS; i++) {
+		rc = cpr3_read_fuse_param(base,
+				msm8998_kbss_init_voltage_param[id][i],
+				&fuse->init_voltage[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+				msm8998_kbss_target_quot_param[id][i],
+				&fuse->target_quot[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+				msm8998_kbss_ro_sel_param[id][i],
+				&fuse->ro_sel[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+				msm8998_kbss_quot_offset_param[id][i],
+				&fuse->quot_offset[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+	}
+
+	rc = cpr3_read_fuse_param(base,
+				msm8998_kbss_aging_init_quot_diff_param[id],
+				&fuse->aging_init_quot_diff);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_read_fuse_param(base,
+			  msm8998_cpr_force_highest_corner_param,
+			  &fuse->force_highest_corner);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read CPR force highest corner fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	if (fuse->force_highest_corner)
+		cpr3_info(vreg, "Fusing requires all operation at the highest corner\n");
+
+	vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
+	if (vreg->fuse_combo >= CPRH_MSM8998_KBSS_FUSE_COMBO_COUNT) {
+		cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
+			vreg->fuse_combo);
+		return -EINVAL;
+	}
+
+	return rc;
+};
+
+/**
+ * cprh_sdm660_kbss_read_fuse_data() - load SDM660 KBSS specific fuse parameter
+ *		values
+ * @vreg:		Pointer to the CPR3 regulator
+ * @fuse:		KBSS specific fuse data
+ *
+ * This function fills cprh_kbss_fuses struct with values read out of hardware
+ * fuses.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_sdm660_kbss_read_fuse_data(struct cpr3_regulator *vreg,
+		struct cprh_kbss_fuses *fuse)
+{
+	void __iomem *base = vreg->thread->ctrl->fuse_base;
+	int i, id, rc;
+
+	rc = cpr3_read_fuse_param(base, sdm660_cpr_fusing_rev_param,
+				&fuse->cpr_fusing_rev);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+	cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
+
+	id = vreg->thread->ctrl->ctrl_id;
+	for (i = 0; i < SDM660_KBSS_FUSE_CORNERS; i++) {
+		rc = cpr3_read_fuse_param(base,
+				sdm660_kbss_init_voltage_param[id][i],
+				&fuse->init_voltage[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+				sdm660_kbss_target_quot_param[id][i],
+				&fuse->target_quot[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+				sdm660_kbss_ro_sel_param[id][i],
+				&fuse->ro_sel[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+
+		rc = cpr3_read_fuse_param(base,
+				sdm660_kbss_quot_offset_param[id][i],
+				&fuse->quot_offset[i]);
+		if (rc) {
+			cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
+				i, rc);
+			return rc;
+		}
+	}
+
+	rc = cpr3_read_fuse_param(base,
+				sdm660_kbss_aging_init_quot_diff_param[id],
+				&fuse->aging_init_quot_diff);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
+	if (vreg->fuse_combo >= CPRH_SDM660_KBSS_FUSE_COMBO_COUNT) {
+		cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
+			vreg->fuse_combo);
+		return -EINVAL;
+	}
+
+	return rc;
+};
+
+/**
+ * cprh_kbss_read_fuse_data() - load KBSS specific fuse parameter values
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * This function allocates a cprh_kbss_fuses struct, fills it with values
+ * read out of hardware fuses, and finally copies common fuse values
+ * into the CPR3 regulator struct.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_kbss_read_fuse_data(struct cpr3_regulator *vreg)
+{
+	void __iomem *base = vreg->thread->ctrl->fuse_base;
+	struct cprh_kbss_fuses *fuse;
+	int rc, fuse_corners;
+	enum soc_id soc_revision;
+
+	fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
+	if (!fuse)
+		return -ENOMEM;
+
+	soc_revision = vreg->thread->ctrl->soc_revision;
+	switch (soc_revision) {
+	case SDM660_SOC_ID:
+		fuse_corners = SDM660_KBSS_FUSE_CORNERS;
+		break;
+	case MSM8998_V1_SOC_ID:
+	case MSM8998_V2_SOC_ID:
+		fuse_corners = MSM8998_KBSS_FUSE_CORNERS;
+		break;
+	default:
+		cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision);
+		return -EINVAL;
+	}
+
+	fuse->ro_sel = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
+			sizeof(*fuse->ro_sel), GFP_KERNEL);
+	fuse->init_voltage = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
+			sizeof(*fuse->init_voltage), GFP_KERNEL);
+	fuse->target_quot = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
+			sizeof(*fuse->target_quot), GFP_KERNEL);
+	fuse->quot_offset = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners,
+			sizeof(*fuse->quot_offset), GFP_KERNEL);
+
+	if (!fuse->ro_sel || !fuse->init_voltage || !fuse->target_quot
+			|| !fuse->quot_offset)
+		return -ENOMEM;
+
+	rc = cpr3_read_fuse_param(base, kbss_speed_bin_param, &fuse->speed_bin);
+	if (rc) {
+		cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc);
+		return rc;
+	}
+	cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin);
+
+	switch (soc_revision) {
+	case SDM660_SOC_ID:
+		rc = cprh_sdm660_kbss_read_fuse_data(vreg, fuse);
+		if (rc) {
+			cpr3_err(vreg, "sdm660 kbss fuse data read failed, rc=%d\n",
+				rc);
+			return rc;
+		}
+		break;
+	case MSM8998_V1_SOC_ID:
+	case MSM8998_V2_SOC_ID:
+		rc = cprh_msm8998_kbss_read_fuse_data(vreg, fuse);
+		if (rc) {
+			cpr3_err(vreg, "msm8998 kbss fuse data read failed, rc=%d\n",
+				rc);
+			return rc;
+		}
+		break;
+	default:
+		cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision);
+		return -EINVAL;
+	}
+
+	vreg->speed_bin_fuse	= fuse->speed_bin;
+	vreg->cpr_rev_fuse	= fuse->cpr_fusing_rev;
+	vreg->fuse_corner_count	= fuse_corners;
+	vreg->platform_fuses	= fuse;
+
+	return 0;
+}
+
+/**
+ * cprh_kbss_parse_corner_data() - parse KBSS corner data from device tree
+ *		properties of the CPR3 regulator's device node
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_kbss_parse_corner_data(struct cpr3_regulator *vreg)
+{
+	int rc;
+
+	rc = cpr3_parse_common_corner_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
+		return rc;
+	}
+
+	/*
+	 * A total of CPRH_KBSS_MAX_CORNER_COUNT - 1 corners
+	 * may be specified in device tree as an additional corner
+	 * must be allocated to correspond to the APM crossover voltage.
+	 */
+	if (vreg->corner_count > CPRH_KBSS_MAX_CORNER_COUNT - 1) {
+		cpr3_err(vreg, "corner count %d exceeds supported maximum %d\n",
+		 vreg->corner_count, CPRH_KBSS_MAX_CORNER_COUNT - 1);
+		return -EINVAL;
+	}
+
+	return rc;
+}
+
+/**
+ * cprh_kbss_calculate_open_loop_voltages() - calculate the open-loop
+ *		voltage for each corner of a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * If open-loop voltage interpolation is allowed in device tree, then this
+ * function calculates the open-loop voltage for a given corner using linear
+ * interpolation.  This interpolation is performed using the processor
+ * frequencies of the lower and higher Fmax corners along with their fused
+ * open-loop voltages.
+ *
+ * If open-loop voltage interpolation is not allowed, then this function uses
+ * the Fmax fused open-loop voltage for all of the corners associated with a
+ * given fuse corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_kbss_calculate_open_loop_voltages(struct cpr3_regulator *vreg)
+{
+	struct device_node *node = vreg->of_node;
+	struct cprh_kbss_fuses *fuse = vreg->platform_fuses;
+	int i, j, id, rc = 0;
+	bool allow_interpolation;
+	u64 freq_low, volt_low, freq_high, volt_high;
+	const int *ref_volt;
+	int *fuse_volt;
+	int *fmax_corner;
+	const char * const *corner_name;
+	enum soc_id soc_revision;
+
+	fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
+				GFP_KERNEL);
+	fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
+				GFP_KERNEL);
+	if (!fuse_volt || !fmax_corner) {
+		rc = -ENOMEM;
+		goto done;
+	}
+
+	id = vreg->thread->ctrl->ctrl_id;
+	soc_revision = vreg->thread->ctrl->soc_revision;
+
+	switch (soc_revision) {
+	case SDM660_SOC_ID:
+		ref_volt = sdm660_kbss_fuse_ref_volt[id];
+		if (id == CPRH_KBSS_POWER_CLUSTER_ID)
+			corner_name = cprh_sdm660_power_kbss_fuse_corner_name;
+		else
+			corner_name = cprh_sdm660_perf_kbss_fuse_corner_name;
+		break;
+	case MSM8998_V1_SOC_ID:
+		ref_volt = msm8998_v1_kbss_fuse_ref_volt;
+		corner_name = cprh_msm8998_kbss_fuse_corner_name;
+		break;
+	case MSM8998_V2_SOC_ID:
+		ref_volt = msm8998_v2_kbss_fuse_ref_volt[id];
+		corner_name = cprh_msm8998_kbss_fuse_corner_name;
+		break;
+	default:
+		cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision);
+		rc = -EINVAL;
+		goto done;
+	}
+
+	for (i = 0; i < vreg->fuse_corner_count; i++) {
+		fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(ref_volt[i],
+			CPRH_KBSS_FUSE_STEP_VOLT, fuse->init_voltage[i],
+			CPRH_KBSS_VOLTAGE_FUSE_SIZE);
+
+		/* Log fused open-loop voltage values for debugging purposes. */
+		cpr3_info(vreg, "fused %8s: open-loop=%7d uV\n", corner_name[i],
+			  fuse_volt[i]);
+	}
+
+	rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
+	if (rc) {
+		cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
+			rc);
+		goto done;
+	}
+
+	allow_interpolation = of_property_read_bool(node,
+				"qcom,allow-voltage-interpolation");
+
+	for (i = 1; i < vreg->fuse_corner_count; i++) {
+		if (fuse_volt[i] < fuse_volt[i - 1]) {
+			cpr3_info(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
+				i, fuse_volt[i], i - 1, fuse_volt[i - 1],
+				i, fuse_volt[i - 1]);
+			fuse_volt[i] = fuse_volt[i - 1];
+		}
+	}
+
+	if (!allow_interpolation) {
+		/* Use fused open-loop voltage for lower frequencies. */
+		for (i = 0; i < vreg->corner_count; i++)
+			vreg->corner[i].open_loop_volt
+				= fuse_volt[vreg->corner[i].cpr_fuse_corner];
+		goto done;
+	}
+
+	/* Determine highest corner mapped to each fuse corner */
+	j = vreg->fuse_corner_count - 1;
+	for (i = vreg->corner_count - 1; i >= 0; i--) {
+		if (vreg->corner[i].cpr_fuse_corner == j) {
+			fmax_corner[j] = i;
+			j--;
+		}
+	}
+	if (j >= 0) {
+		cpr3_err(vreg, "invalid fuse corner mapping\n");
+		rc = -EINVAL;
+		goto done;
+	}
+
+	/*
+	 * Interpolation is not possible for corners mapped to the lowest fuse
+	 * corner so use the fuse corner value directly.
+	 */
+	for (i = 0; i <= fmax_corner[0]; i++)
+		vreg->corner[i].open_loop_volt = fuse_volt[0];
+
+	/* Interpolate voltages for the higher fuse corners. */
+	for (i = 1; i < vreg->fuse_corner_count; i++) {
+		freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
+		volt_low = fuse_volt[i - 1];
+		freq_high = vreg->corner[fmax_corner[i]].proc_freq;
+		volt_high = fuse_volt[i];
+
+		for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
+			vreg->corner[j].open_loop_volt = cpr3_interpolate(
+				freq_low, volt_low, freq_high, volt_high,
+				vreg->corner[j].proc_freq);
+	}
+
+done:
+	if (rc == 0) {
+		cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
+		for (i = 0; i < vreg->corner_count; i++)
+			cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
+				vreg->corner[i].open_loop_volt);
+
+		rc = cpr3_adjust_open_loop_voltages(vreg);
+		if (rc)
+			cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
+				rc);
+	}
+
+	kfree(fuse_volt);
+	kfree(fmax_corner);
+	return rc;
+}
+
+/**
+ * cprh_msm8998_partial_binning_override() - override the voltage and quotient
+ *		settings for low corners based upon special partial binning
+ *		fuse values
+ *
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Some parts are not able to operate at low voltages.  The force highest
+ * corner fuse specifies if a given part must operate with voltages
+ * corresponding to the highest corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_msm8998_partial_binning_override(struct cpr3_regulator *vreg)
+{
+	struct cprh_kbss_fuses *fuse = vreg->platform_fuses;
+	struct cpr3_corner *corner;
+	struct cpr4_sdelta *sdelta;
+	int i;
+	u32 proc_freq;
+
+	if (fuse->force_highest_corner) {
+		cpr3_info(vreg, "overriding CPR parameters for corners 0 to %d with quotients and voltages of corner %d\n",
+			  vreg->corner_count - 2, vreg->corner_count - 1);
+		corner = &vreg->corner[vreg->corner_count - 1];
+		for (i = 0; i < vreg->corner_count - 1; i++) {
+			proc_freq = vreg->corner[i].proc_freq;
+			sdelta = vreg->corner[i].sdelta;
+			if (sdelta) {
+				if (sdelta->table)
+					devm_kfree(vreg->thread->ctrl->dev,
+						   sdelta->table);
+				if (sdelta->boost_table)
+					devm_kfree(vreg->thread->ctrl->dev,
+						   sdelta->boost_table);
+				devm_kfree(vreg->thread->ctrl->dev,
+					   sdelta);
+			}
+			vreg->corner[i] = *corner;
+			vreg->corner[i].proc_freq = proc_freq;
+		}
+
+		return 0;
+	}
+
+	return 0;
+};
+
+/**
+ * cprh_kbss_parse_core_count_temp_adj_properties() - load device tree
+ *		properties associated with per-corner-band and temperature
+ *		voltage adjustments.
+ * @vreg:	Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_kbss_parse_core_count_temp_adj_properties(
+		struct cpr3_regulator *vreg)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	struct device_node *node = vreg->of_node;
+	u32 *temp, *combo_corner_bands, *speed_bin_corner_bands;
+	int rc, i, len, temp_point_count;
+
+	vreg->allow_core_count_adj = of_find_property(node,
+					"qcom,corner-band-allow-core-count-adjustment",
+					NULL);
+	vreg->allow_temp_adj = of_find_property(node,
+					"qcom,corner-band-allow-temp-adjustment",
+					NULL);
+
+	if (!vreg->allow_core_count_adj && !vreg->allow_temp_adj)
+		return 0;
+
+	combo_corner_bands = kcalloc(vreg->fuse_combos_supported,
+				     sizeof(*combo_corner_bands),
+				     GFP_KERNEL);
+	if (!combo_corner_bands)
+		return -ENOMEM;
+
+	rc = of_property_read_u32_array(node, "qcom,cpr-corner-bands",
+					combo_corner_bands,
+					vreg->fuse_combos_supported);
+	if (rc == -EOVERFLOW) {
+		/* Single value case */
+		rc = of_property_read_u32(node, "qcom,cpr-corner-bands",
+					  combo_corner_bands);
+		for (i = 1; i < vreg->fuse_combos_supported; i++)
+			combo_corner_bands[i] = combo_corner_bands[0];
+	}
+	if (rc) {
+		cpr3_err(vreg, "error reading property qcom,cpr-corner-bands, rc=%d\n",
+			rc);
+		kfree(combo_corner_bands);
+		return rc;
+	}
+
+	vreg->fuse_combo_corner_band_offset = 0;
+	vreg->fuse_combo_corner_band_sum = 0;
+	for (i = 0; i < vreg->fuse_combos_supported; i++) {
+		vreg->fuse_combo_corner_band_sum += combo_corner_bands[i];
+		if (i < vreg->fuse_combo)
+			vreg->fuse_combo_corner_band_offset +=
+				combo_corner_bands[i];
+	}
+
+	vreg->corner_band_count = combo_corner_bands[vreg->fuse_combo];
+
+	kfree(combo_corner_bands);
+
+	if (vreg->corner_band_count <= 0 ||
+	    vreg->corner_band_count > CPRH_KBSS_MAX_CORNER_BAND_COUNT ||
+	    vreg->corner_band_count > vreg->corner_count) {
+		cpr3_err(vreg, "invalid corner band count %d > %d (max) for %d corners\n",
+			 vreg->corner_band_count,
+			 CPRH_KBSS_MAX_CORNER_BAND_COUNT,
+			 vreg->corner_count);
+		return -EINVAL;
+	}
+
+	vreg->speed_bin_corner_band_offset = 0;
+	vreg->speed_bin_corner_band_sum = 0;
+	if (vreg->speed_bins_supported > 0) {
+		speed_bin_corner_bands = kcalloc(vreg->speed_bins_supported,
+					sizeof(*speed_bin_corner_bands),
+					GFP_KERNEL);
+		if (!speed_bin_corner_bands)
+			return -ENOMEM;
+
+		rc = of_property_read_u32_array(node,
+						"qcom,cpr-speed-bin-corner-bands",
+						speed_bin_corner_bands,
+						vreg->speed_bins_supported);
+		if (rc) {
+			cpr3_err(vreg, "error reading property qcom,cpr-speed-bin-corner-bands, rc=%d\n",
+				 rc);
+			kfree(speed_bin_corner_bands);
+			return rc;
+		}
+
+		for (i = 0; i < vreg->speed_bins_supported; i++) {
+			vreg->speed_bin_corner_band_sum +=
+				speed_bin_corner_bands[i];
+			if (i < vreg->speed_bin_fuse)
+				vreg->speed_bin_corner_band_offset +=
+					speed_bin_corner_bands[i];
+		}
+
+		if (speed_bin_corner_bands[vreg->speed_bin_fuse]
+		    != vreg->corner_band_count) {
+			cpr3_err(vreg, "qcom,cpr-corner-bands and qcom,cpr-speed-bin-corner-bands conflict on number of corners bands: %d vs %u\n",
+				vreg->corner_band_count,
+				speed_bin_corner_bands[vreg->speed_bin_fuse]);
+			kfree(speed_bin_corner_bands);
+			return -EINVAL;
+		}
+
+		kfree(speed_bin_corner_bands);
+	}
+
+	vreg->corner_band = devm_kcalloc(ctrl->dev,
+					 vreg->corner_band_count,
+					 sizeof(*vreg->corner_band),
+					 GFP_KERNEL);
+
+	temp = kcalloc(vreg->corner_band_count, sizeof(*temp), GFP_KERNEL);
+
+	if (!vreg->corner_band || !temp) {
+		rc = -ENOMEM;
+		goto free_temp;
+	}
+
+	rc = cpr3_parse_corner_band_array_property(vreg,
+						   "qcom,cpr-corner-band-map",
+						   1, temp);
+	if (rc) {
+		cpr3_err(vreg, "could not load corner band map, rc=%d\n",
+			 rc);
+		goto free_temp;
+	}
+
+	for (i = 1; i < vreg->corner_band_count; i++) {
+		if (temp[i - 1] > temp[i]) {
+			cpr3_err(vreg, "invalid corner band mapping: band %d corner %d, band %d corner %d\n",
+				 i - 1, temp[i - 1],
+				 i, temp[i]);
+			rc = -EINVAL;
+			goto free_temp;
+		}
+	}
+
+	for (i = 0; i < vreg->corner_band_count; i++)
+		vreg->corner_band[i].corner = temp[i] - CPR3_CORNER_OFFSET;
+
+	if (!of_find_property(ctrl->dev->of_node,
+			      "qcom,cpr-temp-point-map", &len)) {
+		/*
+		 * Temperature based adjustments are not defined. Single
+		 * temperature band is still valid for per-online-core
+		 * adjustments.
+		 */
+		ctrl->temp_band_count = 1;
+		rc = 0;
+		goto free_temp;
+	}
+
+	if (!vreg->allow_temp_adj) {
+		rc = 0;
+		goto free_temp;
+	}
+
+	temp_point_count = len / sizeof(u32);
+	if (temp_point_count <= 0 || temp_point_count >
+	    CPRH_KBSS_MAX_TEMP_POINTS) {
+		cpr3_err(ctrl, "invalid number of temperature points %d > %d (max)\n",
+			 temp_point_count, CPRH_KBSS_MAX_TEMP_POINTS);
+		rc = -EINVAL;
+		goto free_temp;
+	}
+
+	ctrl->temp_points = devm_kcalloc(ctrl->dev, temp_point_count,
+					sizeof(*ctrl->temp_points), GFP_KERNEL);
+	if (!ctrl->temp_points) {
+		rc = -ENOMEM;
+		goto free_temp;
+	}
+	rc = of_property_read_u32_array(ctrl->dev->of_node,
+					"qcom,cpr-temp-point-map",
+					ctrl->temp_points, temp_point_count);
+	if (rc) {
+		cpr3_err(ctrl, "error reading property qcom,cpr-temp-point-map, rc=%d\n",
+			 rc);
+		goto free_temp;
+	}
+
+	for (i = 0; i < temp_point_count; i++)
+		cpr3_debug(ctrl, "Temperature Point %d=%d\n", i,
+				   ctrl->temp_points[i]);
+
+	/*
+	 * If t1, t2, and t3 are the temperature points, then the temperature
+	 * bands are: (-inf, t1], (t1, t2], (t2, t3], and (t3, inf).
+	 */
+	ctrl->temp_band_count = temp_point_count + 1;
+	cpr3_debug(ctrl, "Number of temp bands=%d\n",
+		   ctrl->temp_band_count);
+
+	rc = of_property_read_u32(ctrl->dev->of_node,
+				  "qcom,cpr-initial-temp-band",
+				  &ctrl->initial_temp_band);
+	if (rc) {
+		cpr3_err(ctrl, "error reading qcom,cpr-initial-temp-band, rc=%d\n",
+			rc);
+		goto free_temp;
+	}
+
+	if (ctrl->initial_temp_band >= ctrl->temp_band_count) {
+		cpr3_err(ctrl, "Initial temperature band value %d should be in range [0 - %d]\n",
+			ctrl->initial_temp_band, ctrl->temp_band_count - 1);
+		rc = -EINVAL;
+		goto free_temp;
+	}
+
+	switch (ctrl->soc_revision) {
+	case SDM660_SOC_ID:
+		ctrl->temp_sensor_id_start = ctrl->ctrl_id ==
+			CPRH_KBSS_POWER_CLUSTER_ID
+			? SDM660_KBSS_POWER_TEMP_SENSOR_ID_START :
+			SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START;
+		ctrl->temp_sensor_id_end = ctrl->ctrl_id ==
+			CPRH_KBSS_POWER_CLUSTER_ID
+			? SDM660_KBSS_POWER_TEMP_SENSOR_ID_END :
+			SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END;
+		break;
+	case MSM8998_V1_SOC_ID:
+	case MSM8998_V2_SOC_ID:
+		ctrl->temp_sensor_id_start = ctrl->ctrl_id ==
+			CPRH_KBSS_POWER_CLUSTER_ID
+			? MSM8998_KBSS_POWER_TEMP_SENSOR_ID_START :
+			MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START;
+		ctrl->temp_sensor_id_end = ctrl->ctrl_id ==
+			CPRH_KBSS_POWER_CLUSTER_ID
+			? MSM8998_KBSS_POWER_TEMP_SENSOR_ID_END :
+			MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END;
+		break;
+	default:
+		cpr3_err(ctrl, "unsupported soc id = %d\n", ctrl->soc_revision);
+		rc = -EINVAL;
+		goto free_temp;
+	}
+	ctrl->allow_temp_adj = true;
+
+free_temp:
+	kfree(temp);
+
+	return rc;
+}
+
+/**
+ * cprh_kbss_apm_crossover_as_corner() - introduce a corner whose floor,
+ *		open-loop, and ceiling voltages correspond to the APM
+ *		crossover voltage.
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * The APM corner is utilized as a crossover corner by OSM and CPRh
+ * hardware to set the VDD supply voltage during the APM switch
+ * routine.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_kbss_apm_crossover_as_corner(struct cpr3_regulator *vreg)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	struct cpr3_corner *corner;
+
+	if (!ctrl->apm_crossover_volt) {
+		/* APM voltage crossover corner not required. */
+		return 0;
+	}
+
+	corner = &vreg->corner[vreg->corner_count];
+	/*
+	 * 0 MHz indicates this corner is not to be
+	 * used as active DCVS set point.
+	 */
+	corner->proc_freq = 0;
+	corner->floor_volt = ctrl->apm_crossover_volt;
+	corner->ceiling_volt = ctrl->apm_crossover_volt;
+	corner->open_loop_volt = ctrl->apm_crossover_volt;
+	corner->abs_ceiling_volt = ctrl->apm_crossover_volt;
+	corner->use_open_loop = true;
+	vreg->corner_count++;
+
+	return 0;
+}
+
+/**
+ * cprh_kbss_mem_acc_crossover_as_corner() - introduce a corner whose floor,
+ *		open-loop, and ceiling voltages correspond to the MEM ACC
+ *		crossover voltage.
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * The MEM ACC corner is utilized as a crossover corner by OSM and CPRh
+ * hardware to set the VDD supply voltage during the MEM ACC switch
+ * routine.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_kbss_mem_acc_crossover_as_corner(struct cpr3_regulator *vreg)
+{
+	struct cpr3_controller *ctrl = vreg->thread->ctrl;
+	struct cpr3_corner *corner;
+
+	if (!ctrl->mem_acc_crossover_volt) {
+		/* MEM ACC voltage crossover corner not required. */
+		return 0;
+	}
+
+	corner = &vreg->corner[vreg->corner_count];
+	/*
+	 * 0 MHz indicates this corner is not to be
+	 * used as active DCVS set point.
+	 */
+	corner->proc_freq = 0;
+	corner->floor_volt = ctrl->mem_acc_crossover_volt;
+	corner->ceiling_volt = ctrl->mem_acc_crossover_volt;
+	corner->open_loop_volt = ctrl->mem_acc_crossover_volt;
+	corner->abs_ceiling_volt = ctrl->mem_acc_crossover_volt;
+	corner->use_open_loop = true;
+	vreg->corner_count++;
+
+	return 0;
+}
+
+/**
+ * cprh_kbss_set_no_interpolation_quotients() - use the fused target quotient
+ *		values for lower frequencies.
+ * @vreg:		Pointer to the CPR3 regulator
+ * @volt_adjust:	Pointer to array of per-corner closed-loop adjustment
+ *			voltages
+ * @volt_adjust_fuse:	Pointer to array of per-fuse-corner closed-loop
+ *			adjustment voltages
+ * @ro_scale:		Pointer to array of per-fuse-corner RO scaling factor
+ *			values with units of QUOT/V
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_kbss_set_no_interpolation_quotients(struct cpr3_regulator *vreg,
+			int *volt_adjust, int *volt_adjust_fuse, int *ro_scale)
+{
+	struct cprh_kbss_fuses *fuse = vreg->platform_fuses;
+	u32 quot, ro;
+	int quot_adjust;
+	int i, fuse_corner;
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		fuse_corner = vreg->corner[i].cpr_fuse_corner;
+		quot = fuse->target_quot[fuse_corner];
+		quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
+					   volt_adjust_fuse[fuse_corner] +
+					   volt_adjust[i]);
+		ro = fuse->ro_sel[fuse_corner];
+		vreg->corner[i].target_quot[ro] = quot + quot_adjust;
+		cpr3_debug(vreg, "corner=%d RO=%u target quot=%u\n",
+			  i, ro, quot);
+
+		if (quot_adjust)
+			cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %u --> %u (%d uV)\n",
+				  i, ro, quot, vreg->corner[i].target_quot[ro],
+				  volt_adjust_fuse[fuse_corner] +
+				  volt_adjust[i]);
+	}
+
+	return 0;
+}
+
+/**
+ * cprh_kbss_calculate_target_quotients() - calculate the CPR target
+ *		quotient for each corner of a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * If target quotient interpolation is allowed in device tree, then this
+ * function calculates the target quotient for a given corner using linear
+ * interpolation.  This interpolation is performed using the processor
+ * frequencies of the lower and higher Fmax corners along with the fused
+ * target quotient and quotient offset of the higher Fmax corner.
+ *
+ * If target quotient interpolation is not allowed, then this function uses
+ * the Fmax fused target quotient for all of the corners associated with a
+ * given fuse corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_kbss_calculate_target_quotients(struct cpr3_regulator *vreg)
+{
+	struct cprh_kbss_fuses *fuse = vreg->platform_fuses;
+	int rc;
+	bool allow_interpolation;
+	u64 freq_low, freq_high, prev_quot;
+	u64 *quot_low;
+	u64 *quot_high;
+	u32 quot, ro;
+	int i, j, fuse_corner, quot_adjust;
+	int *fmax_corner;
+	int *volt_adjust, *volt_adjust_fuse, *ro_scale;
+	int lowest_fuse_corner, highest_fuse_corner;
+	const char * const *corner_name;
+
+	switch (vreg->thread->ctrl->soc_revision) {
+	case SDM660_SOC_ID:
+		if (vreg->thread->ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) {
+			corner_name = cprh_sdm660_power_kbss_fuse_corner_name;
+			lowest_fuse_corner =
+				CPRH_SDM660_POWER_KBSS_FUSE_CORNER_LOWSVS;
+			highest_fuse_corner =
+				CPRH_SDM660_POWER_KBSS_FUSE_CORNER_TURBO_L1;
+		} else {
+			corner_name = cprh_sdm660_perf_kbss_fuse_corner_name;
+			lowest_fuse_corner =
+				CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVS;
+			highest_fuse_corner =
+				CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO_L2;
+		}
+		break;
+	case MSM8998_V1_SOC_ID:
+	case MSM8998_V2_SOC_ID:
+		corner_name = cprh_msm8998_kbss_fuse_corner_name;
+		lowest_fuse_corner =
+			CPRH_MSM8998_KBSS_FUSE_CORNER_LOWSVS;
+		highest_fuse_corner =
+			CPRH_MSM8998_KBSS_FUSE_CORNER_TURBO_L1;
+		break;
+	default:
+		cpr3_err(vreg, "unsupported soc id = %d\n",
+				vreg->thread->ctrl->soc_revision);
+		return -EINVAL;
+	}
+
+	/* Log fused quotient values for debugging purposes. */
+	cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu\n",
+		corner_name[lowest_fuse_corner],
+		fuse->ro_sel[lowest_fuse_corner],
+		fuse->target_quot[lowest_fuse_corner]);
+	for (i = lowest_fuse_corner + 1; i <= highest_fuse_corner; i++)
+		cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu, quot_offset[%2llu]=%4llu\n",
+			corner_name[i], fuse->ro_sel[i], fuse->target_quot[i],
+			fuse->ro_sel[i], fuse->quot_offset[i] *
+			CPRH_KBSS_QUOT_OFFSET_SCALE);
+
+	allow_interpolation = of_property_read_bool(vreg->of_node,
+					"qcom,allow-quotient-interpolation");
+
+	volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
+					GFP_KERNEL);
+	volt_adjust_fuse = kcalloc(vreg->fuse_corner_count,
+					sizeof(*volt_adjust_fuse), GFP_KERNEL);
+	ro_scale = kcalloc(vreg->fuse_corner_count, sizeof(*ro_scale),
+					GFP_KERNEL);
+	fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
+					GFP_KERNEL);
+	quot_low = kcalloc(vreg->fuse_corner_count, sizeof(*quot_low),
+					GFP_KERNEL);
+	quot_high = kcalloc(vreg->fuse_corner_count, sizeof(*quot_high),
+					GFP_KERNEL);
+	if (!volt_adjust || !volt_adjust_fuse || !ro_scale ||
+	    !fmax_corner || !quot_low || !quot_high) {
+		rc = -ENOMEM;
+		goto done;
+	}
+
+	rc = cpr3_parse_closed_loop_voltage_adjustments(vreg, &fuse->ro_sel[0],
+				volt_adjust, volt_adjust_fuse, ro_scale);
+	if (rc) {
+		cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
+			rc);
+		goto done;
+	}
+
+	if (!allow_interpolation) {
+		/* Use fused target quotients for lower frequencies. */
+		return cprh_kbss_set_no_interpolation_quotients(vreg,
+				volt_adjust, volt_adjust_fuse, ro_scale);
+	}
+
+	/* Determine highest corner mapped to each fuse corner */
+	j = vreg->fuse_corner_count - 1;
+	for (i = vreg->corner_count - 1; i >= 0; i--) {
+		if (vreg->corner[i].cpr_fuse_corner == j) {
+			fmax_corner[j] = i;
+			j--;
+		}
+	}
+	if (j >= 0) {
+		cpr3_err(vreg, "invalid fuse corner mapping\n");
+		rc = -EINVAL;
+		goto done;
+	}
+
+	/*
+	 * Interpolation is not possible for corners mapped to the lowest fuse
+	 * corner so use the fuse corner value directly.
+	 */
+	i = lowest_fuse_corner;
+	quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]);
+	quot = fuse->target_quot[i] + quot_adjust;
+	quot_high[i] = quot_low[i] = quot;
+	ro = fuse->ro_sel[i];
+	if (quot_adjust)
+		cpr3_debug(vreg, "adjusted fuse corner %d RO%u target quot: %llu --> %u (%d uV)\n",
+			i, ro, fuse->target_quot[i], quot, volt_adjust_fuse[i]);
+
+	for (i = 0; i <= fmax_corner[lowest_fuse_corner]; i++)
+		vreg->corner[i].target_quot[ro] = quot;
+
+	for (i = lowest_fuse_corner + 1; i < vreg->fuse_corner_count; i++) {
+		quot_high[i] = fuse->target_quot[i];
+		if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
+			quot_low[i] = quot_high[i - 1];
+		else
+			quot_low[i] = quot_high[i]
+					- fuse->quot_offset[i]
+					  * CPRH_KBSS_QUOT_OFFSET_SCALE;
+		if (quot_high[i] < quot_low[i]) {
+			cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu; overriding: quot_high[%d]=%llu\n",
+				i, quot_high[i], i, quot_low[i],
+				i, quot_low[i]);
+			quot_high[i] = quot_low[i];
+		}
+	}
+
+	/* Perform per-fuse-corner target quotient adjustment */
+	for (i = 1; i < vreg->fuse_corner_count; i++) {
+		quot_adjust = cpr3_quot_adjustment(ro_scale[i],
+						   volt_adjust_fuse[i]);
+		if (quot_adjust) {
+			prev_quot = quot_high[i];
+			quot_high[i] += quot_adjust;
+			cpr3_debug(vreg, "adjusted fuse corner %d RO%llu target quot: %llu --> %llu (%d uV)\n",
+				i, fuse->ro_sel[i], prev_quot, quot_high[i],
+				volt_adjust_fuse[i]);
+		}
+
+		if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
+			quot_low[i] = quot_high[i - 1];
+		else
+			quot_low[i] += cpr3_quot_adjustment(ro_scale[i],
+						    volt_adjust_fuse[i - 1]);
+
+		if (quot_high[i] < quot_low[i]) {
+			cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu after adjustment; overriding: quot_high[%d]=%llu\n",
+				i, quot_high[i], i, quot_low[i],
+				i, quot_low[i]);
+			quot_high[i] = quot_low[i];
+		}
+	}
+
+	/* Interpolate voltages for the higher fuse corners. */
+	for (i = 1; i < vreg->fuse_corner_count; i++) {
+		freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
+		freq_high = vreg->corner[fmax_corner[i]].proc_freq;
+
+		ro = fuse->ro_sel[i];
+		for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
+			vreg->corner[j].target_quot[ro] = cpr3_interpolate(
+				freq_low, quot_low[i], freq_high, quot_high[i],
+				vreg->corner[j].proc_freq);
+	}
+
+	/* Perform per-corner target quotient adjustment */
+	for (i = 0; i < vreg->corner_count; i++) {
+		fuse_corner = vreg->corner[i].cpr_fuse_corner;
+		ro = fuse->ro_sel[fuse_corner];
+		quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
+						   volt_adjust[i]);
+		if (quot_adjust) {
+			prev_quot = vreg->corner[i].target_quot[ro];
+			vreg->corner[i].target_quot[ro] += quot_adjust;
+			cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %llu --> %u (%d uV)\n",
+				i, ro, prev_quot,
+				vreg->corner[i].target_quot[ro],
+				volt_adjust[i]);
+		}
+	}
+
+	/* Ensure that target quotients increase monotonically */
+	for (i = 1; i < vreg->corner_count; i++) {
+		ro = fuse->ro_sel[vreg->corner[i].cpr_fuse_corner];
+		if (fuse->ro_sel[vreg->corner[i - 1].cpr_fuse_corner] == ro
+		    && vreg->corner[i].target_quot[ro]
+				< vreg->corner[i - 1].target_quot[ro]) {
+			cpr3_debug(vreg, "adjusted corner %d RO%u target quot=%u < adjusted corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
+				i, ro, vreg->corner[i].target_quot[ro],
+				i - 1, ro, vreg->corner[i - 1].target_quot[ro],
+				i, ro, vreg->corner[i - 1].target_quot[ro]);
+			vreg->corner[i].target_quot[ro]
+				= vreg->corner[i - 1].target_quot[ro];
+		}
+	}
+
+done:
+	kfree(volt_adjust);
+	kfree(volt_adjust_fuse);
+	kfree(ro_scale);
+	kfree(fmax_corner);
+	kfree(quot_low);
+	kfree(quot_high);
+	return rc;
+}
+
+/**
+ * cprh_kbss_print_settings() - print out KBSS CPR configuration settings into
+ *		the kernel log for debugging purposes
+ * @vreg:		Pointer to the CPR3 regulator
+ */
+static void cprh_kbss_print_settings(struct cpr3_regulator *vreg)
+{
+	struct cpr3_corner *corner;
+	int i;
+
+	cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
+	for (i = 0; i < vreg->corner_count; i++) {
+		corner = &vreg->corner[i];
+		cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
+			i, corner->proc_freq, corner->cpr_fuse_corner,
+			corner->floor_volt, corner->open_loop_volt,
+			corner->ceiling_volt);
+	}
+}
+
+/**
+ * cprh_kbss_init_thread() - perform steps necessary to initialize the
+ *		configuration data for a CPR3 thread
+ * @thread:		Pointer to the CPR3 thread
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_kbss_init_thread(struct cpr3_thread *thread)
+{
+	int rc;
+
+	rc = cpr3_parse_common_thread_data(thread);
+	if (rc) {
+		cpr3_err(thread->ctrl, "thread %u unable to read CPR thread data from device tree, rc=%d\n",
+			thread->thread_id, rc);
+		return rc;
+	}
+
+	return 0;
+}
+
+/**
+ * cprh_kbss_init_regulator() - perform all steps necessary to initialize the
+ *		configuration data for a CPR3 regulator
+ * @vreg:		Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_kbss_init_regulator(struct cpr3_regulator *vreg)
+{
+	struct cprh_kbss_fuses *fuse;
+	int rc;
+
+	rc = cprh_kbss_read_fuse_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
+		return rc;
+	}
+
+	fuse = vreg->platform_fuses;
+
+	rc = cprh_kbss_parse_corner_data(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cprh_kbss_calculate_open_loop_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cpr3_limit_open_loop_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	cprh_adjust_voltages_for_apm(vreg);
+	cprh_adjust_voltages_for_mem_acc(vreg);
+
+	cpr3_open_loop_voltage_as_ceiling(vreg);
+
+	rc = cpr3_limit_floor_voltages(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = cprh_kbss_calculate_target_quotients(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to calculate target quotients, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cprh_kbss_parse_core_count_temp_adj_properties(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to parse core count and temperature adjustment properties, rc=%d\n",
+			 rc);
+		return rc;
+	}
+
+	rc = cpr4_parse_core_count_temp_voltage_adj(vreg, true);
+	if (rc) {
+		cpr3_err(vreg, "unable to parse temperature and core count voltage adjustments, rc=%d\n",
+			 rc);
+		return rc;
+	}
+
+	if (vreg->allow_core_count_adj && (vreg->max_core_count <= 0
+				   || vreg->max_core_count >
+				   CPRH_KBSS_CPR_SDELTA_CORE_COUNT)) {
+		cpr3_err(vreg, "qcom,max-core-count has invalid value = %d\n",
+			 vreg->max_core_count);
+		return -EINVAL;
+	}
+
+	rc = cprh_msm8998_partial_binning_override(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to override CPR parameters based on partial binning fuse values, rc=%d\n",
+			 rc);
+		return rc;
+	}
+
+	rc = cprh_kbss_apm_crossover_as_corner(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to introduce APM voltage crossover corner, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = cprh_kbss_mem_acc_crossover_as_corner(vreg);
+	if (rc) {
+		cpr3_err(vreg, "unable to introduce MEM ACC voltage crossover corner, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	cprh_kbss_print_settings(vreg);
+
+	return 0;
+}
+
+/**
+ * cprh_kbss_init_aging() - perform KBSS CPRh controller specific aging
+ *		initializations
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_kbss_init_aging(struct cpr3_controller *ctrl)
+{
+	struct cprh_kbss_fuses *fuse = NULL;
+	struct cpr3_regulator *vreg;
+	u32 aging_ro_scale;
+	int i, j, rc = 0;
+
+	for (i = 0; i < ctrl->thread_count; i++) {
+		for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+			if (ctrl->thread[i].vreg[j].aging_allowed) {
+				ctrl->aging_required = true;
+				vreg = &ctrl->thread[i].vreg[j];
+				fuse = vreg->platform_fuses;
+				break;
+			}
+		}
+	}
+
+	if (!ctrl->aging_required || !fuse || !vreg)
+		return 0;
+
+	rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ro-scaling-factor",
+					1, &aging_ro_scale);
+	if (rc)
+		return rc;
+
+	if (aging_ro_scale == 0) {
+		cpr3_err(ctrl, "aging RO scaling factor is invalid: %u\n",
+			aging_ro_scale);
+		return -EINVAL;
+	}
+
+	ctrl->aging_vdd_mode = REGULATOR_MODE_NORMAL;
+	ctrl->aging_complete_vdd_mode = REGULATOR_MODE_IDLE;
+
+	ctrl->aging_sensor_count = 1;
+	ctrl->aging_sensor = devm_kzalloc(ctrl->dev,
+					sizeof(*ctrl->aging_sensor),
+					GFP_KERNEL);
+	if (!ctrl->aging_sensor)
+		return -ENOMEM;
+
+	switch (ctrl->soc_revision) {
+	case SDM660_SOC_ID:
+		if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) {
+			ctrl->aging_sensor->sensor_id
+				= SDM660_KBSS_POWER_AGING_SENSOR_ID;
+			ctrl->aging_sensor->bypass_mask[0]
+				= SDM660_KBSS_POWER_AGING_BYPASS_MASK0;
+		} else  {
+			ctrl->aging_sensor->sensor_id
+				= SDM660_KBSS_PERFORMANCE_AGING_SENSOR_ID;
+			ctrl->aging_sensor->bypass_mask[0]
+				= SDM660_KBSS_PERFORMANCE_AGING_BYPASS_MASK0;
+		}
+		break;
+	case MSM8998_V1_SOC_ID:
+	case MSM8998_V2_SOC_ID:
+		if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) {
+			ctrl->aging_sensor->sensor_id
+				= MSM8998_KBSS_POWER_AGING_SENSOR_ID;
+			ctrl->aging_sensor->bypass_mask[0]
+				= MSM8998_KBSS_POWER_AGING_BYPASS_MASK0;
+		} else  {
+			ctrl->aging_sensor->sensor_id
+				= MSM8998_KBSS_PERFORMANCE_AGING_SENSOR_ID;
+			ctrl->aging_sensor->bypass_mask[0]
+				= MSM8998_KBSS_PERFORMANCE_AGING_BYPASS_MASK0;
+		}
+		break;
+	default:
+		cpr3_err(ctrl, "unsupported soc id = %d\n", ctrl->soc_revision);
+		return -EINVAL;
+	}
+	ctrl->aging_sensor->ro_scale = aging_ro_scale;
+
+	ctrl->aging_sensor->init_quot_diff
+		= cpr3_convert_open_loop_voltage_fuse(0,
+			CPRH_KBSS_AGING_INIT_QUOT_DIFF_SCALE,
+			fuse->aging_init_quot_diff,
+			CPRH_KBSS_AGING_INIT_QUOT_DIFF_SIZE);
+
+	cpr3_debug(ctrl, "sensor %u aging init quotient diff = %d, aging RO scale = %u QUOT/V\n",
+		ctrl->aging_sensor->sensor_id,
+		ctrl->aging_sensor->init_quot_diff,
+		ctrl->aging_sensor->ro_scale);
+
+	return 0;
+}
+
+/**
+ * cprh_kbss_init_controller() - perform KBSS CPRh controller specific
+ *		initializations
+ * @ctrl:		Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_kbss_init_controller(struct cpr3_controller *ctrl)
+{
+	int rc;
+
+	ctrl->ctrl_type = CPR_CTRL_TYPE_CPRH;
+	rc = cpr3_parse_common_ctrl_data(ctrl);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-controller-id",
+				  &ctrl->ctrl_id);
+	if (rc) {
+		cpr3_err(ctrl, "could not read DT property qcom,cpr-controller-id, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	if (ctrl->ctrl_id < CPRH_KBSS_MIN_CONTROLLER_ID ||
+	    ctrl->ctrl_id > CPRH_KBSS_MAX_CONTROLLER_ID) {
+		cpr3_err(ctrl, "invalid qcom,cpr-controller-id specified\n");
+		return -EINVAL;
+	}
+
+	rc = of_property_read_u32(ctrl->dev->of_node,
+				  "qcom,cpr-down-error-step-limit",
+				  &ctrl->down_error_step_limit);
+	if (rc) {
+		cpr3_err(ctrl, "error reading qcom,cpr-down-error-step-limit, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(ctrl->dev->of_node,
+				  "qcom,cpr-up-error-step-limit",
+				  &ctrl->up_error_step_limit);
+	if (rc) {
+		cpr3_err(ctrl, "error reading qcom,cpr-up-error-step-limit, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(ctrl->dev->of_node,
+				  "qcom,voltage-base",
+				  &ctrl->base_volt);
+	if (rc) {
+		cpr3_err(ctrl, "error reading property qcom,voltage-base, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(ctrl->dev->of_node,
+			"qcom,cpr-up-down-delay-time",
+			&ctrl->up_down_delay_time);
+	if (rc) {
+		cpr3_err(ctrl, "error reading property qcom,cpr-up-down-delay-time, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(ctrl->dev->of_node,
+				  "qcom,apm-threshold-voltage",
+				  &ctrl->apm_threshold_volt);
+	if (rc) {
+		cpr3_debug(ctrl, "qcom,apm-threshold-voltage not specified\n");
+	} else {
+		rc = of_property_read_u32(ctrl->dev->of_node,
+					  "qcom,apm-crossover-voltage",
+					  &ctrl->apm_crossover_volt);
+		if (rc) {
+			cpr3_err(ctrl, "error reading property qcom,apm-crossover-voltage, rc=%d\n",
+				 rc);
+			return rc;
+		}
+	}
+
+	of_property_read_u32(ctrl->dev->of_node, "qcom,apm-hysteresis-voltage",
+				&ctrl->apm_adj_volt);
+	ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt);
+
+	ctrl->saw_use_unit_mV = of_property_read_bool(ctrl->dev->of_node,
+					"qcom,cpr-saw-use-unit-mV");
+
+	rc = of_property_read_u32(ctrl->dev->of_node,
+				  "qcom,mem-acc-threshold-voltage",
+				  &ctrl->mem_acc_threshold_volt);
+	if (!rc) {
+		ctrl->mem_acc_threshold_volt
+		    = CPR3_ROUND(ctrl->mem_acc_threshold_volt, ctrl->step_volt);
+
+		rc = of_property_read_u32(ctrl->dev->of_node,
+					  "qcom,mem-acc-crossover-voltage",
+					  &ctrl->mem_acc_crossover_volt);
+		if (rc) {
+			cpr3_err(ctrl, "error reading property qcom,mem-acc-crossover-voltage, rc=%d\n",
+				 rc);
+			return rc;
+		}
+		ctrl->mem_acc_crossover_volt
+		    = CPR3_ROUND(ctrl->mem_acc_crossover_volt, ctrl->step_volt);
+	}
+
+	/*
+	 * Use fixed step quotient if specified otherwise use dynamically
+	 * calculated per RO step quotient
+	 */
+	of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-step-quot-fixed",
+			&ctrl->step_quot_fixed);
+	ctrl->use_dynamic_step_quot = !ctrl->step_quot_fixed;
+
+	of_property_read_u32(ctrl->dev->of_node,
+			"qcom,cpr-voltage-settling-time",
+			&ctrl->voltage_settling_time);
+
+	of_property_read_u32(ctrl->dev->of_node,
+			     "qcom,cpr-corner-switch-delay-time",
+			     &ctrl->corner_switch_delay_time);
+
+	switch (ctrl->soc_revision) {
+	case SDM660_SOC_ID:
+		if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID)
+			ctrl->sensor_count =
+				SDM660_KBSS_POWER_CPR_SENSOR_COUNT;
+		else
+			ctrl->sensor_count =
+				SDM660_KBSS_PERFORMANCE_CPR_SENSOR_COUNT;
+		break;
+	case MSM8998_V1_SOC_ID:
+	case MSM8998_V2_SOC_ID:
+		if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID)
+			ctrl->sensor_count =
+				MSM8998_KBSS_POWER_CPR_SENSOR_COUNT;
+		else
+			ctrl->sensor_count =
+				MSM8998_KBSS_PERFORMANCE_CPR_SENSOR_COUNT;
+		break;
+	default:
+		cpr3_err(ctrl, "unsupported soc id = %d\n", ctrl->soc_revision);
+		return -EINVAL;
+	}
+
+	/*
+	 * KBSS only has one thread (0) per controller so the zeroed
+	 * array does not need further modification.
+	 */
+	ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
+		sizeof(*ctrl->sensor_owner), GFP_KERNEL);
+	if (!ctrl->sensor_owner)
+		return -ENOMEM;
+
+	ctrl->cpr_clock_rate = CPRH_KBSS_CPR_CLOCK_RATE;
+	ctrl->supports_hw_closed_loop = true;
+	ctrl->use_hw_closed_loop = of_property_read_bool(ctrl->dev->of_node,
+						 "qcom,cpr-hw-closed-loop");
+
+	return 0;
+}
+
+/**
+ * cprh_kbss_populate_opp_table() - populate an Operating Performance Point
+ *		table with the frequencies associated with each corner.
+ *		This table may be used to resolve corner to frequency to
+ *		open-loop voltage mappings.
+ * @pdev:		Pointer to the platform device
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cprh_kbss_populate_opp_table(struct cpr3_controller *ctrl)
+{
+	struct device *dev = ctrl->dev;
+	struct cpr3_regulator *vreg = &ctrl->thread[0].vreg[0];
+	struct cpr3_corner *corner;
+	int rc, i;
+
+	for (i = 0; i < vreg->corner_count; i++) {
+		corner = &vreg->corner[i];
+		if (!corner->proc_freq) {
+			/*
+			 * 0 MHz indicates this corner is not to be
+			 * used as active DCVS set point. Don't add it
+			 * to the OPP table.
+			 */
+			continue;
+		}
+		rc = dev_pm_opp_add(dev, corner->proc_freq, i + 1);
+		if (rc) {
+			cpr3_err(ctrl, "could not add OPP for corner %d with frequency %u MHz, rc=%d\n",
+				 i + 1, corner->proc_freq, rc);
+			return rc;
+		}
+	}
+
+	return 0;
+}
+
+static int cprh_kbss_regulator_suspend(struct platform_device *pdev,
+				pm_message_t state)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_suspend(ctrl);
+}
+
+static int cprh_kbss_regulator_resume(struct platform_device *pdev)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_resume(ctrl);
+}
+
+/* Data corresponds to the SoC revision */
+static const struct of_device_id cprh_regulator_match_table[] = {
+	{
+		.compatible =  "qcom,cprh-msm8998-v1-kbss-regulator",
+		.data = (void *)(uintptr_t)MSM8998_V1_SOC_ID,
+	},
+	{
+		.compatible = "qcom,cprh-msm8998-v2-kbss-regulator",
+		.data = (void *)(uintptr_t)MSM8998_V2_SOC_ID,
+	},
+	{
+		.compatible = "qcom,cprh-msm8998-kbss-regulator",
+		.data = (void *)(uintptr_t)MSM8998_V2_SOC_ID,
+	},
+	{
+		.compatible = "qcom,cprh-sdm660-kbss-regulator",
+		.data = (void *)(uintptr_t)SDM660_SOC_ID,
+	},
+	{}
+};
+
+static int cprh_kbss_regulator_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	const struct of_device_id *match;
+	struct cpr3_controller *ctrl;
+	int rc;
+
+	if (!dev->of_node) {
+		dev_err(dev, "Device tree node is missing\n");
+		return -EINVAL;
+	}
+
+	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
+	if (!ctrl)
+		return -ENOMEM;
+
+	ctrl->dev = dev;
+	ctrl->cpr_allowed_hw = true;
+
+	rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
+					&ctrl->name);
+	if (rc) {
+		cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	match = of_match_node(cprh_regulator_match_table, dev->of_node);
+	if (match)
+		ctrl->soc_revision = (uintptr_t)match->data;
+	else
+		cpr3_err(ctrl, "could not find compatible string match\n");
+
+	rc = cpr3_map_fuse_base(ctrl, pdev);
+	if (rc) {
+		cpr3_err(ctrl, "could not map fuse base address\n");
+		return rc;
+	}
+
+	rc = cpr3_allocate_threads(ctrl, 0, 0);
+	if (rc) {
+		cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	if (ctrl->thread_count != 1) {
+		cpr3_err(ctrl, "expected 1 thread but found %d\n",
+			ctrl->thread_count);
+		return -EINVAL;
+	} else if (ctrl->thread[0].vreg_count != 1) {
+		cpr3_err(ctrl, "expected 1 regulator but found %d\n",
+			ctrl->thread[0].vreg_count);
+		return -EINVAL;
+	}
+
+	rc = cprh_kbss_init_controller(ctrl);
+	if (rc) {
+		if (rc != -EPROBE_DEFER)
+			cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	rc = cprh_kbss_init_thread(&ctrl->thread[0]);
+	if (rc) {
+		cpr3_err(ctrl, "thread initialization failed, rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = cprh_kbss_init_regulator(&ctrl->thread[0].vreg[0]);
+	if (rc) {
+		cpr3_err(&ctrl->thread[0].vreg[0], "regulator initialization failed, rc=%d\n",
+			 rc);
+		return rc;
+	}
+
+	rc = cprh_kbss_init_aging(ctrl);
+	if (rc) {
+		cpr3_err(ctrl, "failed to initialize aging configurations, rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	platform_set_drvdata(pdev, ctrl);
+
+	rc = cprh_kbss_populate_opp_table(ctrl);
+	if (rc)
+		panic("cprh-kbss-regulator OPP table initialization failed\n");
+
+	return cpr3_regulator_register(pdev, ctrl);
+}
+
+static int cprh_kbss_regulator_remove(struct platform_device *pdev)
+{
+	struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+	return cpr3_regulator_unregister(ctrl);
+}
+
+static struct platform_driver cprh_kbss_regulator_driver = {
+	.driver		= {
+		.name		= "qcom,cprh-kbss-regulator",
+		.of_match_table	= cprh_regulator_match_table,
+		.owner		= THIS_MODULE,
+	},
+	.probe		= cprh_kbss_regulator_probe,
+	.remove		= cprh_kbss_regulator_remove,
+	.suspend	= cprh_kbss_regulator_suspend,
+	.resume		= cprh_kbss_regulator_resume,
+};
+
+static int cpr_regulator_init(void)
+{
+	return platform_driver_register(&cprh_kbss_regulator_driver);
+}
+
+static void cpr_regulator_exit(void)
+{
+	platform_driver_unregister(&cprh_kbss_regulator_driver);
+}
+
+MODULE_DESCRIPTION("CPRh KBSS regulator driver");
+MODULE_LICENSE("GPL v2");
+
+arch_initcall(cpr_regulator_init);
+module_exit(cpr_regulator_exit);
diff --git a/drivers/regulator/kryo-regulator.c b/drivers/regulator/kryo-regulator.c
new file mode 100644
index 0000000..fd853e7
--- /dev/null
+++ b/drivers/regulator/kryo-regulator.c
@@ -0,0 +1,1105 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/cpu_pm.h>
+#include <linux/debugfs.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/of_address.h>
+#include <linux/platform_device.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/regulator/of_regulator.h>
+#include <linux/regulator/msm-ldo-regulator.h>
+
+#include <soc/qcom/spm.h>
+
+#define KRYO_REGULATOR_DRIVER_NAME	"kryo-regulator"
+
+#define kvreg_err(kvreg, message, ...) \
+	pr_err("%s: " message, (kvreg)->name, ##__VA_ARGS__)
+#define kvreg_info(kvreg, message, ...) \
+	pr_info("%s: " message, (kvreg)->name, ##__VA_ARGS__)
+#define kvreg_debug(kvreg, message, ...) \
+	pr_debug("%s: " message, (kvreg)->name, ##__VA_ARGS__)
+
+/* CPUSS power domain register offsets */
+#define APCC_PWR_CTL_OVERRIDE		0x38
+#define APCC_PGS_RET_STATUS		0xe0
+
+/* APCS CSR register offsets */
+#define APCS_VERSION		0xfd0
+
+/* Cluster power domain register offsets */
+#define APC_LDO_VREF_SET	0x08
+#define APC_RET_VREF_SET	0x10
+#define APC_PWR_GATE_MODE	0x18
+#define APC_PWR_GATE_DLY	0x28
+#define APC_LDO_CFG		0x40
+#define APC_APM_CFG		0x50
+#define APC_PGSCTL_STS		0x60
+
+/* Register bit mask definitions*/
+#define PWR_GATE_SWITCH_MODE_MASK	GENMASK(0, 0)
+#define VREF_MASK			GENMASK(6, 0)
+#define APM_CFG_MASK			GENMASK(7, 0)
+#define FSM_CUR_STATE_MASK		GENMASK(5, 4)
+#define APC_PWR_GATE_DLY_MASK		GENMASK(11, 0)
+#define APCC_PGS_MASK(cluster)		(0x7 << (0x3 * (cluster)))
+
+/* Register bit definitions */
+#define VREF_BIT_POS		0
+
+/* Maximum delay to wait before declaring a Power Gate Switch timed out */
+#define PWR_GATE_SWITCH_TIMEOUT_US	5
+
+#define PWR_GATE_SWITCH_MODE_LDO	0
+#define PWR_GATE_SWITCH_MODE_BHS	1
+#define MSM8996_CPUSS_VER_1P1	0x10010000
+
+#define LDO_N_VOLTAGES		0x80
+#define AFFINITY_LEVEL_M3	2
+#define SHARED_CPU_REG_NUM	0
+#define VDD_SUPPLY_STEP_UV	5000
+#define VDD_SUPPLY_MIN_UV	80000
+
+struct kryo_regulator {
+	struct list_head		link;
+	spinlock_t			slock;
+	struct regulator_desc		desc;
+	struct regulator_dev		*rdev;
+	struct regulator_dev		*retention_rdev;
+	struct regulator_desc		retention_desc;
+	const char			*name;
+	enum msm_ldo_supply_mode	mode;
+	enum msm_ldo_supply_mode	retention_mode;
+	enum msm_ldo_supply_mode	pre_lpm_state_mode;
+	void __iomem			*reg_base;
+	void __iomem			*pm_apcc_base;
+	struct dentry			*debugfs;
+	struct notifier_block		cpu_pm_notifier;
+	unsigned long			lpm_enter_count;
+	unsigned long			lpm_exit_count;
+	int				volt;
+	int				retention_volt;
+	int				headroom_volt;
+	int				pre_lpm_state_volt;
+	int				vref_func_step_volt;
+	int				vref_func_min_volt;
+	int				vref_func_max_volt;
+	int				vref_ret_step_volt;
+	int				vref_ret_min_volt;
+	int				vref_ret_max_volt;
+	int				cluster_num;
+	u32				ldo_config_init;
+	u32				apm_config_init;
+	u32				version;
+	bool				vreg_en;
+};
+
+static struct dentry *kryo_debugfs_base;
+static DEFINE_MUTEX(kryo_regulator_list_mutex);
+static LIST_HEAD(kryo_regulator_list);
+
+static bool is_between(int left, int right, int value)
+{
+	if (left >= right && left >= value && value >= right)
+		return true;
+	if (left <= right && left <= value && value <= right)
+		return true;
+
+	return false;
+}
+
+static void kryo_masked_write(struct kryo_regulator *kvreg,
+			      int reg, u32 mask, u32 val)
+{
+	u32 reg_val;
+
+	reg_val = readl_relaxed(kvreg->reg_base + reg);
+	reg_val &= ~mask;
+	reg_val |= (val & mask);
+
+	writel_relaxed(reg_val, kvreg->reg_base + reg);
+
+	/* Ensure write above completes */
+	mb();
+}
+
+static inline void kryo_pm_apcc_masked_write(struct kryo_regulator *kvreg,
+			       int reg, u32 mask, u32 val)
+{
+	u32 reg_val, orig_val;
+
+	reg_val = orig_val = readl_relaxed(kvreg->pm_apcc_base + reg);
+	reg_val &= ~mask;
+	reg_val |= (val & mask);
+
+	if (reg_val != orig_val) {
+		writel_relaxed(reg_val, kvreg->pm_apcc_base + reg);
+
+		/* Ensure write above completes */
+		mb();
+	}
+}
+
+static inline int kryo_decode_retention_volt(struct kryo_regulator *kvreg,
+					     int reg)
+{
+	return kvreg->vref_ret_min_volt + reg * kvreg->vref_ret_step_volt;
+}
+
+static inline int kryo_encode_retention_volt(struct kryo_regulator *kvreg,
+					     int volt)
+{
+	int encoded_volt = DIV_ROUND_UP(volt - kvreg->vref_ret_min_volt,
+				      kvreg->vref_ret_step_volt);
+
+	if (encoded_volt >= LDO_N_VOLTAGES || encoded_volt < 0)
+		return -EINVAL;
+	else
+		return encoded_volt;
+}
+
+static inline int kryo_decode_functional_volt(struct kryo_regulator *kvreg,
+					      int reg)
+{
+	return kvreg->vref_func_min_volt + reg * kvreg->vref_func_step_volt;
+}
+
+static inline int kryo_encode_functional_volt(struct kryo_regulator *kvreg,
+					      int volt)
+{
+	int encoded_volt = DIV_ROUND_UP(volt - kvreg->vref_func_min_volt,
+				      kvreg->vref_func_step_volt);
+
+	if (encoded_volt >= LDO_N_VOLTAGES || encoded_volt < 0)
+		return -EINVAL;
+	else
+		return encoded_volt;
+}
+
+/* Locks must be held by the caller */
+static int kryo_set_retention_volt(struct kryo_regulator *kvreg, int volt)
+{
+	int reg_val;
+
+	reg_val = kryo_encode_retention_volt(kvreg, volt);
+	if (reg_val < 0) {
+		kvreg_err(kvreg, "unsupported LDO retention voltage, rc=%d\n",
+			  reg_val);
+		return reg_val;
+	}
+
+	kryo_masked_write(kvreg, APC_RET_VREF_SET, VREF_MASK,
+			   reg_val << VREF_BIT_POS);
+
+	kvreg->retention_volt = kryo_decode_retention_volt(kvreg, reg_val);
+	kvreg_debug(kvreg, "Set LDO retention voltage=%d uV (0x%x)\n",
+		    kvreg->retention_volt, reg_val);
+
+	return 0;
+}
+
+/* Locks must be held by the caller */
+static int kryo_set_ldo_volt(struct kryo_regulator *kvreg, int volt)
+{
+	int reg_val;
+
+	/*
+	 * Assume the consumer ensures the requested voltage satisfies the
+	 * headroom and adjustment voltage requirements. The value may be
+	 * rounded up if necessary, to match the LDO resolution. Configure it.
+	 */
+	reg_val = kryo_encode_functional_volt(kvreg, volt);
+	if (reg_val < 0) {
+		kvreg_err(kvreg, "unsupported LDO functional voltage, rc=%d\n",
+			  reg_val);
+		return reg_val;
+	}
+
+	kryo_masked_write(kvreg, APC_LDO_VREF_SET, VREF_MASK,
+			   reg_val << VREF_BIT_POS);
+
+	kvreg->volt = kryo_decode_functional_volt(kvreg, reg_val);
+	kvreg_debug(kvreg, "Set LDO voltage=%d uV (0x%x)\n",
+		    kvreg->volt, reg_val);
+
+	return 0;
+}
+
+/* Locks must be held by the caller */
+static int kryo_configure_mode(struct kryo_regulator *kvreg,
+				enum msm_ldo_supply_mode mode)
+{
+	u32 reg;
+	int timeout = PWR_GATE_SWITCH_TIMEOUT_US;
+
+	/* Configure LDO or BHS mode */
+	kryo_masked_write(kvreg, APC_PWR_GATE_MODE, PWR_GATE_SWITCH_MODE_MASK,
+			  mode == LDO_MODE ? PWR_GATE_SWITCH_MODE_LDO
+			  : PWR_GATE_SWITCH_MODE_BHS);
+
+	/* Complete register write before reading HW status register */
+	mb();
+
+	/* Delay to allow Power Gate Switch FSM to reach idle state */
+	while (timeout > 0) {
+		reg = readl_relaxed(kvreg->reg_base + APC_PGSCTL_STS);
+		if (!(reg & FSM_CUR_STATE_MASK))
+			break;
+
+		udelay(1);
+		timeout--;
+	}
+
+	if (timeout == 0) {
+		kvreg_err(kvreg, "PGS switch to %s failed. APC_PGSCTL_STS=0x%x\n",
+			  mode == LDO_MODE ? "LDO" : "BHS", reg);
+		return -ETIMEDOUT;
+	}
+
+	kvreg->mode = mode;
+	kvreg_debug(kvreg, "using %s mode\n", mode == LDO_MODE ? "LDO" : "BHS");
+
+	return 0;
+}
+
+static int kryo_regulator_enable(struct regulator_dev *rdev)
+{
+	struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
+	int rc;
+	unsigned long flags;
+
+	if (kvreg->vreg_en == true)
+		return 0;
+
+	spin_lock_irqsave(&kvreg->slock, flags);
+	rc = kryo_set_ldo_volt(kvreg, kvreg->volt);
+	if (rc) {
+		kvreg_err(kvreg, "set voltage failed, rc=%d\n", rc);
+		goto done;
+	}
+
+	kvreg->vreg_en = true;
+	kvreg_debug(kvreg, "enabled\n");
+
+done:
+	spin_unlock_irqrestore(&kvreg->slock, flags);
+
+	return rc;
+}
+
+static int kryo_regulator_disable(struct regulator_dev *rdev)
+{
+	struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
+	int rc;
+	unsigned long flags;
+
+	if (kvreg->vreg_en == false)
+		return 0;
+
+	spin_lock_irqsave(&kvreg->slock, flags);
+	kvreg->vreg_en = false;
+	kvreg_debug(kvreg, "disabled\n");
+	spin_unlock_irqrestore(&kvreg->slock, flags);
+
+	return rc;
+}
+
+static int kryo_regulator_is_enabled(struct regulator_dev *rdev)
+{
+	struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
+
+	return kvreg->vreg_en;
+}
+
+static int kryo_regulator_set_voltage(struct regulator_dev *rdev,
+			int min_volt, int max_volt, unsigned int *selector)
+{
+	struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
+	int rc;
+	unsigned long flags;
+
+	spin_lock_irqsave(&kvreg->slock, flags);
+
+	if (!kvreg->vreg_en) {
+		kvreg->volt = min_volt;
+		spin_unlock_irqrestore(&kvreg->slock, flags);
+		return 0;
+	}
+
+	rc = kryo_set_ldo_volt(kvreg, min_volt);
+	if (rc)
+		kvreg_err(kvreg, "set voltage failed, rc=%d\n", rc);
+
+	spin_unlock_irqrestore(&kvreg->slock, flags);
+
+	return rc;
+}
+
+static int kryo_regulator_get_voltage(struct regulator_dev *rdev)
+{
+	struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
+
+	return kvreg->volt;
+}
+
+static int kryo_regulator_set_bypass(struct regulator_dev *rdev,
+				  bool enable)
+{
+	struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
+	int rc;
+	unsigned long flags;
+
+	spin_lock_irqsave(&kvreg->slock, flags);
+
+	/*
+	 * LDO Vref voltage must be programmed before switching
+	 * modes to ensure stable operation.
+	 */
+	rc = kryo_set_ldo_volt(kvreg, kvreg->volt);
+	if (rc)
+		kvreg_err(kvreg, "set voltage failed, rc=%d\n", rc);
+
+	rc = kryo_configure_mode(kvreg, enable);
+	if (rc)
+		kvreg_err(kvreg, "could not configure to %s mode\n",
+			  enable == LDO_MODE ? "LDO" : "BHS");
+	spin_unlock_irqrestore(&kvreg->slock, flags);
+
+	return rc;
+}
+
+static int kryo_regulator_get_bypass(struct regulator_dev *rdev,
+				  bool *enable)
+{
+	struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
+
+	*enable = kvreg->mode;
+
+	return 0;
+}
+
+static int kryo_regulator_list_voltage(struct regulator_dev *rdev,
+				       unsigned int selector)
+{
+	struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
+
+	if (selector < kvreg->desc.n_voltages)
+		return kryo_decode_functional_volt(kvreg, selector);
+	else
+		return 0;
+}
+
+static int kryo_regulator_retention_set_voltage(struct regulator_dev *rdev,
+			int min_volt, int max_volt, unsigned int *selector)
+{
+	struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
+	int rc;
+	unsigned long flags;
+
+	spin_lock_irqsave(&kvreg->slock, flags);
+	rc = kryo_set_retention_volt(kvreg, min_volt);
+	if (rc)
+		kvreg_err(kvreg, "set voltage failed, rc=%d\n", rc);
+
+	spin_unlock_irqrestore(&kvreg->slock, flags);
+
+	return rc;
+}
+
+static int kryo_regulator_retention_get_voltage(struct regulator_dev *rdev)
+{
+	struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
+
+	return kvreg->retention_volt;
+}
+
+static int kryo_regulator_retention_set_bypass(struct regulator_dev *rdev,
+				  bool enable)
+{
+	struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
+	int timeout = PWR_GATE_SWITCH_TIMEOUT_US;
+	int rc = 0;
+	u32 reg_val;
+	unsigned long flags;
+
+	spin_lock_irqsave(&kvreg->slock, flags);
+
+	kryo_pm_apcc_masked_write(kvreg,
+				  APCC_PWR_CTL_OVERRIDE,
+				  APCC_PGS_MASK(kvreg->cluster_num),
+				  enable ?
+				  0 : APCC_PGS_MASK(kvreg->cluster_num));
+
+	/* Ensure write above completes before proceeding */
+	mb();
+
+	if (enable == BHS_MODE && kvreg->version < MSM8996_CPUSS_VER_1P1) {
+		/* No status register, delay worst case */
+		udelay(PWR_GATE_SWITCH_TIMEOUT_US);
+	} else if (enable == BHS_MODE) {
+		while (timeout > 0) {
+			reg_val = readl_relaxed(kvreg->pm_apcc_base
+						+ APCC_PGS_RET_STATUS);
+			if (!(reg_val & APCC_PGS_MASK(kvreg->cluster_num)))
+				break;
+
+			udelay(1);
+			timeout--;
+		}
+
+		if (timeout == 0) {
+			kvreg_err(kvreg, "PGS switch timed out. APCC_PGS_RET_STATUS=0x%x\n",
+				  reg_val);
+			rc = -ETIMEDOUT;
+			goto done;
+		}
+	}
+
+	/* Bypassed LDO retention operation == disallow LDO retention */
+	kvreg_debug(kvreg, "%s LDO retention\n",
+		    enable ? "enabled" : "disabled");
+	kvreg->retention_mode = enable == LDO_MODE ? LDO_MODE
+		: BHS_MODE;
+
+done:
+	spin_unlock_irqrestore(&kvreg->slock, flags);
+
+	return rc;
+}
+
+static int kryo_regulator_retention_get_bypass(struct regulator_dev *rdev,
+				  bool *enable)
+{
+	struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
+
+	*enable = kvreg->retention_mode;
+
+	return 0;
+}
+
+static int kryo_regulator_retention_list_voltage(struct regulator_dev *rdev,
+				       unsigned int selector)
+{
+	struct kryo_regulator *kvreg = rdev_get_drvdata(rdev);
+
+	if (selector < kvreg->retention_desc.n_voltages)
+		return kryo_decode_retention_volt(kvreg, selector);
+	else
+		return 0;
+}
+
+static struct regulator_ops kryo_regulator_ops = {
+	.enable			= kryo_regulator_enable,
+	.disable		= kryo_regulator_disable,
+	.is_enabled		= kryo_regulator_is_enabled,
+	.set_voltage		= kryo_regulator_set_voltage,
+	.get_voltage		= kryo_regulator_get_voltage,
+	.set_bypass		= kryo_regulator_set_bypass,
+	.get_bypass		= kryo_regulator_get_bypass,
+	.list_voltage		= kryo_regulator_list_voltage,
+};
+
+static struct regulator_ops kryo_regulator_retention_ops = {
+	.set_voltage		= kryo_regulator_retention_set_voltage,
+	.get_voltage		= kryo_regulator_retention_get_voltage,
+	.set_bypass		= kryo_regulator_retention_set_bypass,
+	.get_bypass		= kryo_regulator_retention_get_bypass,
+	.list_voltage		= kryo_regulator_retention_list_voltage,
+};
+
+static void kryo_ldo_voltage_init(struct kryo_regulator *kvreg)
+{
+	kryo_set_retention_volt(kvreg, kvreg->retention_volt);
+	kryo_set_ldo_volt(kvreg, kvreg->volt);
+}
+
+#define APC_PWR_GATE_DLY_INIT		0x00000101
+static int kryo_hw_init(struct kryo_regulator *kvreg)
+{
+	/* Set up VREF_LDO and VREF_RET */
+	kryo_ldo_voltage_init(kvreg);
+
+	/* Program LDO and APM configuration registers */
+	writel_relaxed(kvreg->ldo_config_init, kvreg->reg_base + APC_LDO_CFG);
+
+	kryo_masked_write(kvreg, APC_APM_CFG, APM_CFG_MASK,
+			  kvreg->apm_config_init);
+
+	/* Configure power gate sequencer delay */
+	kryo_masked_write(kvreg, APC_PWR_GATE_DLY, APC_PWR_GATE_DLY_MASK,
+			   APC_PWR_GATE_DLY_INIT);
+
+	/* Allow LDO retention mode only when it's safe to do so */
+	kryo_pm_apcc_masked_write(kvreg,
+				  APCC_PWR_CTL_OVERRIDE,
+				  APCC_PGS_MASK(kvreg->cluster_num),
+				  APCC_PGS_MASK(kvreg->cluster_num));
+
+	/* Complete the above writes before other accesses */
+	mb();
+
+	return 0;
+}
+
+static ssize_t kryo_dbg_mode_read(struct file *file, char __user *buff,
+				   size_t count, loff_t *ppos)
+{
+	struct kryo_regulator *kvreg = file->private_data;
+	char buf[10];
+	int len = 0;
+	u32 reg_val;
+	unsigned long flags;
+
+	if (!kvreg)
+		return -ENODEV;
+
+	/* Confirm HW state matches Kryo regulator device state */
+	spin_lock_irqsave(&kvreg->slock, flags);
+	reg_val = readl_relaxed(kvreg->reg_base + APC_PWR_GATE_MODE);
+	if (((reg_val & PWR_GATE_SWITCH_MODE_MASK) == PWR_GATE_SWITCH_MODE_LDO
+	     && kvreg->mode != LDO_MODE) ||
+	    ((reg_val & PWR_GATE_SWITCH_MODE_MASK) == PWR_GATE_SWITCH_MODE_BHS
+	     && kvreg->mode != BHS_MODE)) {
+		kvreg_err(kvreg, "HW state disagrees on PWR gate mode! reg=0x%x\n",
+			  reg_val);
+		len = snprintf(buf, sizeof(buf), "ERR\n");
+	} else {
+		len = snprintf(buf, sizeof(buf), "%s\n",
+			       kvreg->mode == LDO_MODE ?
+			       "LDO" : "BHS");
+	}
+	spin_unlock_irqrestore(&kvreg->slock, flags);
+
+	return simple_read_from_buffer(buff, count, ppos, buf, len);
+}
+
+static int kryo_dbg_base_open(struct inode *inode, struct file *file)
+{
+	file->private_data = inode->i_private;
+	return 0;
+}
+
+static const struct file_operations kryo_dbg_mode_fops = {
+	.open = kryo_dbg_base_open,
+	.read = kryo_dbg_mode_read,
+};
+
+static void kryo_debugfs_init(struct kryo_regulator *kvreg)
+{
+	struct dentry *temp;
+
+	if (IS_ERR_OR_NULL(kryo_debugfs_base)) {
+		if (PTR_ERR(kryo_debugfs_base) != -ENODEV)
+			kvreg_err(kvreg, "Base directory missing, cannot create debugfs nodes rc=%ld\n",
+				  PTR_ERR(kryo_debugfs_base));
+		return;
+	}
+
+	kvreg->debugfs = debugfs_create_dir(kvreg->name, kryo_debugfs_base);
+
+	if (IS_ERR_OR_NULL(kvreg->debugfs)) {
+		kvreg_err(kvreg, "debugfs directory creation failed rc=%ld\n",
+			  PTR_ERR(kvreg->debugfs));
+		return;
+	}
+
+	temp = debugfs_create_file("mode", 0444, kvreg->debugfs,
+				   kvreg, &kryo_dbg_mode_fops);
+
+	if (IS_ERR_OR_NULL(temp)) {
+		kvreg_err(kvreg, "mode node creation failed rc=%ld\n",
+			PTR_ERR(temp));
+		return;
+	}
+}
+
+static void kryo_debugfs_deinit(struct kryo_regulator *kvreg)
+{
+	debugfs_remove_recursive(kvreg->debugfs);
+}
+
+static void kryo_debugfs_base_init(void)
+{
+	kryo_debugfs_base = debugfs_create_dir(KRYO_REGULATOR_DRIVER_NAME,
+						NULL);
+	if (IS_ERR_OR_NULL(kryo_debugfs_base)) {
+		if (PTR_ERR(kryo_debugfs_base) != -ENODEV)
+			pr_err("%s debugfs base directory creation failed rc=%ld\n",
+			       KRYO_REGULATOR_DRIVER_NAME,
+			       PTR_ERR(kryo_debugfs_base));
+	}
+}
+
+static void kryo_debugfs_base_remove(void)
+{
+	debugfs_remove_recursive(kryo_debugfs_base);
+}
+
+static int kryo_regulator_init_data(struct platform_device *pdev,
+				    struct kryo_regulator *kvreg)
+{
+	int rc = 0;
+	struct device *dev = &pdev->dev;
+	struct resource *res;
+	void __iomem *temp;
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pm-apc");
+	if (!res) {
+		dev_err(dev, "PM APC register address missing\n");
+		return -EINVAL;
+	}
+
+	kvreg->reg_base = devm_ioremap(dev, res->start, resource_size(res));
+	if (!kvreg->reg_base) {
+		dev_err(dev, "failed to map PM APC registers\n");
+		return -ENOMEM;
+	}
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pm-apcc");
+	if (!res) {
+		dev_err(dev, "PM APCC register address missing\n");
+		return -EINVAL;
+	}
+
+	kvreg->pm_apcc_base = devm_ioremap(dev, res->start, resource_size(res));
+	if (!kvreg->pm_apcc_base) {
+		dev_err(dev, "failed to map PM APCC registers\n");
+		return -ENOMEM;
+	}
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "apcs-csr");
+	if (!res) {
+		dev_err(dev, "missing APCS CSR physical base address");
+		return -EINVAL;
+	}
+
+	temp = ioremap(res->start, resource_size(res));
+	if (!temp) {
+		dev_err(dev, "failed to map APCS CSR registers\n");
+		return -ENOMEM;
+	}
+
+	kvreg->version = readl_relaxed(temp + APCS_VERSION);
+	iounmap(temp);
+
+	rc = of_property_read_u32(dev->of_node,
+				  "qcom,vref-functional-step-voltage",
+				  &kvreg->vref_func_step_volt);
+	if (rc < 0) {
+		dev_err(dev, "qcom,vref-functional-step-voltage missing rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(dev->of_node,
+				  "qcom,vref-functional-min-voltage",
+				  &kvreg->vref_func_min_volt);
+	if (rc < 0) {
+		dev_err(dev, "qcom,vref-functional-min-voltage missing rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	kvreg->vref_func_max_volt = kryo_decode_functional_volt(kvreg,
+							LDO_N_VOLTAGES - 1);
+
+	rc = of_property_read_u32(dev->of_node,
+				  "qcom,vref-retention-step-voltage",
+				  &kvreg->vref_ret_step_volt);
+	if (rc < 0) {
+		dev_err(dev, "qcom,vref-retention-step-voltage missing rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(dev->of_node,
+				  "qcom,vref-retention-min-voltage",
+				  &kvreg->vref_ret_min_volt);
+	if (rc < 0) {
+		dev_err(dev, "qcom,vref-retention-min-voltage missing rc=%d\n",
+			rc);
+		return rc;
+	}
+
+	kvreg->vref_ret_max_volt = kryo_decode_retention_volt(kvreg,
+						      LDO_N_VOLTAGES - 1);
+
+	rc = of_property_read_u32(dev->of_node, "qcom,ldo-default-voltage",
+				  &kvreg->volt);
+	if (rc < 0) {
+		dev_err(dev, "qcom,ldo-default-voltage missing rc=%d\n", rc);
+		return rc;
+	}
+	if (!is_between(kvreg->vref_func_min_volt,
+			kvreg->vref_func_max_volt,
+			kvreg->volt)) {
+		dev_err(dev, "qcom,ldo-default-voltage=%d uV outside allowed range\n",
+				kvreg->volt);
+		return -EINVAL;
+	}
+
+	rc = of_property_read_u32(dev->of_node, "qcom,retention-voltage",
+				  &kvreg->retention_volt);
+	if (rc < 0) {
+		dev_err(dev, "qcom,retention-voltage missing rc=%d\n", rc);
+		return rc;
+	}
+	if (!is_between(kvreg->vref_ret_min_volt,
+			kvreg->vref_ret_max_volt,
+			kvreg->retention_volt)) {
+		dev_err(dev, "qcom,retention-voltage=%d uV outside allowed range\n",
+			kvreg->retention_volt);
+		return -EINVAL;
+	}
+
+	rc = of_property_read_u32(dev->of_node, "qcom,ldo-headroom-voltage",
+				  &kvreg->headroom_volt);
+	if (rc < 0) {
+		dev_err(dev, "qcom,ldo-headroom-voltage missing rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(dev->of_node, "qcom,ldo-config-init",
+				  &kvreg->ldo_config_init);
+	if (rc < 0) {
+		dev_err(dev, "qcom,ldo-config-init missing rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(dev->of_node, "qcom,apm-config-init",
+				  &kvreg->apm_config_init);
+	if (rc < 0) {
+		dev_err(dev, "qcom,apm-config-init missing rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(dev->of_node, "qcom,cluster-num",
+				  &kvreg->cluster_num);
+	if (rc < 0) {
+		dev_err(dev, "qcom,cluster-num missing rc=%d\n", rc);
+		return rc;
+	}
+
+	return rc;
+}
+
+static int kryo_regulator_retention_init(struct kryo_regulator *kvreg,
+				   struct platform_device *pdev,
+				   struct device_node *ret_node)
+{
+	struct device *dev = &pdev->dev;
+	struct regulator_init_data *init_data;
+	struct regulator_config reg_config = {};
+	int rc = 0;
+
+	init_data = of_get_regulator_init_data(dev, ret_node,
+			&kvreg->retention_desc);
+	if (!init_data) {
+		kvreg_err(kvreg, "regulator init data is missing\n");
+		return -EINVAL;
+	}
+
+	if (!init_data->constraints.name) {
+		kvreg_err(kvreg, "regulator name is missing from constraints\n");
+		return -EINVAL;
+	}
+
+	init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_BYPASS
+		| REGULATOR_CHANGE_VOLTAGE;
+	init_data->constraints.input_uV = init_data->constraints.max_uV;
+
+	kvreg->retention_desc.name		= init_data->constraints.name;
+	kvreg->retention_desc.n_voltages	= LDO_N_VOLTAGES;
+	kvreg->retention_desc.ops		= &kryo_regulator_retention_ops;
+	kvreg->retention_desc.type		= REGULATOR_VOLTAGE;
+	kvreg->retention_desc.owner		= THIS_MODULE;
+
+	reg_config.dev = dev;
+	reg_config.init_data = init_data;
+	reg_config.driver_data = kvreg;
+	reg_config.of_node = ret_node;
+	kvreg->retention_rdev = regulator_register(&kvreg->retention_desc,
+						   &reg_config);
+	if (IS_ERR(kvreg->retention_rdev)) {
+		rc = PTR_ERR(kvreg->retention_rdev);
+		kvreg_err(kvreg, "regulator_register failed, rc=%d\n", rc);
+		return rc;
+	}
+
+	return rc;
+}
+
+static int kryo_regulator_lpm_prepare(struct kryo_regulator *kvreg)
+{
+	int vdd_volt_uv, bhs_volt, vdd_vlvl = 0;
+	unsigned long flags;
+
+	spin_lock_irqsave(&kvreg->slock, flags);
+
+	kvreg->pre_lpm_state_mode = kvreg->mode;
+	kvreg->pre_lpm_state_volt = kvreg->volt;
+
+	if (kvreg->mode == LDO_MODE) {
+		if (!vdd_vlvl) {
+			vdd_vlvl = msm_spm_get_vdd(SHARED_CPU_REG_NUM);
+			if (vdd_vlvl < 0) {
+				kvreg_err(kvreg, "could not get vdd supply voltage level, rc=%d\n",
+					  vdd_vlvl);
+				spin_unlock_irqrestore(&kvreg->slock, flags);
+				return NOTIFY_BAD;
+			}
+
+			vdd_volt_uv = vdd_vlvl * VDD_SUPPLY_STEP_UV
+				+ VDD_SUPPLY_MIN_UV;
+		}
+		kvreg_debug(kvreg, "switching to BHS mode, vdd_apcc=%d uV, current LDO Vref=%d, LPM enter count=%lx\n",
+			    vdd_volt_uv, kvreg->volt, kvreg->lpm_enter_count);
+
+		/*
+		 * Program vdd supply minus LDO headroom as voltage.
+		 * Cap this value to the maximum physically supported
+		 * LDO voltage, if necessary.
+		 */
+		bhs_volt = vdd_volt_uv - kvreg->headroom_volt;
+		if (bhs_volt > kvreg->vref_func_max_volt) {
+			kvreg_debug(kvreg, "limited to LDO output of %d uV when switching to BHS mode\n",
+				    kvreg->vref_func_max_volt);
+			bhs_volt = kvreg->vref_func_max_volt;
+		}
+
+		kryo_set_ldo_volt(kvreg, bhs_volt);
+
+		/* Switch Power Gate Mode */
+		kryo_configure_mode(kvreg, BHS_MODE);
+	}
+
+	kvreg->lpm_enter_count++;
+	spin_unlock_irqrestore(&kvreg->slock, flags);
+
+	return NOTIFY_OK;
+}
+
+static int kryo_regulator_lpm_resume(struct kryo_regulator *kvreg)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&kvreg->slock, flags);
+
+	if (kvreg->mode == BHS_MODE &&
+	    kvreg->pre_lpm_state_mode == LDO_MODE) {
+		kvreg_debug(kvreg, "switching to LDO mode, cached LDO Vref=%d, LPM exit count=%lx\n",
+			    kvreg->pre_lpm_state_volt, kvreg->lpm_exit_count);
+
+		/*
+		 * Cached voltage value corresponds to vdd supply minus
+		 * LDO headroom, reprogram it.
+		 */
+		kryo_set_ldo_volt(kvreg, kvreg->volt);
+
+		/* Switch Power Gate Mode */
+		kryo_configure_mode(kvreg, LDO_MODE);
+
+		/* Request final LDO output voltage */
+		kryo_set_ldo_volt(kvreg, kvreg->pre_lpm_state_volt);
+	}
+
+	kvreg->lpm_exit_count++;
+	spin_unlock_irqrestore(&kvreg->slock, flags);
+
+	if (kvreg->lpm_exit_count != kvreg->lpm_enter_count) {
+		kvreg_err(kvreg, "LPM entry/exit counter mismatch, this is not expected: enter=%lx exit=%lx\n",
+			  kvreg->lpm_enter_count, kvreg->lpm_exit_count);
+		BUG_ON(1);
+	}
+
+	return NOTIFY_OK;
+}
+
+static int kryo_regulator_cpu_pm_callback(struct notifier_block *self,
+					 unsigned long cmd, void *v)
+{
+	struct kryo_regulator *kvreg = container_of(self, struct kryo_regulator,
+						    cpu_pm_notifier);
+	unsigned long aff_level = (unsigned long) v;
+	int rc = NOTIFY_OK;
+
+	switch (cmd) {
+	case CPU_CLUSTER_PM_ENTER:
+		if (aff_level == AFFINITY_LEVEL_M3)
+			rc = kryo_regulator_lpm_prepare(kvreg);
+		break;
+	case CPU_CLUSTER_PM_EXIT:
+		if (aff_level == AFFINITY_LEVEL_M3)
+			rc = kryo_regulator_lpm_resume(kvreg);
+		break;
+	}
+
+	return rc;
+}
+
+static int kryo_regulator_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct kryo_regulator *kvreg;
+	struct regulator_config reg_config = {};
+	struct regulator_init_data *init_data = pdev->dev.platform_data;
+	struct device_node *child;
+	int rc = 0;
+
+	if (!dev->of_node) {
+		dev_err(dev, "Device tree node is missing\n");
+		return -ENODEV;
+	}
+
+	init_data = of_get_regulator_init_data(dev, dev->of_node, NULL);
+
+	if (!init_data) {
+		dev_err(dev, "regulator init data is missing\n");
+		return -EINVAL;
+	}
+
+	if (!init_data->constraints.name) {
+		dev_err(dev, "regulator name is missing from constraints\n");
+		return -EINVAL;
+	}
+
+	init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE
+		| REGULATOR_CHANGE_BYPASS | REGULATOR_CHANGE_STATUS;
+	init_data->constraints.input_uV = init_data->constraints.max_uV;
+
+	kvreg = devm_kzalloc(dev, sizeof(*kvreg), GFP_KERNEL);
+	if (!kvreg)
+		return -ENOMEM;
+
+	rc = kryo_regulator_init_data(pdev, kvreg);
+	if (rc) {
+		dev_err(dev, "could not parse and ioremap all device tree properties\n");
+		return rc;
+	}
+
+	spin_lock_init(&kvreg->slock);
+	kvreg->name		= init_data->constraints.name;
+	kvreg->desc.name	= kvreg->name;
+	kvreg->desc.n_voltages	= LDO_N_VOLTAGES;
+	kvreg->desc.ops		= &kryo_regulator_ops;
+	kvreg->desc.type	= REGULATOR_VOLTAGE;
+	kvreg->desc.owner	= THIS_MODULE;
+	kvreg->mode		= BHS_MODE;
+
+	for_each_available_child_of_node(dev->of_node, child) {
+		kryo_regulator_retention_init(kvreg, pdev, child);
+		if (rc) {
+			dev_err(dev, "could not initialize retention regulator, rc=%d\n",
+				rc);
+			return rc;
+		}
+		break;
+	}
+
+	/* CPUSS PM Register Initialization */
+	rc = kryo_hw_init(kvreg);
+	if (rc) {
+		dev_err(dev, "unable to perform CPUSS PM initialization sequence\n");
+		return rc;
+	}
+
+	reg_config.dev = dev;
+	reg_config.init_data = init_data;
+	reg_config.driver_data = kvreg;
+	reg_config.of_node = dev->of_node;
+	kvreg->rdev = regulator_register(&kvreg->desc, &reg_config);
+	if (IS_ERR(kvreg->rdev)) {
+		rc = PTR_ERR(kvreg->rdev);
+		kvreg_err(kvreg, "regulator_register failed, rc=%d\n", rc);
+		return rc;
+	}
+
+	platform_set_drvdata(pdev, kvreg);
+	kryo_debugfs_init(kvreg);
+
+	mutex_lock(&kryo_regulator_list_mutex);
+	list_add_tail(&kvreg->link, &kryo_regulator_list);
+	mutex_unlock(&kryo_regulator_list_mutex);
+
+	kvreg->cpu_pm_notifier.notifier_call = kryo_regulator_cpu_pm_callback;
+	cpu_pm_register_notifier(&kvreg->cpu_pm_notifier);
+	kvreg_debug(kvreg, "registered cpu pm notifier\n");
+
+	kvreg_info(kvreg, "default LDO functional volt=%d uV, LDO retention volt=%d uV, Vref func=%d + %d*(val), cluster-num=%d\n",
+		   kvreg->volt, kvreg->retention_volt,
+		   kvreg->vref_func_min_volt,
+		   kvreg->vref_func_step_volt,
+		   kvreg->cluster_num);
+
+	return rc;
+}
+
+static int kryo_regulator_remove(struct platform_device *pdev)
+{
+	struct kryo_regulator *kvreg = platform_get_drvdata(pdev);
+
+	mutex_lock(&kryo_regulator_list_mutex);
+	list_del(&kvreg->link);
+	mutex_unlock(&kryo_regulator_list_mutex);
+
+	cpu_pm_unregister_notifier(&kvreg->cpu_pm_notifier);
+	regulator_unregister(kvreg->rdev);
+	platform_set_drvdata(pdev, NULL);
+	kryo_debugfs_deinit(kvreg);
+
+	return 0;
+}
+
+static const struct of_device_id kryo_regulator_match_table[] = {
+	{ .compatible = "qcom,kryo-regulator", },
+	{}
+};
+
+static struct platform_driver kryo_regulator_driver = {
+	.probe	= kryo_regulator_probe,
+	.remove	= kryo_regulator_remove,
+	.driver	= {
+		.name		= KRYO_REGULATOR_DRIVER_NAME,
+		.of_match_table	= kryo_regulator_match_table,
+		.owner		= THIS_MODULE,
+	},
+};
+
+static int __init kryo_regulator_init(void)
+{
+	kryo_debugfs_base_init();
+	return platform_driver_register(&kryo_regulator_driver);
+}
+
+static void __exit kryo_regulator_exit(void)
+{
+	platform_driver_unregister(&kryo_regulator_driver);
+	kryo_debugfs_base_remove();
+}
+
+MODULE_DESCRIPTION("Kryo regulator driver");
+MODULE_LICENSE("GPL v2");
+
+arch_initcall(kryo_regulator_init);
+module_exit(kryo_regulator_exit);
diff --git a/drivers/regulator/mem-acc-regulator.c b/drivers/regulator/mem-acc-regulator.c
new file mode 100644
index 0000000..4c03dec
--- /dev/null
+++ b/drivers/regulator/mem-acc-regulator.c
@@ -0,0 +1,1387 @@
+/* Copyright (c) 2014-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+#define pr_fmt(fmt)	"ACC: %s: " fmt, __func__
+
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/err.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/io.h>
+#include <linux/platform_device.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/regulator/of_regulator.h>
+#include <linux/string.h>
+#include <soc/qcom/scm.h>
+
+#define MEM_ACC_DEFAULT_SEL_SIZE	2
+
+#define BYTES_PER_FUSE_ROW		8
+
+/* mem-acc config flags */
+
+enum {
+	MEM_ACC_USE_CORNER_ACC_MAP	= BIT(0),
+	MEM_ACC_USE_ADDR_VAL_MAP	= BIT(1),
+};
+
+#define FUSE_MAP_NO_MATCH		(-1)
+#define FUSE_PARAM_MATCH_ANY		(-1)
+#define PARAM_MATCH_ANY			(-1)
+
+enum {
+	MEMORY_L1,
+	MEMORY_L2,
+	MEMORY_MAX,
+};
+
+#define MEM_ACC_TYPE_MAX		6
+
+/**
+ * struct acc_reg_value - Acc register configuration structure
+ * @addr_index:	An index in to phys_reg_addr_list and remap_reg_addr_list
+ *		to get the ACC register physical address and remapped address.
+ * @reg_val:	Value to program in to the register mapped by addr_index.
+ */
+struct acc_reg_value {
+	u32		addr_index;
+	u32		reg_val;
+};
+
+struct corner_acc_reg_config {
+	struct acc_reg_value	*reg_config_list;
+	int			max_reg_config_len;
+};
+
+struct mem_acc_regulator {
+	struct device		*dev;
+	struct regulator_desc	rdesc;
+	struct regulator_dev	*rdev;
+
+	int			corner;
+	bool			mem_acc_supported[MEMORY_MAX];
+	bool			mem_acc_custom_supported[MEMORY_MAX];
+
+	u32			*acc_sel_mask[MEMORY_MAX];
+	u32			*acc_sel_bit_pos[MEMORY_MAX];
+	u32			acc_sel_bit_size[MEMORY_MAX];
+	u32			num_acc_sel[MEMORY_MAX];
+	u32			*acc_en_bit_pos;
+	u32			num_acc_en;
+	u32			*corner_acc_map;
+	u32			num_corners;
+	u32			override_fuse_value;
+	int			override_map_match;
+	int			override_map_count;
+
+
+	void __iomem		*acc_sel_base[MEMORY_MAX];
+	void __iomem		*acc_en_base;
+	phys_addr_t		acc_sel_addr[MEMORY_MAX];
+	phys_addr_t		acc_en_addr;
+	u32			flags;
+
+	void __iomem		*acc_custom_addr[MEMORY_MAX];
+	u32			*acc_custom_data[MEMORY_MAX];
+
+	phys_addr_t		mem_acc_type_addr[MEM_ACC_TYPE_MAX];
+	u32			*mem_acc_type_data;
+
+	/* eFuse parameters */
+	phys_addr_t		efuse_addr;
+	void __iomem		*efuse_base;
+
+	u32			num_acc_reg;
+	u32			*phys_reg_addr_list;
+	void __iomem		**remap_reg_addr_list;
+	struct corner_acc_reg_config	*corner_acc_reg_config;
+};
+
+static DEFINE_MUTEX(mem_acc_memory_mutex);
+
+static u64 mem_acc_read_efuse_row(struct mem_acc_regulator *mem_acc_vreg,
+					u32 row_num, bool use_tz_api)
+{
+	int rc;
+	u64 efuse_bits;
+	struct scm_desc desc = {0};
+	struct mem_acc_read_req {
+		u32 row_address;
+		int addr_type;
+	} req;
+
+	struct mem_acc_read_rsp {
+		u32 row_data[2];
+		u32 status;
+	} rsp;
+
+	if (!use_tz_api) {
+		efuse_bits = readq_relaxed(mem_acc_vreg->efuse_base
+			+ row_num * BYTES_PER_FUSE_ROW);
+		return efuse_bits;
+	}
+
+	desc.args[0] = req.row_address = mem_acc_vreg->efuse_addr +
+					row_num * BYTES_PER_FUSE_ROW;
+	desc.args[1] = req.addr_type = 0;
+	desc.arginfo = SCM_ARGS(2);
+	efuse_bits = 0;
+
+	if (!is_scm_armv8()) {
+		rc = scm_call(SCM_SVC_FUSE, SCM_FUSE_READ,
+			&req, sizeof(req), &rsp, sizeof(rsp));
+	} else {
+		rc = scm_call2(SCM_SIP_FNID(SCM_SVC_FUSE, SCM_FUSE_READ),
+				&desc);
+		rsp.row_data[0] = desc.ret[0];
+		rsp.row_data[1] = desc.ret[1];
+		rsp.status = desc.ret[2];
+	}
+
+	if (rc) {
+		pr_err("read row %d failed, err code = %d", row_num, rc);
+	} else {
+		efuse_bits = ((u64)(rsp.row_data[1]) << 32) +
+				(u64)rsp.row_data[0];
+	}
+
+	return efuse_bits;
+}
+
+static inline u32 apc_to_acc_corner(struct mem_acc_regulator *mem_acc_vreg,
+								int corner)
+{
+	/*
+	 * corner_acc_map maps the corner from index 0 and  APC corner value
+	 * starts from the value 1
+	 */
+	return mem_acc_vreg->corner_acc_map[corner - 1];
+}
+
+static void __update_acc_sel(struct mem_acc_regulator *mem_acc_vreg,
+						int corner, int mem_type)
+{
+	u32 acc_data, acc_data_old, i, bit, acc_corner;
+
+	acc_data = readl_relaxed(mem_acc_vreg->acc_sel_base[mem_type]);
+	acc_data_old = acc_data;
+	for (i = 0; i < mem_acc_vreg->num_acc_sel[mem_type]; i++) {
+		bit = mem_acc_vreg->acc_sel_bit_pos[mem_type][i];
+		acc_data &= ~mem_acc_vreg->acc_sel_mask[mem_type][i];
+		acc_corner = apc_to_acc_corner(mem_acc_vreg, corner);
+		acc_data |= (acc_corner << bit) &
+			mem_acc_vreg->acc_sel_mask[mem_type][i];
+	}
+	pr_debug("corner=%d old_acc_sel=0x%02x new_acc_sel=0x%02x mem_type=%d\n",
+			corner, acc_data_old, acc_data, mem_type);
+	writel_relaxed(acc_data, mem_acc_vreg->acc_sel_base[mem_type]);
+}
+
+static void __update_acc_type(struct mem_acc_regulator *mem_acc_vreg,
+				int corner)
+{
+	int i, rc;
+
+	for (i = 0; i < MEM_ACC_TYPE_MAX; i++) {
+		if (mem_acc_vreg->mem_acc_type_addr[i]) {
+			rc = scm_io_write(mem_acc_vreg->mem_acc_type_addr[i],
+				mem_acc_vreg->mem_acc_type_data[corner - 1 + i *
+				mem_acc_vreg->num_corners]);
+			if (rc)
+				pr_err("scm_io_write: %pa failure rc:%d\n",
+					&(mem_acc_vreg->mem_acc_type_addr[i]),
+					rc);
+		}
+	}
+}
+
+static void __update_acc_custom(struct mem_acc_regulator *mem_acc_vreg,
+						int corner, int mem_type)
+{
+	writel_relaxed(
+		mem_acc_vreg->acc_custom_data[mem_type][corner-1],
+		mem_acc_vreg->acc_custom_addr[mem_type]);
+	pr_debug("corner=%d mem_type=%d custom_data=0x%2x\n", corner,
+		mem_type, mem_acc_vreg->acc_custom_data[mem_type][corner-1]);
+}
+
+static void update_acc_sel(struct mem_acc_regulator *mem_acc_vreg, int corner)
+{
+	int i;
+
+	for (i = 0; i < MEMORY_MAX; i++) {
+		if (mem_acc_vreg->mem_acc_supported[i])
+			__update_acc_sel(mem_acc_vreg, corner, i);
+		if (mem_acc_vreg->mem_acc_custom_supported[i])
+			__update_acc_custom(mem_acc_vreg, corner, i);
+	}
+
+	if (mem_acc_vreg->mem_acc_type_data)
+		__update_acc_type(mem_acc_vreg, corner);
+}
+
+static void update_acc_reg(struct mem_acc_regulator *mem_acc_vreg, int corner)
+{
+	struct corner_acc_reg_config *corner_acc_reg_config;
+	struct acc_reg_value *reg_config_list;
+	int i, index;
+	u32 addr_index, reg_val;
+
+	corner_acc_reg_config =
+		&mem_acc_vreg->corner_acc_reg_config[mem_acc_vreg->corner];
+	reg_config_list = corner_acc_reg_config->reg_config_list;
+	for (i = 0; i < corner_acc_reg_config->max_reg_config_len; i++) {
+		/*
+		 * Use (corner - 1) in the below equation as
+		 * the reg_config_list[] stores the values starting from
+		 * index '0' where as the minimum corner value allowed
+		 * in regulator framework is '1'.
+		 */
+		index = (corner - 1) * corner_acc_reg_config->max_reg_config_len
+			+ i;
+		addr_index = reg_config_list[index].addr_index;
+		reg_val = reg_config_list[index].reg_val;
+
+		if (addr_index == PARAM_MATCH_ANY)
+			break;
+
+		writel_relaxed(reg_val,
+				mem_acc_vreg->remap_reg_addr_list[addr_index]);
+		/* make sure write complete */
+		mb();
+
+		pr_debug("corner=%d register:0x%x value:0x%x\n", corner,
+			mem_acc_vreg->phys_reg_addr_list[addr_index], reg_val);
+	}
+}
+
+static int mem_acc_regulator_set_voltage(struct regulator_dev *rdev,
+		int corner, int corner_max, unsigned int *selector)
+{
+	struct mem_acc_regulator *mem_acc_vreg = rdev_get_drvdata(rdev);
+	int i;
+
+	if (corner > mem_acc_vreg->num_corners) {
+		pr_err("Invalid corner=%d requested\n", corner);
+		return -EINVAL;
+	}
+
+	pr_debug("old corner=%d, new corner=%d\n",
+			mem_acc_vreg->corner, corner);
+
+	if (corner == mem_acc_vreg->corner)
+		return 0;
+
+	/* go up or down one level at a time */
+	mutex_lock(&mem_acc_memory_mutex);
+
+	if (mem_acc_vreg->flags & MEM_ACC_USE_ADDR_VAL_MAP) {
+		update_acc_reg(mem_acc_vreg, corner);
+	} else if (mem_acc_vreg->flags & MEM_ACC_USE_CORNER_ACC_MAP) {
+		if (corner > mem_acc_vreg->corner) {
+			for (i = mem_acc_vreg->corner + 1; i <= corner; i++) {
+				pr_debug("UP: to corner %d\n", i);
+				update_acc_sel(mem_acc_vreg, i);
+			}
+		} else {
+			for (i = mem_acc_vreg->corner - 1; i >= corner; i--) {
+				pr_debug("DOWN: to corner %d\n", i);
+				update_acc_sel(mem_acc_vreg, i);
+			}
+		}
+	}
+
+	mutex_unlock(&mem_acc_memory_mutex);
+
+	pr_debug("new voltage corner set %d\n", corner);
+
+	mem_acc_vreg->corner = corner;
+
+	return 0;
+}
+
+static int mem_acc_regulator_get_voltage(struct regulator_dev *rdev)
+{
+	struct mem_acc_regulator *mem_acc_vreg = rdev_get_drvdata(rdev);
+
+	return mem_acc_vreg->corner;
+}
+
+static struct regulator_ops mem_acc_corner_ops = {
+	.set_voltage		= mem_acc_regulator_set_voltage,
+	.get_voltage		= mem_acc_regulator_get_voltage,
+};
+
+static int __mem_acc_sel_init(struct mem_acc_regulator *mem_acc_vreg,
+							int mem_type)
+{
+	int i;
+	u32 bit, mask;
+
+	mem_acc_vreg->acc_sel_mask[mem_type] = devm_kzalloc(mem_acc_vreg->dev,
+		mem_acc_vreg->num_acc_sel[mem_type] * sizeof(u32), GFP_KERNEL);
+	if (!mem_acc_vreg->acc_sel_mask[mem_type])
+		return -ENOMEM;
+
+	for (i = 0; i < mem_acc_vreg->num_acc_sel[mem_type]; i++) {
+		bit = mem_acc_vreg->acc_sel_bit_pos[mem_type][i];
+		mask = BIT(mem_acc_vreg->acc_sel_bit_size[mem_type]) - 1;
+		mem_acc_vreg->acc_sel_mask[mem_type][i] = mask << bit;
+	}
+
+	return 0;
+}
+
+static int mem_acc_sel_init(struct mem_acc_regulator *mem_acc_vreg)
+{
+	int i, rc;
+
+	for (i = 0; i < MEMORY_MAX; i++) {
+		if (mem_acc_vreg->mem_acc_supported[i]) {
+			rc = __mem_acc_sel_init(mem_acc_vreg, i);
+			if (rc) {
+				pr_err("Unable to initialize mem_type=%d rc=%d\n",
+					i, rc);
+				return rc;
+			}
+		}
+	}
+
+	return 0;
+}
+
+static void mem_acc_en_init(struct mem_acc_regulator *mem_acc_vreg)
+{
+	int i, bit;
+	u32 acc_data;
+
+	acc_data = readl_relaxed(mem_acc_vreg->acc_en_base);
+	pr_debug("init: acc_en_register=%x\n", acc_data);
+	for (i = 0; i < mem_acc_vreg->num_acc_en; i++) {
+		bit = mem_acc_vreg->acc_en_bit_pos[i];
+		acc_data |= BIT(bit);
+	}
+	pr_debug("final: acc_en_register=%x\n", acc_data);
+	writel_relaxed(acc_data, mem_acc_vreg->acc_en_base);
+}
+
+static int populate_acc_data(struct mem_acc_regulator *mem_acc_vreg,
+			const char *prop_name, u32 **value, u32 *len)
+{
+	int rc;
+
+	if (!of_get_property(mem_acc_vreg->dev->of_node, prop_name, len)) {
+		pr_err("Unable to find %s property\n", prop_name);
+		return -EINVAL;
+	}
+	*len /= sizeof(u32);
+	if (!(*len)) {
+		pr_err("Incorrect entries in %s\n", prop_name);
+		return -EINVAL;
+	}
+
+	*value = devm_kzalloc(mem_acc_vreg->dev, (*len) * sizeof(u32),
+							GFP_KERNEL);
+	if (!(*value)) {
+		pr_err("Unable to allocate memory for %s\n", prop_name);
+		return -ENOMEM;
+	}
+
+	pr_debug("Found %s, data-length = %d\n", prop_name, *len);
+
+	rc = of_property_read_u32_array(mem_acc_vreg->dev->of_node,
+					prop_name, *value, *len);
+	if (rc) {
+		pr_err("Unable to populate %s rc=%d\n", prop_name, rc);
+		return rc;
+	}
+
+	return 0;
+}
+
+static int mem_acc_sel_setup(struct mem_acc_regulator *mem_acc_vreg,
+			struct resource *res, int mem_type)
+{
+	int len, rc;
+	char *mem_select_str;
+	char *mem_select_size_str;
+
+	mem_acc_vreg->acc_sel_addr[mem_type] = res->start;
+	len = res->end - res->start + 1;
+	pr_debug("'acc_sel_addr' = %pa mem_type=%d (len=%d)\n",
+					&res->start, mem_type, len);
+
+	mem_acc_vreg->acc_sel_base[mem_type] = devm_ioremap(mem_acc_vreg->dev,
+			mem_acc_vreg->acc_sel_addr[mem_type], len);
+	if (!mem_acc_vreg->acc_sel_base[mem_type]) {
+		pr_err("Unable to map 'acc_sel_addr' %pa for mem_type=%d\n",
+			&mem_acc_vreg->acc_sel_addr[mem_type], mem_type);
+		return -EINVAL;
+	}
+
+	switch (mem_type) {
+	case MEMORY_L1:
+		mem_select_str = "qcom,acc-sel-l1-bit-pos";
+		mem_select_size_str = "qcom,acc-sel-l1-bit-size";
+		break;
+	case MEMORY_L2:
+		mem_select_str = "qcom,acc-sel-l2-bit-pos";
+		mem_select_size_str = "qcom,acc-sel-l2-bit-size";
+		break;
+	default:
+		pr_err("Invalid memory type: %d\n", mem_type);
+		return -EINVAL;
+	}
+
+	mem_acc_vreg->acc_sel_bit_size[mem_type] = MEM_ACC_DEFAULT_SEL_SIZE;
+	of_property_read_u32(mem_acc_vreg->dev->of_node, mem_select_size_str,
+			&mem_acc_vreg->acc_sel_bit_size[mem_type]);
+
+	rc = populate_acc_data(mem_acc_vreg, mem_select_str,
+			&mem_acc_vreg->acc_sel_bit_pos[mem_type],
+			&mem_acc_vreg->num_acc_sel[mem_type]);
+	if (rc)
+		pr_err("Unable to populate '%s' rc=%d\n", mem_select_str, rc);
+
+	return rc;
+}
+
+static int mem_acc_efuse_init(struct platform_device *pdev,
+				 struct mem_acc_regulator *mem_acc_vreg)
+{
+	struct resource *res;
+	int len;
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse_addr");
+	if (!res || !res->start) {
+		mem_acc_vreg->efuse_base = NULL;
+		pr_debug("'efuse_addr' resource missing or not used.\n");
+		return 0;
+	}
+
+	mem_acc_vreg->efuse_addr = res->start;
+	len = res->end - res->start + 1;
+
+	pr_info("efuse_addr = %pa (len=0x%x)\n", &res->start, len);
+
+	mem_acc_vreg->efuse_base = devm_ioremap(&pdev->dev,
+						mem_acc_vreg->efuse_addr, len);
+	if (!mem_acc_vreg->efuse_base) {
+		pr_err("Unable to map efuse_addr %pa\n",
+				&mem_acc_vreg->efuse_addr);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static int mem_acc_custom_data_init(struct platform_device *pdev,
+				 struct mem_acc_regulator *mem_acc_vreg,
+				 int mem_type)
+{
+	struct resource *res;
+	char *custom_apc_addr_str, *custom_apc_data_str;
+	int len, rc = 0;
+
+	switch (mem_type) {
+	case MEMORY_L1:
+		custom_apc_addr_str = "acc-l1-custom";
+		custom_apc_data_str = "qcom,l1-acc-custom-data";
+		break;
+	case MEMORY_L2:
+		custom_apc_addr_str = "acc-l2-custom";
+		custom_apc_data_str = "qcom,l2-acc-custom-data";
+		break;
+	default:
+		pr_err("Invalid memory type: %d\n", mem_type);
+		return -EINVAL;
+	}
+
+	if (!of_find_property(mem_acc_vreg->dev->of_node,
+				custom_apc_data_str, NULL)) {
+		pr_debug("%s custom_data not specified\n", custom_apc_data_str);
+		return 0;
+	}
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+						custom_apc_addr_str);
+	if (!res || !res->start) {
+		pr_debug("%s resource missing\n", custom_apc_addr_str);
+		return -EINVAL;
+	}
+
+	len = res->end - res->start + 1;
+	mem_acc_vreg->acc_custom_addr[mem_type] =
+		devm_ioremap(mem_acc_vreg->dev, res->start, len);
+	if (!mem_acc_vreg->acc_custom_addr[mem_type]) {
+		pr_err("Unable to map %s %pa\n",
+			custom_apc_addr_str, &res->start);
+		return -EINVAL;
+	}
+
+	rc = populate_acc_data(mem_acc_vreg, custom_apc_data_str,
+				&mem_acc_vreg->acc_custom_data[mem_type], &len);
+	if (rc) {
+		pr_err("Unable to find %s rc=%d\n", custom_apc_data_str, rc);
+		return rc;
+	}
+
+	if (mem_acc_vreg->num_corners != len) {
+		pr_err("Custom data is not present for all the corners\n");
+		return -EINVAL;
+	}
+
+	mem_acc_vreg->mem_acc_custom_supported[mem_type] = true;
+
+	return 0;
+}
+
+static int override_mem_acc_custom_data(struct platform_device *pdev,
+				 struct mem_acc_regulator *mem_acc_vreg,
+				 int mem_type)
+{
+	char *custom_apc_data_str;
+	int len, rc = 0, i;
+	int tuple_count, tuple_match;
+	u32 index = 0, value = 0;
+
+	switch (mem_type) {
+	case MEMORY_L1:
+		custom_apc_data_str = "qcom,override-l1-acc-custom-data";
+		break;
+	case MEMORY_L2:
+		custom_apc_data_str = "qcom,override-l2-acc-custom-data";
+		break;
+	default:
+		pr_err("Invalid memory type: %d\n", mem_type);
+		return -EINVAL;
+	}
+
+	if (!of_find_property(mem_acc_vreg->dev->of_node,
+				custom_apc_data_str, &len)) {
+		pr_debug("%s not specified\n", custom_apc_data_str);
+		return 0;
+	}
+
+	if (mem_acc_vreg->override_map_count) {
+		if (mem_acc_vreg->override_map_match == FUSE_MAP_NO_MATCH)
+			return 0;
+		tuple_count = mem_acc_vreg->override_map_count;
+		tuple_match = mem_acc_vreg->override_map_match;
+	} else {
+		tuple_count = 1;
+		tuple_match = 0;
+	}
+
+	if (len != mem_acc_vreg->num_corners * tuple_count * sizeof(u32)) {
+		pr_err("%s length=%d is invalid\n", custom_apc_data_str, len);
+		return -EINVAL;
+	}
+
+	for (i = 0; i < mem_acc_vreg->num_corners; i++) {
+		index = (tuple_match * mem_acc_vreg->num_corners) + i;
+		rc = of_property_read_u32_index(mem_acc_vreg->dev->of_node,
+					custom_apc_data_str, index, &value);
+		if (rc) {
+			pr_err("Unable read %s index %u, rc=%d\n",
+					custom_apc_data_str, index, rc);
+			return rc;
+		}
+		mem_acc_vreg->acc_custom_data[mem_type][i] = value;
+	}
+
+	return 0;
+}
+
+static int mem_acc_override_corner_map(struct mem_acc_regulator *mem_acc_vreg)
+{
+	int len = 0, i, rc;
+	int tuple_count, tuple_match;
+	u32 index = 0, value = 0;
+	char *prop_str = "qcom,override-corner-acc-map";
+
+	if (!of_find_property(mem_acc_vreg->dev->of_node, prop_str, &len))
+		return 0;
+
+	if (mem_acc_vreg->override_map_count) {
+		if (mem_acc_vreg->override_map_match ==	FUSE_MAP_NO_MATCH)
+			return 0;
+		tuple_count = mem_acc_vreg->override_map_count;
+		tuple_match = mem_acc_vreg->override_map_match;
+	} else {
+		tuple_count = 1;
+		tuple_match = 0;
+	}
+
+	if (len != mem_acc_vreg->num_corners * tuple_count * sizeof(u32)) {
+		pr_err("%s length=%d is invalid\n", prop_str, len);
+		return -EINVAL;
+	}
+
+	for (i = 0; i < mem_acc_vreg->num_corners; i++) {
+		index = (tuple_match * mem_acc_vreg->num_corners) + i;
+		rc = of_property_read_u32_index(mem_acc_vreg->dev->of_node,
+						prop_str, index, &value);
+		if (rc) {
+			pr_err("Unable read %s index %u, rc=%d\n",
+						prop_str, index, rc);
+			return rc;
+		}
+		mem_acc_vreg->corner_acc_map[i] = value;
+	}
+
+	return 0;
+
+}
+
+static int mem_acc_find_override_map_match(struct platform_device *pdev,
+				 struct mem_acc_regulator *mem_acc_vreg)
+{
+	struct device_node *of_node = pdev->dev.of_node;
+	int i, rc, tuple_size;
+	int len = 0;
+	u32 *tmp;
+	char *prop_str = "qcom,override-fuse-version-map";
+
+	/* Specify default no match case. */
+	mem_acc_vreg->override_map_match = FUSE_MAP_NO_MATCH;
+	mem_acc_vreg->override_map_count = 0;
+
+	if (!of_find_property(of_node, prop_str, &len)) {
+		/* No mapping present. */
+		return 0;
+	}
+
+	tuple_size = 1;
+	mem_acc_vreg->override_map_count = len / (sizeof(u32) * tuple_size);
+
+	if (len == 0 || len % (sizeof(u32) * tuple_size)) {
+		pr_err("%s length=%d is invalid\n", prop_str, len);
+		return -EINVAL;
+	}
+
+	tmp = kzalloc(len, GFP_KERNEL);
+	if (!tmp)
+		return -ENOMEM;
+
+	rc = of_property_read_u32_array(of_node, prop_str, tmp,
+			mem_acc_vreg->override_map_count * tuple_size);
+	if (rc) {
+		pr_err("could not read %s rc=%d\n", prop_str, rc);
+		goto done;
+	}
+
+	for (i = 0; i < mem_acc_vreg->override_map_count; i++) {
+		if (tmp[i * tuple_size] != mem_acc_vreg->override_fuse_value
+		    && tmp[i * tuple_size] != FUSE_PARAM_MATCH_ANY) {
+			continue;
+		} else {
+			mem_acc_vreg->override_map_match = i;
+			break;
+		}
+	}
+
+	if (mem_acc_vreg->override_map_match != FUSE_MAP_NO_MATCH)
+		pr_debug("%s tuple match found: %d\n", prop_str,
+				mem_acc_vreg->override_map_match);
+	else
+		pr_err("%s tuple match not found\n", prop_str);
+
+done:
+	kfree(tmp);
+	return rc;
+}
+
+#define MAX_CHARS_PER_INT	20
+
+static int mem_acc_reg_addr_val_dump(struct mem_acc_regulator *mem_acc_vreg,
+			struct corner_acc_reg_config *corner_acc_reg_config,
+			u32 corner)
+{
+	int i, k, index, pos = 0;
+	u32 addr_index;
+	size_t buflen;
+	char *buf;
+	struct acc_reg_value *reg_config_list =
+					corner_acc_reg_config->reg_config_list;
+	int max_reg_config_len = corner_acc_reg_config->max_reg_config_len;
+	int num_corners = mem_acc_vreg->num_corners;
+
+	/*
+	 * Log register and value mapping since they are useful for
+	 * baseline MEM ACC logging.
+	 */
+	buflen = max_reg_config_len * (MAX_CHARS_PER_INT + 6) * sizeof(*buf);
+	buf = kzalloc(buflen, GFP_KERNEL);
+	if (buf == NULL) {
+		pr_err("Could not allocate memory for acc register and value logging\n");
+		return -ENOMEM;
+	}
+
+	for (i = 0; i < num_corners; i++) {
+		if (corner == i + 1)
+			continue;
+
+		pr_debug("Corner: %d --> %d:\n", corner, i + 1);
+		pos = 0;
+		for (k = 0; k < max_reg_config_len; k++) {
+			index = i * max_reg_config_len + k;
+			addr_index = reg_config_list[index].addr_index;
+			if (addr_index == PARAM_MATCH_ANY)
+				break;
+
+			pos += scnprintf(buf + pos, buflen - pos,
+				"<0x%x 0x%x> ",
+				mem_acc_vreg->phys_reg_addr_list[addr_index],
+				reg_config_list[index].reg_val);
+		}
+		buf[pos] = '\0';
+		pr_debug("%s\n", buf);
+	}
+
+	kfree(buf);
+	return 0;
+}
+
+static int mem_acc_get_reg_addr_val(struct device_node *of_node,
+		const char *prop_str, struct acc_reg_value *reg_config_list,
+		int list_offset, int list_size, u32 max_reg_index)
+{
+
+	int i, index, rc  = 0;
+
+	for (i = 0; i < list_size / 2; i++) {
+		index = (list_offset * list_size) + i * 2;
+		rc = of_property_read_u32_index(of_node, prop_str, index,
+					&reg_config_list[i].addr_index);
+		rc |= of_property_read_u32_index(of_node, prop_str, index + 1,
+					&reg_config_list[i].reg_val);
+		if (rc) {
+			pr_err("could not read %s at tuple %u: rc=%d\n",
+				prop_str, index, rc);
+			return rc;
+		}
+
+		if (reg_config_list[i].addr_index == PARAM_MATCH_ANY)
+			continue;
+
+		if ((!reg_config_list[i].addr_index) ||
+			reg_config_list[i].addr_index > max_reg_index) {
+			pr_err("Invalid register index %u in %s at tuple %u\n",
+				reg_config_list[i].addr_index, prop_str, index);
+			return -EINVAL;
+		}
+	}
+
+	return rc;
+}
+
+static int mem_acc_init_reg_config(struct mem_acc_regulator *mem_acc_vreg)
+{
+	struct device_node *of_node = mem_acc_vreg->dev->of_node;
+	int i, size, len = 0, rc = 0;
+	u32 addr_index, reg_val, index;
+	char *prop_str = "qcom,acc-init-reg-config";
+
+	if (!of_find_property(of_node, prop_str, &len)) {
+		/* Initial acc register configuration not specified */
+		return rc;
+	}
+
+	size = len / sizeof(u32);
+	if ((!size) || (size % 2)) {
+		pr_err("%s specified with invalid length: %d\n",
+			prop_str, size);
+		return -EINVAL;
+	}
+
+	for (i = 0; i < size / 2; i++) {
+		index = i * 2;
+		rc = of_property_read_u32_index(of_node, prop_str, index,
+						&addr_index);
+		rc |= of_property_read_u32_index(of_node, prop_str, index + 1,
+						&reg_val);
+		if (rc) {
+			pr_err("could not read %s at tuple %u: rc=%d\n",
+				prop_str, index, rc);
+			return rc;
+		}
+
+		if ((!addr_index) || addr_index > mem_acc_vreg->num_acc_reg) {
+			pr_err("Invalid register index %u in %s at tuple %u\n",
+				addr_index, prop_str, index);
+			return -EINVAL;
+		}
+
+		writel_relaxed(reg_val,
+				mem_acc_vreg->remap_reg_addr_list[addr_index]);
+		/* make sure write complete */
+		mb();
+
+		pr_debug("acc initial config: register:0x%x value:0x%x\n",
+			mem_acc_vreg->phys_reg_addr_list[addr_index], reg_val);
+	}
+
+	return rc;
+}
+
+static int mem_acc_get_reg_addr(struct mem_acc_regulator *mem_acc_vreg)
+{
+	struct device_node *of_node = mem_acc_vreg->dev->of_node;
+	void __iomem **remap_reg_addr_list;
+	u32 *phys_reg_addr_list;
+	int i, num_acc_reg, len = 0, rc = 0;
+
+	if (!of_find_property(of_node, "qcom,acc-reg-addr-list", &len)) {
+		/* acc register address list not specified */
+		return rc;
+	}
+
+	num_acc_reg = len / sizeof(u32);
+	if (!num_acc_reg) {
+		pr_err("qcom,acc-reg-addr-list has invalid len = %d\n", len);
+		return -EINVAL;
+	}
+
+	phys_reg_addr_list = devm_kcalloc(mem_acc_vreg->dev, num_acc_reg + 1,
+				sizeof(*phys_reg_addr_list), GFP_KERNEL);
+	if (!phys_reg_addr_list)
+		return -ENOMEM;
+
+	remap_reg_addr_list = devm_kcalloc(mem_acc_vreg->dev, num_acc_reg + 1,
+				sizeof(*remap_reg_addr_list), GFP_KERNEL);
+	if (!remap_reg_addr_list)
+		return -ENOMEM;
+
+	rc = of_property_read_u32_array(of_node, "qcom,acc-reg-addr-list",
+					&phys_reg_addr_list[1], num_acc_reg);
+	if (rc) {
+		pr_err("Read- qcom,acc-reg-addr-list failed: rc=%d\n", rc);
+		return rc;
+	}
+
+	for (i = 1; i <= num_acc_reg; i++) {
+		remap_reg_addr_list[i] = devm_ioremap(mem_acc_vreg->dev,
+						phys_reg_addr_list[i], 0x4);
+		if (!remap_reg_addr_list[i]) {
+			pr_err("Unable to map register address 0x%x\n",
+					phys_reg_addr_list[i]);
+			return -EINVAL;
+		}
+	}
+
+	mem_acc_vreg->num_acc_reg = num_acc_reg;
+	mem_acc_vreg->phys_reg_addr_list = phys_reg_addr_list;
+	mem_acc_vreg->remap_reg_addr_list = remap_reg_addr_list;
+
+	return rc;
+}
+
+static int mem_acc_reg_config_init(struct mem_acc_regulator *mem_acc_vreg)
+{
+	struct device_node *of_node = mem_acc_vreg->dev->of_node;
+	struct acc_reg_value *reg_config_list;
+	int len, size, rc, i, num_corners;
+	struct property *prop;
+	char prop_str[30];
+	struct corner_acc_reg_config *corner_acc_reg_config;
+
+	rc = of_property_read_u32(of_node, "qcom,num-acc-corners",
+				&num_corners);
+	if (rc) {
+		pr_err("could not read qcom,num-acc-corners: rc=%d\n", rc);
+		return rc;
+	}
+
+	mem_acc_vreg->num_corners = num_corners;
+
+	rc = of_property_read_u32(of_node, "qcom,boot-acc-corner",
+				&mem_acc_vreg->corner);
+	if (rc) {
+		pr_err("could not read qcom,boot-acc-corner: rc=%d\n", rc);
+		return rc;
+	}
+	pr_debug("boot acc corner = %d\n", mem_acc_vreg->corner);
+
+	corner_acc_reg_config = devm_kcalloc(mem_acc_vreg->dev, num_corners + 1,
+						sizeof(*corner_acc_reg_config),
+						GFP_KERNEL);
+	if (!corner_acc_reg_config)
+		return -ENOMEM;
+
+	for (i = 1; i <= num_corners; i++) {
+		snprintf(prop_str, sizeof(prop_str),
+				"qcom,corner%d-reg-config", i);
+		prop = of_find_property(of_node, prop_str, &len);
+		size = len / sizeof(u32);
+		if ((!prop) || (!size) || size < (num_corners * 2)) {
+			pr_err("%s property is missed or invalid length: len=%d\n",
+				prop_str, len);
+			return -EINVAL;
+		}
+
+		reg_config_list = devm_kcalloc(mem_acc_vreg->dev, size / 2,
+					sizeof(*reg_config_list), GFP_KERNEL);
+		if (!reg_config_list)
+			return -ENOMEM;
+
+		rc = mem_acc_get_reg_addr_val(of_node, prop_str,
+						reg_config_list, 0, size,
+						mem_acc_vreg->num_acc_reg);
+		if (rc) {
+			pr_err("Failed to read %s property: rc=%d\n",
+				prop_str, rc);
+			return rc;
+		}
+
+		corner_acc_reg_config[i].max_reg_config_len =
+						size / (num_corners * 2);
+		corner_acc_reg_config[i].reg_config_list = reg_config_list;
+
+		rc = mem_acc_reg_addr_val_dump(mem_acc_vreg,
+						&corner_acc_reg_config[i], i);
+		if (rc) {
+			pr_err("could not dump acc address-value dump for corner=%d: rc=%d\n",
+				i, rc);
+			return rc;
+		}
+	}
+
+	mem_acc_vreg->corner_acc_reg_config = corner_acc_reg_config;
+	mem_acc_vreg->flags |= MEM_ACC_USE_ADDR_VAL_MAP;
+	return rc;
+}
+
+static int mem_acc_override_reg_addr_val_init(
+			struct mem_acc_regulator *mem_acc_vreg)
+{
+	struct device_node *of_node = mem_acc_vreg->dev->of_node;
+	struct corner_acc_reg_config *corner_acc_reg_config;
+	struct acc_reg_value *override_reg_config_list;
+	int i, tuple_count, tuple_match, len = 0, rc = 0;
+	u32 list_size, override_max_reg_config_len;
+	char prop_str[40];
+	struct property *prop;
+	int num_corners = mem_acc_vreg->num_corners;
+
+	if (!mem_acc_vreg->corner_acc_reg_config)
+		return 0;
+
+	if (mem_acc_vreg->override_map_count) {
+		if (mem_acc_vreg->override_map_match ==	FUSE_MAP_NO_MATCH)
+			return 0;
+		tuple_count = mem_acc_vreg->override_map_count;
+		tuple_match = mem_acc_vreg->override_map_match;
+	} else {
+		tuple_count = 1;
+		tuple_match = 0;
+	}
+
+	corner_acc_reg_config = mem_acc_vreg->corner_acc_reg_config;
+	for (i = 1; i <= num_corners; i++) {
+		snprintf(prop_str, sizeof(prop_str),
+				"qcom,override-corner%d-addr-val-map", i);
+		prop = of_find_property(of_node, prop_str, &len);
+		list_size = len / (tuple_count * sizeof(u32));
+		if (!prop) {
+			pr_debug("%s property not specified\n", prop_str);
+			continue;
+		}
+
+		if ((!list_size) || list_size < (num_corners * 2)) {
+			pr_err("qcom,override-corner%d-addr-val-map property is missed or invalid length: len=%d\n",
+			i, len);
+			return -EINVAL;
+		}
+
+		override_max_reg_config_len = list_size / (num_corners * 2);
+		override_reg_config_list =
+				corner_acc_reg_config[i].reg_config_list;
+
+		if (corner_acc_reg_config[i].max_reg_config_len
+					!= override_max_reg_config_len) {
+			/* Free already allocate memory */
+			devm_kfree(mem_acc_vreg->dev, override_reg_config_list);
+
+			/* Allocated memory for new requirement */
+			override_reg_config_list =
+				devm_kcalloc(mem_acc_vreg->dev,
+				override_max_reg_config_len * num_corners,
+				sizeof(*override_reg_config_list), GFP_KERNEL);
+			if (!override_reg_config_list)
+				return -ENOMEM;
+
+			corner_acc_reg_config[i].max_reg_config_len =
+						override_max_reg_config_len;
+			corner_acc_reg_config[i].reg_config_list =
+						override_reg_config_list;
+		}
+
+		rc = mem_acc_get_reg_addr_val(of_node, prop_str,
+					override_reg_config_list, tuple_match,
+					list_size, mem_acc_vreg->num_acc_reg);
+		if (rc) {
+			pr_err("Failed to read %s property: rc=%d\n",
+				prop_str, rc);
+			return rc;
+		}
+
+		rc = mem_acc_reg_addr_val_dump(mem_acc_vreg,
+						&corner_acc_reg_config[i], i);
+		if (rc) {
+			pr_err("could not dump acc address-value dump for corner=%d: rc=%d\n",
+				i, rc);
+			return rc;
+		}
+	}
+
+	return rc;
+}
+
+#define MEM_TYPE_STRING_LEN	20
+static int mem_acc_init(struct platform_device *pdev,
+		struct mem_acc_regulator *mem_acc_vreg)
+{
+	struct device_node *of_node = pdev->dev.of_node;
+	struct resource *res;
+	int len, rc, i, j;
+	u32 fuse_sel[4];
+	u64 fuse_bits;
+	bool acc_type_present = false;
+	char tmps[MEM_TYPE_STRING_LEN];
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acc-en");
+	if (!res || !res->start) {
+		pr_debug("'acc-en' resource missing or not used.\n");
+	} else {
+		mem_acc_vreg->acc_en_addr = res->start;
+		len = res->end - res->start + 1;
+		pr_debug("'acc_en_addr' = %pa (len=0x%x)\n", &res->start, len);
+
+		mem_acc_vreg->acc_en_base = devm_ioremap(mem_acc_vreg->dev,
+				mem_acc_vreg->acc_en_addr, len);
+		if (!mem_acc_vreg->acc_en_base) {
+			pr_err("Unable to map 'acc_en_addr' %pa\n",
+					&mem_acc_vreg->acc_en_addr);
+			return -EINVAL;
+		}
+
+		rc = populate_acc_data(mem_acc_vreg, "qcom,acc-en-bit-pos",
+				&mem_acc_vreg->acc_en_bit_pos,
+				&mem_acc_vreg->num_acc_en);
+		if (rc) {
+			pr_err("Unable to populate 'qcom,acc-en-bit-pos' rc=%d\n",
+					rc);
+			return rc;
+		}
+	}
+
+	rc = mem_acc_efuse_init(pdev, mem_acc_vreg);
+	if (rc) {
+		pr_err("Wrong eFuse address specified: rc=%d\n", rc);
+		return rc;
+	}
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acc-sel-l1");
+	if (!res || !res->start) {
+		pr_debug("'acc-sel-l1' resource missing or not used.\n");
+	} else {
+		rc = mem_acc_sel_setup(mem_acc_vreg, res, MEMORY_L1);
+		if (rc) {
+			pr_err("Unable to setup mem-acc for mem_type=%d rc=%d\n",
+					MEMORY_L1, rc);
+			return rc;
+		}
+		mem_acc_vreg->mem_acc_supported[MEMORY_L1] = true;
+	}
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acc-sel-l2");
+	if (!res || !res->start) {
+		pr_debug("'acc-sel-l2' resource missing or not used.\n");
+	} else {
+		rc = mem_acc_sel_setup(mem_acc_vreg, res, MEMORY_L2);
+		if (rc) {
+			pr_err("Unable to setup mem-acc for mem_type=%d rc=%d\n",
+					MEMORY_L2, rc);
+			return rc;
+		}
+		mem_acc_vreg->mem_acc_supported[MEMORY_L2] = true;
+	}
+
+	for (i = 0; i < MEM_ACC_TYPE_MAX; i++) {
+		snprintf(tmps, MEM_TYPE_STRING_LEN, "mem-acc-type%d", i + 1);
+		res = platform_get_resource_byname(pdev, IORESOURCE_MEM, tmps);
+
+		if (!res || !res->start) {
+			pr_debug("'%s' resource missing or not used.\n", tmps);
+		} else {
+			mem_acc_vreg->mem_acc_type_addr[i] = res->start;
+			acc_type_present = true;
+		}
+	}
+
+	rc = mem_acc_get_reg_addr(mem_acc_vreg);
+	if (rc) {
+		pr_err("Unable to get acc register addresses: rc=%d\n", rc);
+		return rc;
+	}
+
+	if (mem_acc_vreg->phys_reg_addr_list) {
+		rc = mem_acc_reg_config_init(mem_acc_vreg);
+		if (rc) {
+			pr_err("acc register address-value map failed: rc=%d\n",
+				rc);
+			return rc;
+		}
+	}
+
+	if (of_find_property(of_node, "qcom,corner-acc-map", NULL)) {
+		rc = populate_acc_data(mem_acc_vreg, "qcom,corner-acc-map",
+			&mem_acc_vreg->corner_acc_map,
+			&mem_acc_vreg->num_corners);
+
+		/* Check if at least one valid mem-acc config. is specified */
+		for (i = 0; i < MEMORY_MAX; i++) {
+			if (mem_acc_vreg->mem_acc_supported[i])
+				break;
+		}
+		if (i == MEMORY_MAX && !acc_type_present) {
+			pr_err("No mem-acc configuration specified\n");
+			return -EINVAL;
+		}
+
+		mem_acc_vreg->flags |= MEM_ACC_USE_CORNER_ACC_MAP;
+	}
+
+	if ((mem_acc_vreg->flags & MEM_ACC_USE_CORNER_ACC_MAP) &&
+		(mem_acc_vreg->flags & MEM_ACC_USE_ADDR_VAL_MAP)) {
+		pr_err("Invalid configuration, both qcom,corner-acc-map and qcom,cornerX-addr-val-map specified\n");
+		return -EINVAL;
+	}
+
+	pr_debug("num_corners = %d\n", mem_acc_vreg->num_corners);
+
+	if (mem_acc_vreg->num_acc_en)
+		mem_acc_en_init(mem_acc_vreg);
+
+	if (mem_acc_vreg->phys_reg_addr_list) {
+		rc = mem_acc_init_reg_config(mem_acc_vreg);
+		if (rc) {
+			pr_err("acc initial register configuration failed: rc=%d\n",
+				rc);
+			return rc;
+		}
+	}
+
+	rc = mem_acc_sel_init(mem_acc_vreg);
+	if (rc) {
+		pr_err("Unable to initialize mem_acc_sel reg rc=%d\n", rc);
+		return rc;
+	}
+
+	for (i = 0; i < MEMORY_MAX; i++) {
+		rc = mem_acc_custom_data_init(pdev, mem_acc_vreg, i);
+		if (rc) {
+			pr_err("Unable to initialize custom data for mem_type=%d rc=%d\n",
+					i, rc);
+			return rc;
+		}
+	}
+
+	if (of_find_property(mem_acc_vreg->dev->of_node,
+				"qcom,override-acc-fuse-sel", NULL)) {
+		rc = of_property_read_u32_array(mem_acc_vreg->dev->of_node,
+			"qcom,override-acc-fuse-sel", fuse_sel, 4);
+		if (rc < 0) {
+			pr_err("Read failed - qcom,override-acc-fuse-sel rc=%d\n",
+					rc);
+			return rc;
+		}
+
+		fuse_bits = mem_acc_read_efuse_row(mem_acc_vreg, fuse_sel[0],
+								fuse_sel[3]);
+		/*
+		 * fuse_sel[1] = LSB position in row (shift)
+		 * fuse_sel[2] = num of bits (mask)
+		 */
+		mem_acc_vreg->override_fuse_value = (fuse_bits >> fuse_sel[1]) &
+						((1 << fuse_sel[2]) - 1);
+
+		rc = mem_acc_find_override_map_match(pdev, mem_acc_vreg);
+		if (rc) {
+			pr_err("Unable to find fuse map match rc=%d\n", rc);
+			return rc;
+		}
+
+		pr_debug("override_fuse_val=%d override_map_match=%d\n",
+					mem_acc_vreg->override_fuse_value,
+					mem_acc_vreg->override_map_match);
+
+		rc = mem_acc_override_corner_map(mem_acc_vreg);
+		if (rc) {
+			pr_err("Unable to override corner map rc=%d\n", rc);
+			return rc;
+		}
+
+		rc = mem_acc_override_reg_addr_val_init(mem_acc_vreg);
+		if (rc) {
+			pr_err("Unable to override reg_config_list init rc=%d\n",
+				rc);
+			return rc;
+		}
+
+		for (i = 0; i < MEMORY_MAX; i++) {
+			rc = override_mem_acc_custom_data(pdev,
+							mem_acc_vreg, i);
+			if (rc) {
+				pr_err("Unable to override custom data for mem_type=%d rc=%d\n",
+					i, rc);
+				return rc;
+			}
+		}
+	}
+
+	if (acc_type_present) {
+		mem_acc_vreg->mem_acc_type_data = devm_kzalloc(
+			mem_acc_vreg->dev, mem_acc_vreg->num_corners *
+			MEM_ACC_TYPE_MAX * sizeof(u32), GFP_KERNEL);
+
+		if (!mem_acc_vreg->mem_acc_type_data) {
+			pr_err("Unable to allocate memory for mem_acc_type\n");
+			return -ENOMEM;
+		}
+
+		for (i = 0; i < MEM_ACC_TYPE_MAX; i++) {
+			if (mem_acc_vreg->mem_acc_type_addr[i]) {
+				snprintf(tmps, MEM_TYPE_STRING_LEN,
+					"qcom,mem-acc-type%d", i + 1);
+
+				j = i * mem_acc_vreg->num_corners;
+				rc = of_property_read_u32_array(
+					mem_acc_vreg->dev->of_node,
+					tmps,
+					&mem_acc_vreg->mem_acc_type_data[j],
+					mem_acc_vreg->num_corners);
+				if (rc) {
+					pr_err("Unable to get property %s rc=%d\n",
+						tmps, rc);
+					return rc;
+				}
+			}
+		}
+	}
+
+	return 0;
+}
+
+static int mem_acc_regulator_probe(struct platform_device *pdev)
+{
+	struct regulator_config reg_config = {};
+	struct mem_acc_regulator *mem_acc_vreg;
+	struct regulator_desc *rdesc;
+	struct regulator_init_data *init_data;
+	int rc;
+
+	if (!pdev->dev.of_node) {
+		pr_err("Device tree node is missing\n");
+		return -EINVAL;
+	}
+
+	init_data = of_get_regulator_init_data(&pdev->dev, pdev->dev.of_node,
+					NULL);
+	if (!init_data) {
+		pr_err("regulator init data is missing\n");
+		return -EINVAL;
+	}
+
+	init_data->constraints.input_uV = init_data->constraints.max_uV;
+	init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE;
+
+	mem_acc_vreg = devm_kzalloc(&pdev->dev, sizeof(*mem_acc_vreg),
+			GFP_KERNEL);
+	if (!mem_acc_vreg)
+		return -ENOMEM;
+
+	mem_acc_vreg->dev = &pdev->dev;
+
+	rc = mem_acc_init(pdev, mem_acc_vreg);
+	if (rc) {
+		pr_err("Unable to initialize mem_acc configuration rc=%d\n",
+				rc);
+		return rc;
+	}
+
+	rdesc			= &mem_acc_vreg->rdesc;
+	rdesc->owner		= THIS_MODULE;
+	rdesc->type		= REGULATOR_VOLTAGE;
+	rdesc->ops		= &mem_acc_corner_ops;
+	rdesc->name		= init_data->constraints.name;
+
+	reg_config.dev = &pdev->dev;
+	reg_config.init_data = init_data;
+	reg_config.driver_data = mem_acc_vreg;
+	reg_config.of_node = pdev->dev.of_node;
+	mem_acc_vreg->rdev = regulator_register(rdesc, &reg_config);
+	if (IS_ERR(mem_acc_vreg->rdev)) {
+		rc = PTR_ERR(mem_acc_vreg->rdev);
+		if (rc != -EPROBE_DEFER)
+			pr_err("regulator_register failed: rc=%d\n", rc);
+		return rc;
+	}
+
+	platform_set_drvdata(pdev, mem_acc_vreg);
+
+	return 0;
+}
+
+static int mem_acc_regulator_remove(struct platform_device *pdev)
+{
+	struct mem_acc_regulator *mem_acc_vreg = platform_get_drvdata(pdev);
+
+	regulator_unregister(mem_acc_vreg->rdev);
+
+	return 0;
+}
+
+static const struct of_device_id mem_acc_regulator_match_table[] = {
+	{ .compatible = "qcom,mem-acc-regulator", },
+	{}
+};
+
+static struct platform_driver mem_acc_regulator_driver = {
+	.probe		= mem_acc_regulator_probe,
+	.remove		= mem_acc_regulator_remove,
+	.driver		= {
+		.name		= "qcom,mem-acc-regulator",
+		.of_match_table = mem_acc_regulator_match_table,
+		.owner		= THIS_MODULE,
+	},
+};
+
+int __init mem_acc_regulator_init(void)
+{
+	return platform_driver_register(&mem_acc_regulator_driver);
+}
+postcore_initcall(mem_acc_regulator_init);
+
+static void __exit mem_acc_regulator_exit(void)
+{
+	platform_driver_unregister(&mem_acc_regulator_driver);
+}
+module_exit(mem_acc_regulator_exit);
+
+MODULE_DESCRIPTION("MEM-ACC-SEL regulator driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/regulator/msm_gfx_ldo.c b/drivers/regulator/msm_gfx_ldo.c
new file mode 100644
index 0000000..2800607
--- /dev/null
+++ b/drivers/regulator/msm_gfx_ldo.c
@@ -0,0 +1,1652 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "GFX_LDO: %s: " fmt, __func__
+
+#include <linux/bitops.h>
+#include <linux/debugfs.h>
+#include <linux/delay.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/regulator/of_regulator.h>
+#include <linux/slab.h>
+#include <linux/uaccess.h>
+#include <linux/regulator/msm-ldo-regulator.h>
+
+#define LDO_ATEST_REG			0x0
+#define LDO_CFG0_REG			0x4
+#define LDO_CFG1_REG			0x8
+#define LDO_CFG2_REG			0xC
+#define LDO_LD_DATA_REG			0x10
+
+#define LDO_VREF_TEST_CFG		0x14
+#define ENABLE_LDO_STATUS_BIT		(BIT(8) | BIT(12))
+#define LDO_AUTOBYPASS_BIT		BIT(20)
+
+#define LDO_VREF_SET_REG		0x18
+#define UPDATE_VREF_BIT			BIT(31)
+#define SEL_RST_BIT			BIT(16)
+#define VREF_VAL_MASK			GENMASK(6, 0)
+
+#define PWRSWITCH_CTRL_REG		0x1C
+#define LDO_CLAMP_IO_BIT		BIT(31)
+#define CPR_BYPASS_IN_LDO_MODE_BIT	BIT(30)
+#define EN_LDOAP_CTRL_CPR_BIT		BIT(29)
+#define CX_CPR_BYPASS_IN_LDO_MODE_BIT	BIT(10)
+#define PWR_SRC_SEL_BIT			BIT(9)
+#define ACK_SW_OVR_BIT			BIT(8)
+#define LDO_PREON_SW_OVR_BIT		BIT(7)
+#define LDO_BYPASS_BIT			BIT(6)
+#define LDO_PDN_BIT			BIT(5)
+#define LDO_UNDER_SW_CTRL_BIT		BIT(4)
+#define BHS_EN_REST_BIT			BIT(2)
+#define BHS_EN_FEW_BIT			BIT(1)
+#define BHS_UNDER_SW_CTL		BIT(0)
+
+#define LDO_STATUS1_REG			0x24
+
+#define PWRSWITCH_STATUS_REG		0x28
+#define LDO_VREF_SETTLED_BIT		BIT(4)
+#define LDO_READY_BIT			BIT(2)
+#define BHS_EN_REST_ACK_BIT		BIT(1)
+
+#define REF_CURRENT_X1_REG		0x2C
+#define REF_CURRENT_X2_REG		0x30
+#define ADC_CTL_REG			0x34
+
+#define MIN_LDO_VOLTAGE			375000
+#define MAX_LDO_VOLTAGE			980000
+#define LDO_STEP_VOLATGE		5000
+
+#define MAX_LDO_REGS			11
+
+#define BYTES_PER_FUSE_ROW		8
+#define MAX_FUSE_ROW_BIT		63
+#define MIN_CORNER_OFFSET		1
+
+#define GFX_LDO_FUSE_STEP_VOLT		10000
+#define GFX_LDO_FUSE_SIZE		5
+
+enum direction {
+	NO_CHANGE,
+	UP,
+	DOWN,
+};
+
+enum voltage_handling {
+	VOLTAGE,
+	CORNER,
+};
+
+struct fuse_param {
+	unsigned int		row;
+	unsigned int		bit_start;
+	unsigned int		bit_end;
+};
+
+struct ldo_config {
+	u32 offset;
+	u32 value;
+};
+
+struct msm_gfx_ldo {
+	struct device		*dev;
+	struct regulator_desc	rdesc;
+	struct regulator_dev	*rdev;
+	struct regulator	*vdd_cx;
+	struct regulator	*mem_acc_vreg;
+	struct dentry		*debugfs;
+
+	u32			num_corners;
+	u32			num_ldo_corners;
+	u32			*open_loop_volt;
+	u32			*ceiling_volt;
+	u32			*floor_volt;
+	u32			*ldo_corner_en_map;
+	u32			*vdd_cx_corner_map;
+	u32			*mem_acc_corner_map;
+	const int		*ref_volt;
+	const struct fuse_param	*ldo_enable_param;
+	const struct fuse_param	**init_volt_param;
+	bool			ldo_fuse_enable;
+	bool			ldo_mode_disable;
+	struct ldo_config	*ldo_init_config;
+
+	void __iomem		*efuse_base;
+	phys_addr_t		efuse_addr;
+	void __iomem		*ldo_base;
+	phys_addr_t		ldo_addr;
+
+	bool			vreg_enabled;
+	enum msm_ldo_supply_mode mode;
+	u32			corner;
+	int			ldo_voltage_uv;
+	struct mutex		ldo_mutex;
+	enum voltage_handling	ops_type;
+};
+
+#define MSM8953_LDO_FUSE_CORNERS		3
+#define LDO_MAX_OFFSET				0xFFFF
+static struct ldo_config msm8953_ldo_config[] = {
+	{LDO_ATEST_REG,		0x00000203},
+	{LDO_CFG0_REG,		0x05008600},
+	{LDO_CFG1_REG,		       0x0},
+	{LDO_CFG2_REG,		0x0000C3FC},
+	{LDO_VREF_TEST_CFG,	0x004B1102},
+	{LDO_MAX_OFFSET,	LDO_MAX_OFFSET},
+};
+
+static struct ldo_config sdm660_ldo_config[] = {
+	{LDO_ATEST_REG,		0x00000080},
+	{LDO_CFG0_REG,		0x0100A600},
+	{LDO_CFG1_REG,		0x000000A0},
+	{LDO_CFG2_REG,		0x0000C3FE},
+	{LDO_LD_DATA_REG,	0x00000000},
+	{LDO_VREF_TEST_CFG,	0x00401100},
+	{REF_CURRENT_X1_REG,	0x00000230},
+	{REF_CURRENT_X2_REG,	0x00000048},
+	{ADC_CTL_REG,		0x00000000},
+	{LDO_MAX_OFFSET,	LDO_MAX_OFFSET},
+};
+
+static struct fuse_param msm8953_ldo_enable_param[] = {
+	{65, 11, 11},
+	{},
+};
+
+static const struct fuse_param
+msm8953_init_voltage_param[MSM8953_LDO_FUSE_CORNERS][2] = {
+		{ {73, 42, 46}, {} },
+		{ {73, 37, 41}, {} },
+		{ {73, 32, 36}, {} },
+};
+
+static const int msm8953_fuse_ref_volt[MSM8953_LDO_FUSE_CORNERS] = {
+	580000,
+	650000,
+	720000,
+};
+
+enum {
+	MSM8953_SOC_ID,
+	SDM660_SOC_ID,
+};
+
+static int convert_open_loop_voltage_fuse(int ref_volt, int step_volt,
+						u32 fuse, int fuse_len)
+{
+	int sign, steps;
+
+	sign = (fuse & (1 << (fuse_len - 1))) ? -1 : 1;
+	steps = fuse & ((1 << (fuse_len - 1)) - 1);
+
+	return ref_volt + sign * steps * step_volt;
+}
+
+static int read_fuse_param(void __iomem *fuse_base_addr,
+		const struct fuse_param *param, u64 *param_value)
+{
+	u64 fuse_val, val;
+	int bits;
+	int bits_total = 0;
+
+	*param_value = 0;
+
+	while (param->row || param->bit_start || param->bit_end) {
+		if (param->bit_start > param->bit_end
+		    || param->bit_end > MAX_FUSE_ROW_BIT) {
+			pr_err("Invalid fuse parameter segment: row=%u, start=%u, end=%u\n",
+				param->row, param->bit_start, param->bit_end);
+			return -EINVAL;
+		}
+
+		bits = param->bit_end - param->bit_start + 1;
+		if (bits_total + bits > 64) {
+			pr_err("Invalid fuse parameter segments; total bits = %d\n",
+				bits_total + bits);
+			return -EINVAL;
+		}
+
+		fuse_val = readq_relaxed(fuse_base_addr
+					 + param->row * BYTES_PER_FUSE_ROW);
+		val = (fuse_val >> param->bit_start) & ((1ULL << bits) - 1);
+		*param_value |= val << bits_total;
+		bits_total += bits;
+
+		param++;
+	}
+
+	return 0;
+}
+
+static enum msm_ldo_supply_mode get_operating_mode(struct msm_gfx_ldo *ldo_vreg,
+								int corner)
+{
+	if (!ldo_vreg->ldo_mode_disable && ldo_vreg->ldo_fuse_enable
+			&& ldo_vreg->ldo_corner_en_map[corner])
+		return LDO_MODE;
+
+	return BHS_MODE;
+}
+
+static char *register_str[] = {
+	"LDO_ATEST",
+	"LDO_CFG0",
+	"LDO_CFG1",
+	"LDO_CFG2",
+	"LDO_LD_DATA",
+	"LDO_VREF_TEST_CFG",
+	"LDO_VREF_SET",
+	"PWRSWITCH_CTL",
+	"LDO_STATUS0",
+	"LDO_STATUS1",
+	"PWRSWITCH_STATUS",
+};
+
+static void dump_registers(struct msm_gfx_ldo *ldo_vreg, char *func)
+{
+	u32 reg[MAX_LDO_REGS];
+	int i;
+
+	for (i = 0; i < MAX_LDO_REGS; i++) {
+		reg[i] = 0;
+		reg[i] = readl_relaxed(ldo_vreg->ldo_base + (i * 4));
+		pr_debug("%s -- %s = 0x%x\n", func, register_str[i], reg[i]);
+	}
+}
+
+#define GET_VREF(a) DIV_ROUND_UP(a - MIN_LDO_VOLTAGE, LDO_STEP_VOLATGE)
+
+static void configure_ldo_voltage(struct msm_gfx_ldo *ldo_vreg, int new_uv)
+{
+	int val = 0;
+	u32 reg = 0;
+
+	val = GET_VREF(new_uv);
+	reg = readl_relaxed(ldo_vreg->ldo_base + LDO_VREF_SET_REG);
+
+	/* set the new voltage */
+	reg &= ~VREF_VAL_MASK;
+	reg |= val & VREF_VAL_MASK;
+	writel_relaxed(reg, ldo_vreg->ldo_base + LDO_VREF_SET_REG);
+
+	/* Initiate VREF update */
+	reg |= UPDATE_VREF_BIT;
+	writel_relaxed(reg, ldo_vreg->ldo_base + LDO_VREF_SET_REG);
+
+	/* complete the writes */
+	mb();
+
+	reg &= ~UPDATE_VREF_BIT;
+	writel_relaxed(reg, ldo_vreg->ldo_base + LDO_VREF_SET_REG);
+
+	ldo_vreg->ldo_voltage_uv = new_uv;
+
+	/* complete the write sequence */
+	mb();
+}
+
+static int ldo_update_voltage(struct msm_gfx_ldo *ldo_vreg, int new_uv)
+{
+	int timeout = 50;
+	u32 reg = 0;
+
+	configure_ldo_voltage(ldo_vreg, new_uv);
+
+	while (--timeout) {
+		reg = readl_relaxed(ldo_vreg->ldo_base +
+					PWRSWITCH_STATUS_REG);
+		if (reg & (LDO_VREF_SETTLED_BIT | LDO_READY_BIT))
+			break;
+
+		udelay(10);
+	}
+	if (!timeout) {
+		pr_err("LDO_VREF_SETTLED not set PWRSWITCH_STATUS = 0x%x\n",
+									reg);
+		return -EBUSY;
+	}
+
+	pr_debug("LDO voltage set to=%d uV VREF_REG=%x\n",
+			ldo_vreg->ldo_voltage_uv,
+			readl_relaxed(ldo_vreg->ldo_base + LDO_VREF_SET_REG));
+
+	return 0;
+}
+
+static int enable_ldo_mode(struct msm_gfx_ldo *ldo_vreg, int new_uv)
+{
+	u32 ctl = 0;
+
+	/* set the ldo-vref */
+	configure_ldo_voltage(ldo_vreg, new_uv);
+
+	/* configure the LDO for power-up */
+	ctl = readl_relaxed(ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* Move BHS under SW control */
+	ctl |= BHS_UNDER_SW_CTL;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* Set LDO under gdsc control */
+	ctl &= ~LDO_UNDER_SW_CTRL_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* enable hw_pre-on to gdsc */
+	ctl |= LDO_PREON_SW_OVR_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* remove LDO bypass */
+	ctl &= ~LDO_BYPASS_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* set power-source as LDO */
+	ctl |= PWR_SRC_SEL_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* clear fake-sw ack to gdsc */
+	ctl &= ~ACK_SW_OVR_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* put CPR in bypass mode */
+	if (ldo_vreg->ops_type == CORNER) {
+		ctl |= CPR_BYPASS_IN_LDO_MODE_BIT;
+		writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+	}
+
+	/* complete all writes */
+	mb();
+
+	dump_registers(ldo_vreg, "enable_ldo_mode");
+
+	return 0;
+}
+
+static int enable_bhs_mode(struct msm_gfx_ldo *ldo_vreg)
+{
+	u32 ctl = 0;
+
+	ctl = readl_relaxed(ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* Put LDO under SW control */
+	ctl |= LDO_UNDER_SW_CTRL_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* set power-source as BHS */
+	ctl &= ~PWR_SRC_SEL_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	if (ldo_vreg->ops_type == CORNER) {
+		/* clear GFX CPR in by-pass mode */
+		ctl &= ~CPR_BYPASS_IN_LDO_MODE_BIT;
+		writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+	}
+
+	/* Enable the BHS control signals to gdsc */
+	ctl &= ~BHS_EN_FEW_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+	ctl &= ~BHS_EN_REST_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* Put BHS under GDSC control */
+	ctl &= ~BHS_UNDER_SW_CTL;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	dump_registers(ldo_vreg, "enable_bhs_mode");
+
+	return 0;
+}
+
+static int msm_gfx_ldo_corner_enable(struct regulator_dev *rdev)
+{
+	struct msm_gfx_ldo *ldo_vreg  = rdev_get_drvdata(rdev);
+	int rc = 0, new_uv;
+	enum msm_ldo_supply_mode enable_mode;
+
+	mutex_lock(&ldo_vreg->ldo_mutex);
+
+	pr_debug("regulator_enable requested. corner=%d\n",
+				ldo_vreg->corner + MIN_CORNER_OFFSET);
+
+	if (ldo_vreg->vdd_cx) {
+		rc = regulator_set_voltage(ldo_vreg->vdd_cx,
+			ldo_vreg->vdd_cx_corner_map[ldo_vreg->corner],
+			INT_MAX);
+		if (rc) {
+			pr_err("Unable to set CX for corner %d rc=%d\n",
+				ldo_vreg->corner + MIN_CORNER_OFFSET, rc);
+			goto fail;
+		}
+
+		rc = regulator_enable(ldo_vreg->vdd_cx);
+		if (rc) {
+			pr_err("regulator_enable: vdd_cx: failed rc=%d\n", rc);
+			goto fail;
+		}
+	}
+
+	enable_mode = get_operating_mode(ldo_vreg, ldo_vreg->corner);
+	if (enable_mode == LDO_MODE) {
+		new_uv = ldo_vreg->open_loop_volt[ldo_vreg->corner];
+		rc = enable_ldo_mode(ldo_vreg, new_uv);
+		pr_debug("LDO voltage configured =%d uV corner=%d\n",
+			ldo_vreg->ldo_voltage_uv,
+			ldo_vreg->corner + MIN_CORNER_OFFSET);
+	} else {
+		rc = enable_bhs_mode(ldo_vreg);
+	}
+
+	if (rc) {
+		pr_err("Failed to enable regulator in %s mode rc=%d\n",
+			(enable_mode == LDO_MODE) ? "LDO" : "BHS", rc);
+		goto disable_cx;
+	}
+
+	pr_debug("regulator_enable complete. mode=%s, corner=%d\n",
+			(enable_mode == LDO_MODE) ? "LDO" : "BHS",
+			ldo_vreg->corner + MIN_CORNER_OFFSET);
+
+	ldo_vreg->mode = enable_mode;
+	ldo_vreg->vreg_enabled = true;
+
+disable_cx:
+	if (rc && ldo_vreg->vdd_cx) {
+		rc = regulator_disable(ldo_vreg->vdd_cx);
+		if (rc)
+			pr_err("regulator_enable: vdd_cx: failed rc=%d\n", rc);
+	}
+fail:
+	mutex_unlock(&ldo_vreg->ldo_mutex);
+	return rc;
+}
+
+static int msm_gfx_ldo_disable(struct regulator_dev *rdev)
+{
+	int rc = 0;
+	struct msm_gfx_ldo *ldo_vreg  = rdev_get_drvdata(rdev);
+
+	mutex_lock(&ldo_vreg->ldo_mutex);
+
+	if (ldo_vreg->vdd_cx) {
+		rc = regulator_disable(ldo_vreg->vdd_cx);
+		if (rc) {
+			pr_err("regulator_disable: vdd_cx: failed rc=%d\n", rc);
+			goto done;
+		}
+		rc = regulator_set_voltage(ldo_vreg->vdd_cx, 0, INT_MAX);
+		if (rc)
+			pr_err("failed to set voltage on CX rc=%d\n", rc);
+	}
+
+	/* No additional configuration for LDO/BHS - taken care by gsdc */
+	ldo_vreg->vreg_enabled = false;
+
+	pr_debug("regulator_disabled complete\n");
+done:
+	mutex_unlock(&ldo_vreg->ldo_mutex);
+	return rc;
+}
+
+static int switch_mode_to_ldo(struct msm_gfx_ldo *ldo_vreg, int new_uv)
+{
+	u32 ctl = 0, status = 0, timeout = 50;
+
+	ctl = readl_relaxed(ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	if (ldo_vreg->ops_type == CORNER) {
+		/* enable CPR bypass mode for LDO */
+		ctl |= CPR_BYPASS_IN_LDO_MODE_BIT;
+		writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+	}
+
+	/* fake ack to GDSC */
+	ctl |= ACK_SW_OVR_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* set power-source as LDO */
+	ctl |= PWR_SRC_SEL_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* Make sure BHS continues to power the rail */
+	ctl |= BHS_EN_FEW_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+	ctl |= BHS_EN_REST_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* move BHS to SW control */
+	ctl |= BHS_UNDER_SW_CTL;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* set LDO under SW control */
+	ctl |= LDO_UNDER_SW_CTRL_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* bypass LDO */
+	ctl |= LDO_BYPASS_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* power-on LDO */
+	ctl &= ~LDO_PDN_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* set the new LDO voltage */
+	ldo_update_voltage(ldo_vreg, new_uv);
+
+	pr_debug("LDO voltage =%d uV\n", ldo_vreg->ldo_voltage_uv);
+
+	/* make sure that the configuration is complete */
+	mb();
+
+	/* power down BHS */
+	ctl &= ~BHS_EN_FEW_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+	ctl &= ~BHS_EN_REST_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* make sure that the configuration is complete */
+	mb();
+
+	/* wait for BHS to turn-off */
+	while (--timeout) {
+		status = readl_relaxed(ldo_vreg->ldo_base +
+					PWRSWITCH_STATUS_REG);
+		if (!(status & BHS_EN_REST_ACK_BIT))
+			break;
+
+		udelay(10);
+	}
+
+	if (!timeout)
+		pr_err("BHS_EN_RESET_ACK not clear PWRSWITCH_STATUS = 0x%x\n",
+								status);
+
+	/* remove LDO bypass */
+	ctl &= ~LDO_BYPASS_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* expose LDO to gdsc */
+	ctl &= ~ACK_SW_OVR_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	ctl &= ~LDO_UNDER_SW_CTRL_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	dump_registers(ldo_vreg, "switch_mode_to_ldo");
+
+	return 0;
+}
+
+static int switch_mode_to_bhs(struct msm_gfx_ldo *ldo_vreg)
+{
+	u32 ctl = 0, status = 0, timeout = 50;
+
+	ctl = readl_relaxed(ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* fake ack to gdsc */
+	ctl |= ACK_SW_OVR_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* select BHS as power source */
+	ctl &= ~PWR_SRC_SEL_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* LDO stays ON */
+	ctl &= ~LDO_PDN_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* Move LDO to SW control */
+	ctl |= LDO_UNDER_SW_CTRL_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* Power-up BHS */
+	ctl |= BHS_EN_FEW_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+	ctl |= BHS_EN_REST_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* make sure that the configuration is complete */
+	mb();
+
+	/* wait for BHS to power-up */
+	while (--timeout) {
+		status = readl_relaxed(ldo_vreg->ldo_base +
+					PWRSWITCH_STATUS_REG);
+		if (status & BHS_EN_REST_ACK_BIT)
+			break;
+
+		udelay(10);
+	}
+	if (!timeout)
+		pr_err("BHS_EN_RESET_ACK not set PWRSWITCH_STATUS = 0x%x\n",
+								status);
+
+	/* bypass LDO */
+	ctl |= LDO_BYPASS_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* pull-down LDO */
+	ctl |= LDO_PDN_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	/* Expose BHS to gdsc */
+	ctl &= ~ACK_SW_OVR_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+	ctl &= ~BHS_UNDER_SW_CTL;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	if (ldo_vreg->ops_type == CORNER) {
+		/* Enable CPR in BHS mode */
+		ctl &= ~CPR_BYPASS_IN_LDO_MODE_BIT;
+		writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+	}
+
+	/* make sure that all configuration is complete */
+	mb();
+
+	dump_registers(ldo_vreg, "switch_mode_to_bhs");
+
+	return 0;
+}
+
+static int msm_gfx_ldo_set_corner(struct regulator_dev *rdev,
+		int corner, int corner_max, unsigned int *selector)
+{
+	struct msm_gfx_ldo *ldo_vreg  = rdev_get_drvdata(rdev);
+	int rc = 0, mem_acc_corner, new_uv;
+	enum msm_ldo_supply_mode new_mode;
+	enum direction dir = NO_CHANGE;
+
+	corner -= MIN_CORNER_OFFSET;
+	corner_max -= MIN_CORNER_OFFSET;
+
+	mutex_lock(&ldo_vreg->ldo_mutex);
+
+	if (corner == ldo_vreg->corner)
+		goto done;
+
+	pr_debug("set-voltage requested: old_mode=%s old_corner=%d new_corner=%d vreg_enabled=%d\n",
+				ldo_vreg->mode == BHS_MODE ? "BHS" : "LDO",
+				ldo_vreg->corner + MIN_CORNER_OFFSET,
+				corner + MIN_CORNER_OFFSET,
+				ldo_vreg->vreg_enabled);
+
+	if (corner > ldo_vreg->corner)
+		dir = UP;
+	else if (corner < ldo_vreg->corner)
+		dir = DOWN;
+
+	if (ldo_vreg->mem_acc_vreg && dir == DOWN) {
+		mem_acc_corner = ldo_vreg->mem_acc_corner_map[corner];
+		rc = regulator_set_voltage(ldo_vreg->mem_acc_vreg,
+				mem_acc_corner, mem_acc_corner);
+	}
+
+	if (!ldo_vreg->vreg_enabled) {
+		ldo_vreg->corner = corner;
+		goto done;
+	}
+
+	if (ldo_vreg->vdd_cx) {
+		rc = regulator_set_voltage(ldo_vreg->vdd_cx,
+			ldo_vreg->vdd_cx_corner_map[corner],
+			INT_MAX);
+		if (rc) {
+			pr_err("Unable to set CX for corner %d rc=%d\n",
+					corner + MIN_CORNER_OFFSET, rc);
+			goto done;
+		}
+	}
+
+	new_mode = get_operating_mode(ldo_vreg, corner);
+
+	if (new_mode == BHS_MODE) {
+		if (ldo_vreg->mode == LDO_MODE) {
+			rc = switch_mode_to_bhs(ldo_vreg);
+			if (rc)
+				pr_err("Switch to BHS corner=%d failed rc=%d\n",
+						corner + MIN_CORNER_OFFSET, rc);
+		}
+	} else { /* new mode - LDO */
+		new_uv = ldo_vreg->open_loop_volt[ldo_vreg->corner];
+
+		if (ldo_vreg->mode == BHS_MODE) {
+			rc = switch_mode_to_ldo(ldo_vreg, new_uv);
+			if (rc)
+				pr_err("Switch to LDO failed corner=%d rc=%d\n",
+						corner + MIN_CORNER_OFFSET, rc);
+		} else {
+			rc = ldo_update_voltage(ldo_vreg, new_uv);
+			if (rc)
+				pr_err("Update voltage failed corner=%d rc=%d\n",
+						corner + MIN_CORNER_OFFSET, rc);
+		}
+	}
+
+	if (!rc) {
+		pr_debug("set-voltage complete. old_mode=%s new_mode=%s old_corner=%d new_corner=%d\n",
+				ldo_vreg->mode == BHS_MODE ? "BHS" : "LDO",
+				new_mode == BHS_MODE ? "BHS" : "LDO",
+				ldo_vreg->corner + MIN_CORNER_OFFSET,
+				corner + MIN_CORNER_OFFSET);
+
+		ldo_vreg->mode = new_mode;
+		ldo_vreg->corner = corner;
+	}
+
+done:
+	if (!rc && ldo_vreg->mem_acc_vreg && dir == UP) {
+		mem_acc_corner = ldo_vreg->mem_acc_corner_map[corner];
+		rc = regulator_set_voltage(ldo_vreg->mem_acc_vreg,
+				mem_acc_corner, mem_acc_corner);
+	}
+	mutex_unlock(&ldo_vreg->ldo_mutex);
+	return rc;
+}
+
+static int msm_gfx_ldo_get_corner(struct regulator_dev *rdev)
+{
+	struct msm_gfx_ldo *ldo_vreg  = rdev_get_drvdata(rdev);
+
+	return ldo_vreg->corner + MIN_CORNER_OFFSET;
+}
+
+static int msm_gfx_ldo_is_enabled(struct regulator_dev *rdev)
+{
+	struct msm_gfx_ldo *ldo_vreg  = rdev_get_drvdata(rdev);
+
+	return ldo_vreg->vreg_enabled;
+}
+
+static struct regulator_ops msm_gfx_ldo_corner_ops = {
+	.enable		= msm_gfx_ldo_corner_enable,
+	.disable	= msm_gfx_ldo_disable,
+	.is_enabled	= msm_gfx_ldo_is_enabled,
+	.set_voltage	= msm_gfx_ldo_set_corner,
+	.get_voltage	= msm_gfx_ldo_get_corner,
+};
+
+static int msm_gfx_ldo_get_bypass(struct regulator_dev *rdev,
+				  bool *enable)
+{
+	struct msm_gfx_ldo *ldo_vreg = rdev_get_drvdata(rdev);
+
+	*enable = ldo_vreg->mode;
+
+	return 0;
+}
+
+static int msm_gfx_ldo_set_bypass(struct regulator_dev *rdev,
+				  bool mode)
+{
+	struct msm_gfx_ldo *ldo_vreg = rdev_get_drvdata(rdev);
+	int rc = 0;
+
+	mutex_lock(&ldo_vreg->ldo_mutex);
+
+	if (ldo_vreg->mode == mode || !ldo_vreg->vreg_enabled)
+		goto done;
+
+	if (mode == LDO_MODE)
+		rc = switch_mode_to_ldo(ldo_vreg, ldo_vreg->ldo_voltage_uv);
+	else
+		rc = switch_mode_to_bhs(ldo_vreg);
+
+	if (rc) {
+		pr_err("Failed to configure regulator in %s mode rc=%d\n",
+			(mode == LDO_MODE) ? "LDO" : "BHS", rc);
+		goto done;
+	}
+
+	pr_debug("regulator_set_bypass complete. mode=%s, voltage = %d uV\n",
+			(mode == LDO_MODE) ? "LDO" : "BHS",
+			(mode == LDO_MODE) ? ldo_vreg->ldo_voltage_uv : 0);
+
+	ldo_vreg->mode = mode;
+
+done:
+	mutex_unlock(&ldo_vreg->ldo_mutex);
+	return rc;
+}
+
+static int msm_gfx_ldo_voltage_enable(struct regulator_dev *rdev)
+{
+	struct msm_gfx_ldo *ldo_vreg = rdev_get_drvdata(rdev);
+	int rc = 0;
+	enum msm_ldo_supply_mode enable_mode;
+
+	mutex_lock(&ldo_vreg->ldo_mutex);
+
+	pr_debug("regulator_enable requested. voltage=%d\n",
+		ldo_vreg->ldo_voltage_uv);
+
+	enable_mode = ldo_vreg->mode;
+
+	if (enable_mode == LDO_MODE)
+		rc = enable_ldo_mode(ldo_vreg, ldo_vreg->ldo_voltage_uv);
+	else
+		rc = enable_bhs_mode(ldo_vreg);
+
+	if (rc) {
+		pr_err("Failed to enable regulator in %s mode rc=%d\n",
+			(enable_mode == LDO_MODE) ? "LDO" : "BHS", rc);
+		goto fail;
+	}
+
+	pr_debug("regulator_enable complete. mode=%s, voltage = %d uV\n",
+		(enable_mode == LDO_MODE) ? "LDO" : "BHS",
+		(enable_mode == LDO_MODE) ? ldo_vreg->ldo_voltage_uv : 0);
+
+	ldo_vreg->vreg_enabled = true;
+
+fail:
+	mutex_unlock(&ldo_vreg->ldo_mutex);
+	return rc;
+}
+
+static int msm_gfx_ldo_set_voltage(struct regulator_dev *rdev,
+		int new_uv, int max_uv, unsigned int *selector)
+{
+	struct msm_gfx_ldo *ldo_vreg = rdev_get_drvdata(rdev);
+	int rc = 0;
+
+	mutex_lock(&ldo_vreg->ldo_mutex);
+
+	if (new_uv == ldo_vreg->ldo_voltage_uv)
+		goto done;
+
+	if (!ldo_vreg->vreg_enabled || ldo_vreg->mode != LDO_MODE) {
+		ldo_vreg->ldo_voltage_uv = new_uv;
+		goto done;
+	}
+
+	/* update LDO voltage */
+	rc = ldo_update_voltage(ldo_vreg, new_uv);
+	if (rc)
+		pr_err("Update voltage failed for [%d, %d], rc=%d\n",
+			new_uv, max_uv, rc);
+done:
+	mutex_unlock(&ldo_vreg->ldo_mutex);
+	return rc;
+}
+
+static int msm_gfx_ldo_get_voltage(struct regulator_dev *rdev)
+{
+	struct msm_gfx_ldo *ldo_vreg = rdev_get_drvdata(rdev);
+
+	return ldo_vreg->ldo_voltage_uv;
+}
+
+static struct regulator_ops msm_gfx_ldo_voltage_ops = {
+	.enable		= msm_gfx_ldo_voltage_enable,
+	.disable	= msm_gfx_ldo_disable,
+	.is_enabled	= msm_gfx_ldo_is_enabled,
+	.set_voltage	= msm_gfx_ldo_set_voltage,
+	.get_voltage	= msm_gfx_ldo_get_voltage,
+	.set_bypass	= msm_gfx_ldo_set_bypass,
+	.get_bypass	= msm_gfx_ldo_get_bypass,
+};
+
+static int msm_gfx_ldo_adjust_init_voltage(struct msm_gfx_ldo *ldo_vreg)
+{
+	int rc, len, size, i;
+	u32 *volt_adjust;
+	struct device_node *of_node = ldo_vreg->dev->of_node;
+	char *prop_name = "qcom,ldo-init-voltage-adjustment";
+
+	if (!of_find_property(of_node, prop_name, &len)) {
+		/* No initial voltage adjustment needed. */
+		return 0;
+	}
+
+	size = len / sizeof(u32);
+	if (size != ldo_vreg->num_ldo_corners) {
+		pr_err("%s length=%d is invalid: required:%d\n",
+				prop_name, size, ldo_vreg->num_ldo_corners);
+		return -EINVAL;
+	}
+
+	volt_adjust = devm_kcalloc(ldo_vreg->dev, size, sizeof(*volt_adjust),
+								GFP_KERNEL);
+	if (!volt_adjust)
+		return -ENOMEM;
+
+	rc = of_property_read_u32_array(of_node, prop_name, volt_adjust, size);
+	if (rc) {
+		pr_err("failed to read %s property rc=%d\n", prop_name, rc);
+		return rc;
+	}
+
+	for (i = 0; i < ldo_vreg->num_corners; i++) {
+		if (volt_adjust[i]) {
+			ldo_vreg->open_loop_volt[i] += volt_adjust[i];
+			pr_info("adjusted the open-loop voltage[%d] %d -> %d\n",
+				i + MIN_CORNER_OFFSET,
+				ldo_vreg->open_loop_volt[i] - volt_adjust[i],
+				ldo_vreg->open_loop_volt[i]);
+		}
+	}
+
+	return 0;
+}
+
+static int msm_gfx_ldo_voltage_init(struct msm_gfx_ldo *ldo_vreg)
+{
+	struct device_node *of_node = ldo_vreg->dev->of_node;
+	int i, rc, len;
+	u64 efuse_bits;
+
+	len = ldo_vreg->num_ldo_corners;
+
+	ldo_vreg->open_loop_volt = devm_kcalloc(ldo_vreg->dev,
+			len, sizeof(*ldo_vreg->open_loop_volt),
+			GFP_KERNEL);
+	ldo_vreg->ceiling_volt = devm_kcalloc(ldo_vreg->dev,
+			len, sizeof(*ldo_vreg->ceiling_volt),
+			GFP_KERNEL);
+	ldo_vreg->floor_volt = devm_kcalloc(ldo_vreg->dev,
+			len, sizeof(*ldo_vreg->floor_volt),
+			GFP_KERNEL);
+
+	if (!ldo_vreg->open_loop_volt || !ldo_vreg->ceiling_volt
+					|| !ldo_vreg->floor_volt)
+		return -ENOMEM;
+
+	rc = of_property_read_u32_array(of_node, "qcom,ldo-voltage-ceiling",
+						ldo_vreg->ceiling_volt, len);
+	if (rc) {
+		pr_err("Unable to read qcom,ldo-voltage-ceiling rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32_array(of_node, "qcom,ldo-voltage-floor",
+						ldo_vreg->floor_volt, len);
+	if (rc) {
+		pr_err("Unable to read qcom,ldo-voltage-floor rc=%d\n", rc);
+		return rc;
+	}
+
+	for (i = 0; i < ldo_vreg->num_ldo_corners; i++) {
+		rc = read_fuse_param(ldo_vreg->efuse_base,
+				ldo_vreg->init_volt_param[i],
+				&efuse_bits);
+		if (rc) {
+			pr_err("Unable to read init-voltage rc=%d\n", rc);
+			return rc;
+		}
+		ldo_vreg->open_loop_volt[i] = convert_open_loop_voltage_fuse(
+					ldo_vreg->ref_volt[i],
+					GFX_LDO_FUSE_STEP_VOLT,
+					efuse_bits,
+					GFX_LDO_FUSE_SIZE);
+		pr_info("LDO corner %d: target-volt = %d uV\n",
+			i + MIN_CORNER_OFFSET, ldo_vreg->open_loop_volt[i]);
+	}
+
+	rc = msm_gfx_ldo_adjust_init_voltage(ldo_vreg);
+	if (rc) {
+		pr_err("Unable to adjust init voltages rc=%d\n", rc);
+		return rc;
+	}
+
+	for (i = 0; i < ldo_vreg->num_ldo_corners; i++) {
+		if (ldo_vreg->open_loop_volt[i] > ldo_vreg->ceiling_volt[i]) {
+			pr_info("Warning: initial voltage[%d] %d above ceiling %d\n",
+				i + MIN_CORNER_OFFSET,
+				ldo_vreg->open_loop_volt[i],
+				ldo_vreg->ceiling_volt[i]);
+			ldo_vreg->open_loop_volt[i] = ldo_vreg->ceiling_volt[i];
+		} else if (ldo_vreg->open_loop_volt[i] <
+				ldo_vreg->floor_volt[i]) {
+			pr_info("Warning: initial voltage[%d] %d below floor %d\n",
+				i + MIN_CORNER_OFFSET,
+				ldo_vreg->open_loop_volt[i],
+				ldo_vreg->floor_volt[i]);
+			ldo_vreg->open_loop_volt[i] = ldo_vreg->floor_volt[i];
+		}
+	}
+
+	efuse_bits = 0;
+	rc = read_fuse_param(ldo_vreg->efuse_base, ldo_vreg->ldo_enable_param,
+								&efuse_bits);
+	if (rc) {
+		pr_err("Unable to read ldo_enable_param rc=%d\n", rc);
+		return rc;
+	}
+	ldo_vreg->ldo_fuse_enable = !!efuse_bits;
+	pr_info("LDO-mode fuse %s by default\n", ldo_vreg->ldo_fuse_enable ?
+					"enabled" : "disabled");
+
+	return rc;
+}
+
+static int msm_gfx_ldo_efuse_init(struct platform_device *pdev,
+				struct msm_gfx_ldo *ldo_vreg)
+{
+	struct resource *res;
+	u32 len;
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse_addr");
+	if (!res || !res->start) {
+		pr_err("efuse_addr missing: res=%p\n", res);
+		return -EINVAL;
+	}
+
+	ldo_vreg->efuse_addr = res->start;
+	len = res->end - res->start + 1;
+
+	ldo_vreg->efuse_base = devm_ioremap(&pdev->dev,
+				ldo_vreg->efuse_addr, len);
+	if (!ldo_vreg->efuse_base) {
+		pr_err("Unable to map efuse_addr %pa\n",
+				&ldo_vreg->efuse_addr);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static int msm_gfx_ldo_mem_acc_init(struct msm_gfx_ldo *ldo_vreg)
+{
+	int rc;
+	u32 len, size;
+	struct device_node *of_node = ldo_vreg->dev->of_node;
+
+	if (of_find_property(ldo_vreg->dev->of_node, "mem-acc-supply", NULL)) {
+		ldo_vreg->mem_acc_vreg = devm_regulator_get(ldo_vreg->dev,
+							"mem-acc");
+		if (IS_ERR_OR_NULL(ldo_vreg->mem_acc_vreg)) {
+			rc = PTR_RET(ldo_vreg->mem_acc_vreg);
+			if (rc != -EPROBE_DEFER)
+				pr_err("devm_regulator_get: mem-acc: rc=%d\n",
+					rc);
+			return rc;
+		}
+	} else {
+		pr_debug("mem-acc-supply not specified\n");
+		return 0;
+	}
+
+	if (!of_find_property(of_node, "qcom,mem-acc-corner-map", &len)) {
+		pr_err("qcom,mem-acc-corner-map missing");
+		return -EINVAL;
+	}
+
+	size = len / sizeof(u32);
+	if (size != ldo_vreg->num_corners) {
+		pr_err("qcom,mem-acc-corner-map length=%d is invalid: required:%u\n",
+						size, ldo_vreg->num_corners);
+		return -EINVAL;
+	}
+
+	ldo_vreg->mem_acc_corner_map = devm_kcalloc(ldo_vreg->dev, size,
+			sizeof(*ldo_vreg->mem_acc_corner_map), GFP_KERNEL);
+	if (!ldo_vreg->mem_acc_corner_map)
+		return -ENOMEM;
+
+	rc = of_property_read_u32_array(of_node, "qcom,mem-acc-corner-map",
+					ldo_vreg->mem_acc_corner_map, size);
+	if (rc)
+		pr_err("Unable to read qcom,mem-acc-corner-map rc=%d\n", rc);
+
+	return rc;
+}
+
+static int msm_gfx_ldo_init(struct platform_device *pdev,
+				struct msm_gfx_ldo *ldo_vreg)
+{
+	struct resource *res;
+	u32 len, ctl;
+	int i = 0;
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ldo_addr");
+	if (!res || !res->start) {
+		pr_err("ldo_addr missing: res=%p\n", res);
+		return -EINVAL;
+	}
+
+	ldo_vreg->ldo_addr = res->start;
+	len = res->end - res->start + 1;
+
+	ldo_vreg->ldo_base = devm_ioremap(ldo_vreg->dev,
+					ldo_vreg->ldo_addr, len);
+	if (!ldo_vreg->ldo_base) {
+		pr_err("Unable to map efuse_addr %pa\n",
+				&ldo_vreg->ldo_addr);
+		return -EINVAL;
+	}
+
+	/* HW initialization */
+
+	/* clear clamp_io, enable CPR in auto-bypass*/
+	ctl = readl_relaxed(ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+	ctl &= ~LDO_CLAMP_IO_BIT;
+	ctl |= EN_LDOAP_CTRL_CPR_BIT;
+	writel_relaxed(ctl, ldo_vreg->ldo_base + PWRSWITCH_CTRL_REG);
+
+	i = 0;
+	while (ldo_vreg->ldo_init_config &&
+			ldo_vreg->ldo_init_config[i].offset != LDO_MAX_OFFSET) {
+		writel_relaxed(ldo_vreg->ldo_init_config[i].value,
+				ldo_vreg->ldo_base +
+				ldo_vreg->ldo_init_config[i].offset);
+		i++;
+	}
+	/* complete the writes */
+	mb();
+
+	return 0;
+}
+
+static int ldo_parse_cx_parameters(struct msm_gfx_ldo *ldo_vreg)
+{
+	struct device_node *of_node = ldo_vreg->dev->of_node;
+	int rc, len, size;
+
+	if (of_find_property(of_node, "vdd-cx-supply", NULL)) {
+		ldo_vreg->vdd_cx = devm_regulator_get(ldo_vreg->dev, "vdd-cx");
+		if (IS_ERR_OR_NULL(ldo_vreg->vdd_cx)) {
+			rc = PTR_RET(ldo_vreg->vdd_cx);
+			if (rc != -EPROBE_DEFER)
+				pr_err("devm_regulator_get: vdd-cx: rc=%d\n",
+					rc);
+			return rc;
+		}
+	} else {
+		pr_debug("vdd-cx-supply not specified\n");
+		return 0;
+	}
+
+	if (!of_find_property(of_node, "qcom,vdd-cx-corner-map", &len)) {
+		pr_err("qcom,vdd-cx-corner-map missing");
+		return -EINVAL;
+	}
+
+	size = len / sizeof(u32);
+	if (size != ldo_vreg->num_corners) {
+		pr_err("qcom,vdd-cx-corner-map length=%d is invalid: required:%u\n",
+						size, ldo_vreg->num_corners);
+		return -EINVAL;
+	}
+
+	ldo_vreg->vdd_cx_corner_map = devm_kcalloc(ldo_vreg->dev, size,
+			sizeof(*ldo_vreg->vdd_cx_corner_map), GFP_KERNEL);
+	if (!ldo_vreg->vdd_cx_corner_map)
+		return -ENOMEM;
+
+	rc = of_property_read_u32_array(of_node, "qcom,vdd-cx-corner-map",
+					ldo_vreg->vdd_cx_corner_map, size);
+	if (rc)
+		pr_err("Unable to read qcom,vdd-cx-corner-map rc=%d\n", rc);
+
+
+	return rc;
+}
+
+static int msm_gfx_ldo_parse_dt(struct msm_gfx_ldo *ldo_vreg)
+{
+	struct device_node *of_node = ldo_vreg->dev->of_node;
+	int rc, size, len;
+
+	rc = of_property_read_u32(of_node, "qcom,num-corners",
+					&ldo_vreg->num_corners);
+	if (rc < 0) {
+		pr_err("Unable to read qcom,num-corners rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(of_node, "qcom,num-ldo-corners",
+					&ldo_vreg->num_ldo_corners);
+	if (rc) {
+		pr_err("Unable to read qcom,num-ldo-corners rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = of_property_read_u32(of_node, "qcom,init-corner",
+					&ldo_vreg->corner);
+	if (rc) {
+		pr_err("Unable to read qcom,init-corner rc=%d\n", rc);
+		return rc;
+	}
+
+	if (!of_find_property(of_node, "qcom,ldo-enable-corner-map", &len)) {
+		pr_err("qcom,ldo-enable-corner-map missing\n");
+		return -EINVAL;
+	}
+
+	size = len / sizeof(u32);
+	if (size != ldo_vreg->num_corners) {
+		pr_err("qcom,ldo-enable-corner-map length=%d is invalid: required:%u\n",
+					size, ldo_vreg->num_corners);
+		return -EINVAL;
+	}
+
+	ldo_vreg->ldo_corner_en_map = devm_kcalloc(ldo_vreg->dev, size,
+			sizeof(*ldo_vreg->ldo_corner_en_map), GFP_KERNEL);
+	if (!ldo_vreg->ldo_corner_en_map)
+		return -ENOMEM;
+
+	rc = of_property_read_u32_array(of_node, "qcom,ldo-enable-corner-map",
+					ldo_vreg->ldo_corner_en_map, size);
+	if (rc) {
+		pr_err("Unable to read qcom,ldo-enable-corner-map rc=%d\n",
+									rc);
+		return rc;
+	}
+
+	rc = ldo_parse_cx_parameters(ldo_vreg);
+	if (rc) {
+		pr_err("Unable to parse CX parameters rc=%d\n", rc);
+		return rc;
+	}
+
+	return 0;
+}
+
+static int msm_gfx_ldo_target_init(struct msm_gfx_ldo *ldo_vreg)
+{
+	int i;
+
+	/* MSM8953 */
+	ldo_vreg->init_volt_param = devm_kzalloc(ldo_vreg->dev,
+			(MSM8953_LDO_FUSE_CORNERS *
+			sizeof(struct fuse_param *)), GFP_KERNEL);
+	if (!ldo_vreg->init_volt_param)
+		return -ENOMEM;
+
+	for (i = 0; i < MSM8953_LDO_FUSE_CORNERS; i++)
+		ldo_vreg->init_volt_param[i] =
+				msm8953_init_voltage_param[i];
+
+	ldo_vreg->ref_volt = msm8953_fuse_ref_volt;
+	ldo_vreg->ldo_enable_param = msm8953_ldo_enable_param;
+
+	return 0;
+}
+
+static int debugfs_ldo_mode_disable_set(void *data, u64 val)
+{
+	struct msm_gfx_ldo *ldo_vreg = data;
+
+	ldo_vreg->ldo_mode_disable = !!val;
+
+	pr_debug("LDO-mode %s\n", ldo_vreg->ldo_mode_disable ?
+					"disabled" : "enabled");
+
+	return 0;
+}
+
+static int debugfs_ldo_mode_disable_get(void *data, u64 *val)
+{
+	struct msm_gfx_ldo *ldo_vreg = data;
+
+	*val = ldo_vreg->ldo_mode_disable;
+
+	return 0;
+}
+
+DEFINE_SIMPLE_ATTRIBUTE(ldo_mode_disable_fops, debugfs_ldo_mode_disable_get,
+				debugfs_ldo_mode_disable_set, "%llu\n");
+
+static int debugfs_ldo_set_voltage(void *data, u64 val)
+{
+	struct msm_gfx_ldo *ldo_vreg = data;
+	int rc = 0, timeout = 50;
+	u32 reg = 0, voltage = 0;
+
+	mutex_lock(&ldo_vreg->ldo_mutex);
+
+	if (ldo_vreg->mode == BHS_MODE || !ldo_vreg->vreg_enabled ||
+		val > MAX_LDO_VOLTAGE || val < MIN_LDO_VOLTAGE) {
+		rc = -EINVAL;
+		goto done;
+	}
+	voltage = GET_VREF((u32)val);
+
+	reg = readl_relaxed(ldo_vreg->ldo_base + LDO_VREF_SET_REG);
+
+	/* set the new voltage */
+	reg &= ~VREF_VAL_MASK;
+	reg |= voltage & VREF_VAL_MASK;
+	writel_relaxed(reg, ldo_vreg->ldo_base + LDO_VREF_SET_REG);
+
+	/* Initiate VREF update */
+	reg |= UPDATE_VREF_BIT;
+	writel_relaxed(reg, ldo_vreg->ldo_base + LDO_VREF_SET_REG);
+
+	/* complete the writes */
+	mb();
+
+	reg &= ~UPDATE_VREF_BIT;
+	writel_relaxed(reg, ldo_vreg->ldo_base + LDO_VREF_SET_REG);
+
+	/* complete the writes */
+	mb();
+
+	while (--timeout) {
+		reg = readl_relaxed(ldo_vreg->ldo_base +
+					PWRSWITCH_STATUS_REG);
+		if (reg & (LDO_VREF_SETTLED_BIT | LDO_READY_BIT))
+			break;
+
+		udelay(10);
+	}
+	if (!timeout) {
+		pr_err("LDO_VREF_SETTLED not set PWRSWITCH_STATUS = 0x%x\n",
+								reg);
+		rc = -EBUSY;
+	} else {
+		ldo_vreg->ldo_voltage_uv = val;
+		pr_debug("LDO voltage set to %d uV\n",
+				ldo_vreg->ldo_voltage_uv);
+	}
+done:
+	mutex_unlock(&ldo_vreg->ldo_mutex);
+	return rc;
+}
+
+static int debugfs_ldo_get_voltage(void *data, u64 *val)
+{
+	struct msm_gfx_ldo *ldo_vreg = data;
+	int rc = 0;
+	u32 reg;
+
+	mutex_lock(&ldo_vreg->ldo_mutex);
+
+	if (ldo_vreg->mode == BHS_MODE || !ldo_vreg->vreg_enabled) {
+		rc = -EINVAL;
+		goto done;
+	}
+
+	reg = readl_relaxed(ldo_vreg->ldo_base + LDO_VREF_SET_REG);
+	reg &= VREF_VAL_MASK;
+
+	*val = (reg * LDO_STEP_VOLATGE) + MIN_LDO_VOLTAGE;
+done:
+	mutex_unlock(&ldo_vreg->ldo_mutex);
+	return rc;
+}
+DEFINE_SIMPLE_ATTRIBUTE(ldo_voltage_fops, debugfs_ldo_get_voltage,
+				debugfs_ldo_set_voltage, "%llu\n");
+
+static int msm_gfx_ldo_debug_info_open(struct inode *inode, struct file *file)
+{
+	file->private_data = inode->i_private;
+
+	return 0;
+}
+
+static ssize_t msm_gfx_ldo_debug_info_read(struct file *file, char __user *buff,
+				size_t count, loff_t *ppos)
+{
+	struct msm_gfx_ldo *ldo_vreg = file->private_data;
+	char *debugfs_buf;
+	ssize_t len, ret = 0;
+	u32 i = 0, reg[MAX_LDO_REGS];
+
+	debugfs_buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
+	if (!debugfs_buf)
+		return -ENOMEM;
+
+	mutex_lock(&ldo_vreg->ldo_mutex);
+
+	len = snprintf(debugfs_buf + ret, PAGE_SIZE - ret,
+		"Regulator_enable = %d Regulator mode = %s Corner = %d LDO-voltage = %d uV\n",
+		ldo_vreg->vreg_enabled,
+		ldo_vreg->mode == BHS_MODE ? "BHS" : "LDO",
+		ldo_vreg->corner + MIN_CORNER_OFFSET,
+		ldo_vreg->ldo_voltage_uv);
+	ret += len;
+
+	for (i = 0; i < MAX_LDO_REGS; i++) {
+		reg[i] = 0;
+		reg[i] = readl_relaxed(ldo_vreg->ldo_base + (i * 4));
+		len = snprintf(debugfs_buf + ret, PAGE_SIZE - ret,
+				"%s = 0x%x\n",  register_str[i], reg[i]);
+		ret += len;
+	}
+
+	mutex_unlock(&ldo_vreg->ldo_mutex);
+
+	ret = simple_read_from_buffer(buff, count, ppos, debugfs_buf, ret);
+	kfree(debugfs_buf);
+
+	return ret;
+}
+
+static const struct file_operations msm_gfx_ldo_debug_info_fops = {
+	.open = msm_gfx_ldo_debug_info_open,
+	.read = msm_gfx_ldo_debug_info_read,
+};
+
+static void msm_gfx_ldo_debugfs_init(struct msm_gfx_ldo *ldo_vreg)
+{
+	struct dentry *temp;
+
+	ldo_vreg->debugfs = debugfs_create_dir("msm_gfx_ldo", NULL);
+	if (!ldo_vreg->debugfs) {
+		pr_err("Couldn't create debug dir\n");
+		return;
+	}
+
+	temp = debugfs_create_file("debug_info", 0444, ldo_vreg->debugfs,
+					ldo_vreg, &msm_gfx_ldo_debug_info_fops);
+	if (IS_ERR_OR_NULL(temp)) {
+		pr_err("debug_info node creation failed\n");
+		return;
+	}
+
+	temp = debugfs_create_file("ldo_voltage", 0644, ldo_vreg->debugfs,
+					ldo_vreg, &ldo_voltage_fops);
+	if (IS_ERR_OR_NULL(temp)) {
+		pr_err("ldo_voltage node creation failed\n");
+		return;
+	}
+
+	temp = debugfs_create_file("ldo_mode_disable", 0644, ldo_vreg->debugfs,
+					ldo_vreg, &ldo_mode_disable_fops);
+	if (IS_ERR_OR_NULL(temp)) {
+		pr_err("ldo_mode_disable node creation failed\n");
+		return;
+	}
+}
+
+static void msm_gfx_ldo_debugfs_remove(struct msm_gfx_ldo *ldo_vreg)
+{
+	debugfs_remove_recursive(ldo_vreg->debugfs);
+}
+
+static int msm_gfx_ldo_corner_config_init(struct msm_gfx_ldo *ldo_vreg,
+		struct platform_device *pdev)
+{
+	int rc;
+
+	rc = msm_gfx_ldo_target_init(ldo_vreg);
+	if (rc) {
+		pr_err("Unable to initialize target specific data rc=%d", rc);
+		return rc;
+	}
+
+	rc = msm_gfx_ldo_parse_dt(ldo_vreg);
+	if (rc) {
+		pr_err("Unable to pasrse dt rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = msm_gfx_ldo_efuse_init(pdev, ldo_vreg);
+	if (rc) {
+		pr_err("efuse_init failed rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = msm_gfx_ldo_voltage_init(ldo_vreg);
+	if (rc) {
+		pr_err("ldo_voltage_init failed rc=%d\n", rc);
+		return rc;
+	}
+
+	rc = msm_gfx_ldo_mem_acc_init(ldo_vreg);
+	if (rc) {
+		pr_err("Unable to initialize mem_acc rc=%d\n", rc);
+		return rc;
+	}
+
+	return rc;
+};
+
+/* Data corresponds to the SoC revision */
+static const struct of_device_id msm_gfx_ldo_match_table[] = {
+	{
+		.compatible = "qcom,msm8953-gfx-ldo",
+		.data = (void *)(uintptr_t)MSM8953_SOC_ID,
+	},
+	{
+		.compatible = "qcom,sdm660-gfx-ldo",
+		.data = (void *)(uintptr_t)SDM660_SOC_ID,
+	},
+	{}
+};
+
+static int msm_gfx_ldo_probe(struct platform_device *pdev)
+{
+	struct msm_gfx_ldo *ldo_vreg;
+	struct regulator_config reg_config = {};
+	struct regulator_desc *rdesc;
+	struct regulator_init_data *init_data = pdev->dev.platform_data;
+	struct device *dev = &pdev->dev;
+	const struct of_device_id *match;
+	int soc_id, rc;
+
+	match = of_match_device(msm_gfx_ldo_match_table, dev);
+	if (!match)
+		return -ENODEV;
+
+	ldo_vreg = devm_kzalloc(dev, sizeof(*ldo_vreg), GFP_KERNEL);
+	if (!ldo_vreg)
+		return -ENOMEM;
+
+	init_data = of_get_regulator_init_data(dev, dev->of_node, NULL);
+	if (!init_data) {
+		pr_err("regulator init data is missing\n");
+		return -EINVAL;
+	}
+
+	init_data->constraints.input_uV = init_data->constraints.max_uV;
+	init_data->constraints.valid_ops_mask
+			|= REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_STATUS;
+
+	ldo_vreg->rdesc.name = init_data->constraints.name;
+	if (ldo_vreg->rdesc.name == NULL) {
+		dev_err(dev, "regulator-name missing\n");
+		return -EINVAL;
+	}
+
+	soc_id = (uintptr_t)match->data;
+	ldo_vreg->dev = &pdev->dev;
+	mutex_init(&ldo_vreg->ldo_mutex);
+	platform_set_drvdata(pdev, ldo_vreg);
+
+	switch (soc_id) {
+	case MSM8953_SOC_ID:
+		ldo_vreg->ldo_init_config = msm8953_ldo_config;
+		ldo_vreg->ops_type = CORNER;
+		rc = msm_gfx_ldo_corner_config_init(ldo_vreg, pdev);
+		if (rc) {
+			pr_err("ldo corner handling initialization failed, rc=%d\n",
+				rc);
+			return rc;
+		}
+		break;
+	case SDM660_SOC_ID:
+		ldo_vreg->ldo_init_config = sdm660_ldo_config;
+		ldo_vreg->ops_type = VOLTAGE;
+		init_data->constraints.valid_ops_mask
+			|= REGULATOR_CHANGE_BYPASS;
+		break;
+	default:
+		pr_err("invalid SOC ID = %d\n", soc_id);
+		return -EINVAL;
+	}
+
+	/* HW initialization */
+	rc = msm_gfx_ldo_init(pdev, ldo_vreg);
+	if (rc) {
+		pr_err("ldo_init failed rc=%d\n", rc);
+		return rc;
+	}
+
+	rdesc			= &ldo_vreg->rdesc;
+	rdesc->owner		= THIS_MODULE;
+	rdesc->type		= REGULATOR_VOLTAGE;
+
+	if (ldo_vreg->ops_type == CORNER)
+		rdesc->ops = &msm_gfx_ldo_corner_ops;
+	else
+		rdesc->ops = &msm_gfx_ldo_voltage_ops;
+
+	reg_config.dev = &pdev->dev;
+	reg_config.init_data = init_data;
+	reg_config.driver_data = ldo_vreg;
+	reg_config.of_node = pdev->dev.of_node;
+	ldo_vreg->rdev = regulator_register(rdesc, &reg_config);
+	if (IS_ERR(ldo_vreg->rdev)) {
+		rc = PTR_ERR(ldo_vreg->rdev);
+		pr_err("regulator_register failed: rc=%d\n", rc);
+		return rc;
+	}
+
+	msm_gfx_ldo_debugfs_init(ldo_vreg);
+
+	return 0;
+}
+
+static int msm_gfx_ldo_remove(struct platform_device *pdev)
+{
+	struct msm_gfx_ldo *ldo_vreg = platform_get_drvdata(pdev);
+
+	regulator_unregister(ldo_vreg->rdev);
+
+	msm_gfx_ldo_debugfs_remove(ldo_vreg);
+
+	return 0;
+}
+
+static struct platform_driver msm_gfx_ldo_driver = {
+	.driver		= {
+		.name		= "qcom,msm-gfx-ldo",
+		.of_match_table = msm_gfx_ldo_match_table,
+		.owner		= THIS_MODULE,
+	},
+	.probe		= msm_gfx_ldo_probe,
+	.remove		= msm_gfx_ldo_remove,
+};
+
+static int msm_gfx_ldo_platform_init(void)
+{
+	return platform_driver_register(&msm_gfx_ldo_driver);
+}
+arch_initcall(msm_gfx_ldo_platform_init);
+
+static void msm_gfx_ldo_platform_exit(void)
+{
+	platform_driver_unregister(&msm_gfx_ldo_driver);
+}
+module_exit(msm_gfx_ldo_platform_exit);
+
+MODULE_DESCRIPTION("MSM GFX LDO driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/regulator/qpnp-regulator.c b/drivers/regulator/qpnp-regulator.c
new file mode 100644
index 0000000..bd70665
--- /dev/null
+++ b/drivers/regulator/qpnp-regulator.c
@@ -0,0 +1,2436 @@
+/*
+ * Copyright (c) 2012-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/string.h>
+#include <linux/kernel.h>
+#include <linux/regmap.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/bitops.h>
+#include <linux/slab.h>
+#include <linux/spmi.h>
+#include <linux/platform_device.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/ktime.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/of_regulator.h>
+#include <linux/regulator/qpnp-regulator.h>
+
+/* Debug Flag Definitions */
+enum {
+	QPNP_VREG_DEBUG_REQUEST		= BIT(0), /* Show requests */
+	QPNP_VREG_DEBUG_DUPLICATE	= BIT(1), /* Show duplicate requests */
+	QPNP_VREG_DEBUG_INIT		= BIT(2), /* Show state after probe */
+	QPNP_VREG_DEBUG_WRITES		= BIT(3), /* Show SPMI writes */
+	QPNP_VREG_DEBUG_READS		= BIT(4), /* Show SPMI reads */
+	QPNP_VREG_DEBUG_OCP		= BIT(5), /* Show VS OCP IRQ events */
+};
+
+static int qpnp_vreg_debug_mask;
+module_param_named(
+	debug_mask, qpnp_vreg_debug_mask, int, 0600
+);
+
+#define vreg_err(vreg, fmt, ...) \
+	pr_err("%s: " fmt, vreg->rdesc.name, ##__VA_ARGS__)
+
+/* These types correspond to unique register layouts. */
+enum qpnp_regulator_logical_type {
+	QPNP_REGULATOR_LOGICAL_TYPE_SMPS,
+	QPNP_REGULATOR_LOGICAL_TYPE_LDO,
+	QPNP_REGULATOR_LOGICAL_TYPE_VS,
+	QPNP_REGULATOR_LOGICAL_TYPE_BOOST,
+	QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS,
+	QPNP_REGULATOR_LOGICAL_TYPE_BOOST_BYP,
+	QPNP_REGULATOR_LOGICAL_TYPE_LN_LDO,
+	QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS,
+	QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS,
+	QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO,
+	QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS2,
+};
+
+enum qpnp_regulator_type {
+	QPNP_REGULATOR_TYPE_BUCK		= 0x03,
+	QPNP_REGULATOR_TYPE_LDO			= 0x04,
+	QPNP_REGULATOR_TYPE_VS			= 0x05,
+	QPNP_REGULATOR_TYPE_BOOST		= 0x1B,
+	QPNP_REGULATOR_TYPE_FTS			= 0x1C,
+	QPNP_REGULATOR_TYPE_BOOST_BYP		= 0x1F,
+	QPNP_REGULATOR_TYPE_ULT_LDO		= 0x21,
+	QPNP_REGULATOR_TYPE_ULT_BUCK		= 0x22,
+};
+
+enum qpnp_regulator_subtype {
+	QPNP_REGULATOR_SUBTYPE_GP_CTL		= 0x08,
+	QPNP_REGULATOR_SUBTYPE_RF_CTL		= 0x09,
+	QPNP_REGULATOR_SUBTYPE_N50		= 0x01,
+	QPNP_REGULATOR_SUBTYPE_N150		= 0x02,
+	QPNP_REGULATOR_SUBTYPE_N300		= 0x03,
+	QPNP_REGULATOR_SUBTYPE_N600		= 0x04,
+	QPNP_REGULATOR_SUBTYPE_N1200		= 0x05,
+	QPNP_REGULATOR_SUBTYPE_N600_ST		= 0x06,
+	QPNP_REGULATOR_SUBTYPE_N1200_ST		= 0x07,
+	QPNP_REGULATOR_SUBTYPE_N300_ST		= 0x15,
+	QPNP_REGULATOR_SUBTYPE_P50		= 0x08,
+	QPNP_REGULATOR_SUBTYPE_P150		= 0x09,
+	QPNP_REGULATOR_SUBTYPE_P300		= 0x0A,
+	QPNP_REGULATOR_SUBTYPE_P600		= 0x0B,
+	QPNP_REGULATOR_SUBTYPE_P1200		= 0x0C,
+	QPNP_REGULATOR_SUBTYPE_LN		= 0x10,
+	QPNP_REGULATOR_SUBTYPE_LV_P50		= 0x28,
+	QPNP_REGULATOR_SUBTYPE_LV_P150		= 0x29,
+	QPNP_REGULATOR_SUBTYPE_LV_P300		= 0x2A,
+	QPNP_REGULATOR_SUBTYPE_LV_P600		= 0x2B,
+	QPNP_REGULATOR_SUBTYPE_LV_P1200		= 0x2C,
+	QPNP_REGULATOR_SUBTYPE_LV100		= 0x01,
+	QPNP_REGULATOR_SUBTYPE_LV300		= 0x02,
+	QPNP_REGULATOR_SUBTYPE_MV300		= 0x08,
+	QPNP_REGULATOR_SUBTYPE_MV500		= 0x09,
+	QPNP_REGULATOR_SUBTYPE_HDMI		= 0x10,
+	QPNP_REGULATOR_SUBTYPE_OTG		= 0x11,
+	QPNP_REGULATOR_SUBTYPE_5V_BOOST		= 0x01,
+	QPNP_REGULATOR_SUBTYPE_FTS_CTL		= 0x08,
+	QPNP_REGULATOR_SUBTYPE_FTS2p5_CTL	= 0x09,
+	QPNP_REGULATOR_SUBTYPE_FTS426		= 0x0A,
+	QPNP_REGULATOR_SUBTYPE_BB_2A		= 0x01,
+	QPNP_REGULATOR_SUBTYPE_ULT_HF_CTL1	= 0x0D,
+	QPNP_REGULATOR_SUBTYPE_ULT_HF_CTL2	= 0x0E,
+	QPNP_REGULATOR_SUBTYPE_ULT_HF_CTL3	= 0x0F,
+	QPNP_REGULATOR_SUBTYPE_ULT_HF_CTL4	= 0x10,
+};
+
+/* First common register layout used by older devices */
+enum qpnp_common_regulator_registers {
+	QPNP_COMMON_REG_DIG_MAJOR_REV		= 0x01,
+	QPNP_COMMON_REG_TYPE			= 0x04,
+	QPNP_COMMON_REG_SUBTYPE			= 0x05,
+	QPNP_COMMON_REG_VOLTAGE_RANGE		= 0x40,
+	QPNP_COMMON_REG_VOLTAGE_SET		= 0x41,
+	QPNP_COMMON_REG_MODE			= 0x45,
+	QPNP_COMMON_REG_ENABLE			= 0x46,
+	QPNP_COMMON_REG_PULL_DOWN		= 0x48,
+	QPNP_COMMON_REG_STEP_CTRL		= 0x61,
+};
+
+/*
+ * Second common register layout used by newer devices
+ * Note that some of the registers from the first common layout remain
+ * unchanged and their definition is not duplicated.
+ */
+enum qpnp_common2_regulator_registers {
+	QPNP_COMMON2_REG_VOLTAGE_LSB		= 0x40,
+	QPNP_COMMON2_REG_VOLTAGE_MSB		= 0x41,
+	QPNP_COMMON2_REG_MODE			= 0x45,
+	QPNP_COMMON2_REG_STEP_CTRL		= 0x61,
+};
+
+enum qpnp_ldo_registers {
+	QPNP_LDO_REG_SOFT_START			= 0x4C,
+};
+
+enum qpnp_vs_registers {
+	QPNP_VS_REG_OCP				= 0x4A,
+	QPNP_VS_REG_SOFT_START			= 0x4C,
+};
+
+enum qpnp_boost_registers {
+	QPNP_BOOST_REG_CURRENT_LIMIT		= 0x4A,
+};
+
+enum qpnp_boost_byp_registers {
+	QPNP_BOOST_BYP_REG_CURRENT_LIMIT	= 0x4B,
+};
+
+/* Used for indexing into ctrl_reg.  These are offets from 0x40 */
+enum qpnp_common_control_register_index {
+	QPNP_COMMON_IDX_VOLTAGE_RANGE		= 0,
+	QPNP_COMMON_IDX_VOLTAGE_SET		= 1,
+	QPNP_COMMON_IDX_MODE			= 5,
+	QPNP_COMMON_IDX_ENABLE			= 6,
+};
+
+enum qpnp_common2_control_register_index {
+	QPNP_COMMON2_IDX_VOLTAGE_LSB		= 0,
+	QPNP_COMMON2_IDX_VOLTAGE_MSB		= 1,
+	QPNP_COMMON2_IDX_MODE			= 5,
+};
+
+/* Common regulator control register layout */
+#define QPNP_COMMON_ENABLE_MASK			0x80
+#define QPNP_COMMON_ENABLE			0x80
+#define QPNP_COMMON_DISABLE			0x00
+#define QPNP_COMMON_ENABLE_FOLLOW_HW_EN3_MASK	0x08
+#define QPNP_COMMON_ENABLE_FOLLOW_HW_EN2_MASK	0x04
+#define QPNP_COMMON_ENABLE_FOLLOW_HW_EN1_MASK	0x02
+#define QPNP_COMMON_ENABLE_FOLLOW_HW_EN0_MASK	0x01
+#define QPNP_COMMON_ENABLE_FOLLOW_ALL_MASK	0x0F
+
+/* First common regulator mode register layout */
+#define QPNP_COMMON_MODE_HPM_MASK		0x80
+#define QPNP_COMMON_MODE_AUTO_MASK		0x40
+#define QPNP_COMMON_MODE_BYPASS_MASK		0x20
+#define QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK	0x10
+#define QPNP_COMMON_MODE_FOLLOW_HW_EN3_MASK	0x08
+#define QPNP_COMMON_MODE_FOLLOW_HW_EN2_MASK	0x04
+#define QPNP_COMMON_MODE_FOLLOW_HW_EN1_MASK	0x02
+#define QPNP_COMMON_MODE_FOLLOW_HW_EN0_MASK	0x01
+#define QPNP_COMMON_MODE_FOLLOW_ALL_MASK	0x1F
+
+/* Second common regulator mode register values */
+#define QPNP_COMMON2_MODE_BYPASS		3
+#define QPNP_COMMON2_MODE_RETENTION		4
+#define QPNP_COMMON2_MODE_LPM			5
+#define QPNP_COMMON2_MODE_AUTO			6
+#define QPNP_COMMON2_MODE_HPM			7
+
+#define QPNP_COMMON2_MODE_MASK			0x07
+
+/* Common regulator pull down control register layout */
+#define QPNP_COMMON_PULL_DOWN_ENABLE_MASK	0x80
+
+/* LDO regulator current limit control register layout */
+#define QPNP_LDO_CURRENT_LIMIT_ENABLE_MASK	0x80
+
+/* LDO regulator soft start control register layout */
+#define QPNP_LDO_SOFT_START_ENABLE_MASK		0x80
+
+/* VS regulator over current protection control register layout */
+#define QPNP_VS_OCP_OVERRIDE			0x01
+#define QPNP_VS_OCP_NO_OVERRIDE			0x00
+
+/* VS regulator soft start control register layout */
+#define QPNP_VS_SOFT_START_ENABLE_MASK		0x80
+#define QPNP_VS_SOFT_START_SEL_MASK		0x03
+
+/* Boost regulator current limit control register layout */
+#define QPNP_BOOST_CURRENT_LIMIT_ENABLE_MASK	0x80
+#define QPNP_BOOST_CURRENT_LIMIT_MASK		0x07
+
+#define QPNP_VS_OCP_DEFAULT_MAX_RETRIES		10
+#define QPNP_VS_OCP_DEFAULT_RETRY_DELAY_MS	30
+#define QPNP_VS_OCP_FALL_DELAY_US		90
+#define QPNP_VS_OCP_FAULT_DELAY_US		20000
+
+#define QPNP_FTSMPS_STEP_CTRL_STEP_MASK		0x18
+#define QPNP_FTSMPS_STEP_CTRL_STEP_SHIFT	3
+#define QPNP_FTSMPS_STEP_CTRL_DELAY_MASK	0x07
+#define QPNP_FTSMPS_STEP_CTRL_DELAY_SHIFT	0
+
+/* Clock rate in kHz of the FTSMPS regulator reference clock. */
+#define QPNP_FTSMPS_CLOCK_RATE		19200
+
+/* Minimum voltage stepper delay for each step. */
+#define QPNP_FTSMPS_STEP_DELAY		8
+
+/*
+ * The ratio QPNP_FTSMPS_STEP_MARGIN_NUM/QPNP_FTSMPS_STEP_MARGIN_DEN is used to
+ * adjust the step rate in order to account for oscillator variance.
+ */
+#define QPNP_FTSMPS_STEP_MARGIN_NUM	4
+#define QPNP_FTSMPS_STEP_MARGIN_DEN	5
+
+#define QPNP_FTSMPS2_STEP_CTRL_DELAY_MASK	0x03
+#define QPNP_FTSMPS2_STEP_CTRL_DELAY_SHIFT	0
+
+/* Clock rate in kHz of the FTSMPS2 regulator reference clock. */
+#define QPNP_FTSMPS2_CLOCK_RATE		4800
+
+/* Minimum voltage stepper delay for each step. */
+#define QPNP_FTSMPS2_STEP_DELAY		2
+
+/*
+ * The ratio QPNP_FTSMPS2_STEP_MARGIN_NUM/QPNP_FTSMPS2_STEP_MARGIN_DEN is used
+ * to adjust the step rate in order to account for oscillator variance.
+ */
+#define QPNP_FTSMPS2_STEP_MARGIN_NUM	10
+#define QPNP_FTSMPS2_STEP_MARGIN_DEN	11
+
+/*
+ * This voltage in uV is returned by get_voltage functions when there is no way
+ * to determine the current voltage level.  It is needed because the regulator
+ * framework treats a 0 uV voltage as an error.
+ */
+#define VOLTAGE_UNKNOWN 1
+
+/* VSET value to decide the range of ULT SMPS */
+#define ULT_SMPS_RANGE_SPLIT 0x60
+
+/**
+ * struct qpnp_voltage_range - regulator set point voltage mapping description
+ * @min_uV:		Minimum programmable output voltage resulting from
+ *			set point register value 0x00
+ * @max_uV:		Maximum programmable output voltage
+ * @step_uV:		Output voltage increase resulting from the set point
+ *			register value increasing by 1
+ * @set_point_min_uV:	Minimum allowed voltage
+ * @set_point_max_uV:	Maximum allowed voltage.  This may be tweaked in order
+ *			to pick which range should be used in the case of
+ *			overlapping set points.
+ * @n_voltages:		Number of preferred voltage set points present in this
+ *			range
+ * @range_sel:		Voltage range register value corresponding to this range
+ *
+ * The following relationships must be true for the values used in this struct:
+ * (max_uV - min_uV) % step_uV == 0
+ * (set_point_min_uV - min_uV) % step_uV == 0*
+ * (set_point_max_uV - min_uV) % step_uV == 0*
+ * n_voltages = (set_point_max_uV - set_point_min_uV) / step_uV + 1
+ *
+ * *Note, set_point_min_uV == set_point_max_uV == 0 is allowed in order to
+ * specify that the voltage range has meaning, but is not preferred.
+ */
+struct qpnp_voltage_range {
+	int					min_uV;
+	int					max_uV;
+	int					step_uV;
+	int					set_point_min_uV;
+	int					set_point_max_uV;
+	unsigned int				n_voltages;
+	u8					range_sel;
+};
+
+/*
+ * The ranges specified in the qpnp_voltage_set_points struct must be listed
+ * so that range[i].set_point_max_uV < range[i+1].set_point_min_uV.
+ */
+struct qpnp_voltage_set_points {
+	struct qpnp_voltage_range		*range;
+	int					count;
+	unsigned int				n_voltages;
+};
+
+struct qpnp_regulator_mapping {
+	enum qpnp_regulator_type		type;
+	enum qpnp_regulator_subtype		subtype;
+	enum qpnp_regulator_logical_type	logical_type;
+	u32					revision_min;
+	u32					revision_max;
+	struct regulator_ops			*ops;
+	struct qpnp_voltage_set_points		*set_points;
+	int					hpm_min_load;
+};
+
+struct qpnp_regulator {
+	struct regulator_desc			rdesc;
+	struct delayed_work			ocp_work;
+	struct platform_device			*pdev;
+	struct regmap				*regmap;
+	struct regulator_dev			*rdev;
+	struct qpnp_voltage_set_points		*set_points;
+	enum qpnp_regulator_logical_type	logical_type;
+	int					enable_time;
+	int					ocp_enable;
+	int					ocp_irq;
+	int					ocp_count;
+	int					ocp_max_retries;
+	int					ocp_retry_delay_ms;
+	int					system_load;
+	int					hpm_min_load;
+	int					slew_rate;
+	u32					write_count;
+	u32					prev_write_count;
+	ktime_t					vs_enable_time;
+	u16					base_addr;
+	/* ctrl_reg provides a shadow copy of register values 0x40 to 0x47. */
+	u8					ctrl_reg[8];
+	u8					init_mode;
+};
+
+#define QPNP_VREG_MAP(_type, _subtype, _dig_major_min, _dig_major_max, \
+		      _logical_type, _ops_val, _set_points_val, _hpm_min_load) \
+	{ \
+		.type		= QPNP_REGULATOR_TYPE_##_type, \
+		.subtype	= QPNP_REGULATOR_SUBTYPE_##_subtype, \
+		.revision_min	= _dig_major_min, \
+		.revision_max	= _dig_major_max, \
+		.logical_type	= QPNP_REGULATOR_LOGICAL_TYPE_##_logical_type, \
+		.ops		= &qpnp_##_ops_val##_ops, \
+		.set_points	= &_set_points_val##_set_points, \
+		.hpm_min_load	= _hpm_min_load, \
+	}
+
+#define VOLTAGE_RANGE(_range_sel, _min_uV, _set_point_min_uV, \
+			_set_point_max_uV, _max_uV, _step_uV) \
+	{ \
+		.min_uV			= _min_uV, \
+		.max_uV			= _max_uV, \
+		.set_point_min_uV	= _set_point_min_uV, \
+		.set_point_max_uV	= _set_point_max_uV, \
+		.step_uV		= _step_uV, \
+		.range_sel		= _range_sel, \
+	}
+
+#define SET_POINTS(_ranges) \
+{ \
+	.range	= _ranges, \
+	.count	= ARRAY_SIZE(_ranges), \
+}
+
+/*
+ * These tables contain the physically available PMIC regulator voltage setpoint
+ * ranges.  Where two ranges overlap in hardware, one of the ranges is trimmed
+ * to ensure that the setpoints available to software are monotonically
+ * increasing and unique.  The set_voltage callback functions expect these
+ * properties to hold.
+ */
+static struct qpnp_voltage_range pldo_ranges[] = {
+	VOLTAGE_RANGE(2,  750000,  750000, 1537500, 1537500, 12500),
+	VOLTAGE_RANGE(3, 1500000, 1550000, 3075000, 3075000, 25000),
+	VOLTAGE_RANGE(4, 1750000, 3100000, 4900000, 4900000, 50000),
+};
+
+static struct qpnp_voltage_range nldo1_ranges[] = {
+	VOLTAGE_RANGE(2,  750000,  750000, 1537500, 1537500, 12500),
+};
+
+static struct qpnp_voltage_range nldo2_ranges[] = {
+	VOLTAGE_RANGE(0,  375000,       0,       0, 1537500, 12500),
+	VOLTAGE_RANGE(1,  375000,  375000,  768750,  768750,  6250),
+	VOLTAGE_RANGE(2,  750000,  775000, 1537500, 1537500, 12500),
+};
+
+static struct qpnp_voltage_range nldo3_ranges[] = {
+	VOLTAGE_RANGE(0,  375000,  375000, 1537500, 1537500, 12500),
+	VOLTAGE_RANGE(1,  375000,       0,       0, 1537500, 12500),
+	VOLTAGE_RANGE(2,  750000,       0,       0, 1537500, 12500),
+};
+
+static struct qpnp_voltage_range ln_ldo_ranges[] = {
+	VOLTAGE_RANGE(1,  690000,  690000, 1110000, 1110000, 60000),
+	VOLTAGE_RANGE(0, 1380000, 1380000, 2220000, 2220000, 120000),
+};
+
+static struct qpnp_voltage_range smps_ranges[] = {
+	VOLTAGE_RANGE(0,  375000,  375000, 1562500, 1562500, 12500),
+	VOLTAGE_RANGE(1, 1550000, 1575000, 3125000, 3125000, 25000),
+};
+
+static struct qpnp_voltage_range ftsmps_ranges[] = {
+	VOLTAGE_RANGE(0,       0,  350000, 1275000, 1275000,  5000),
+	VOLTAGE_RANGE(1,       0, 1280000, 2040000, 2040000, 10000),
+};
+
+static struct qpnp_voltage_range ftsmps2p5_ranges[] = {
+	VOLTAGE_RANGE(0,   80000,  350000, 1355000, 1355000,  5000),
+	VOLTAGE_RANGE(1,  160000, 1360000, 2200000, 2200000, 10000),
+};
+
+static struct qpnp_voltage_range boost_ranges[] = {
+	VOLTAGE_RANGE(0, 4000000, 4000000, 5550000, 5550000, 50000),
+};
+
+static struct qpnp_voltage_range boost_byp_ranges[] = {
+	VOLTAGE_RANGE(0, 2500000, 2500000, 5200000, 5650000, 50000),
+};
+
+static struct qpnp_voltage_range ult_lo_smps_ranges[] = {
+	VOLTAGE_RANGE(0,  375000,  375000, 1562500, 1562500, 12500),
+	VOLTAGE_RANGE(1,  750000,       0,       0, 1525000, 25000),
+};
+
+static struct qpnp_voltage_range ult_ho_smps_ranges[] = {
+	VOLTAGE_RANGE(0, 1550000, 1550000, 2325000, 2325000, 25000),
+};
+
+static struct qpnp_voltage_range ult_nldo_ranges[] = {
+	VOLTAGE_RANGE(0,  375000,  375000, 1537500, 1537500, 12500),
+};
+
+static struct qpnp_voltage_range ult_pldo_ranges[] = {
+	VOLTAGE_RANGE(0, 1750000, 1750000, 3337500, 3337500, 12500),
+};
+
+static struct qpnp_voltage_range ftsmps426_ranges[] = {
+	VOLTAGE_RANGE(0,       0,  320000, 1352000, 1352000,  4000),
+};
+
+static struct qpnp_voltage_set_points pldo_set_points = SET_POINTS(pldo_ranges);
+static struct qpnp_voltage_set_points nldo1_set_points
+					= SET_POINTS(nldo1_ranges);
+static struct qpnp_voltage_set_points nldo2_set_points
+					= SET_POINTS(nldo2_ranges);
+static struct qpnp_voltage_set_points nldo3_set_points
+					= SET_POINTS(nldo3_ranges);
+static struct qpnp_voltage_set_points ln_ldo_set_points
+					= SET_POINTS(ln_ldo_ranges);
+static struct qpnp_voltage_set_points smps_set_points = SET_POINTS(smps_ranges);
+static struct qpnp_voltage_set_points ftsmps_set_points
+					= SET_POINTS(ftsmps_ranges);
+static struct qpnp_voltage_set_points ftsmps2p5_set_points
+					= SET_POINTS(ftsmps2p5_ranges);
+static struct qpnp_voltage_set_points boost_set_points
+					= SET_POINTS(boost_ranges);
+static struct qpnp_voltage_set_points boost_byp_set_points
+					= SET_POINTS(boost_byp_ranges);
+static struct qpnp_voltage_set_points ult_lo_smps_set_points
+					= SET_POINTS(ult_lo_smps_ranges);
+static struct qpnp_voltage_set_points ult_ho_smps_set_points
+					= SET_POINTS(ult_ho_smps_ranges);
+static struct qpnp_voltage_set_points ult_nldo_set_points
+					= SET_POINTS(ult_nldo_ranges);
+static struct qpnp_voltage_set_points ult_pldo_set_points
+					= SET_POINTS(ult_pldo_ranges);
+static struct qpnp_voltage_set_points ftsmps426_set_points
+					= SET_POINTS(ftsmps426_ranges);
+static struct qpnp_voltage_set_points none_set_points;
+
+static struct qpnp_voltage_set_points *all_set_points[] = {
+	&pldo_set_points,
+	&nldo1_set_points,
+	&nldo2_set_points,
+	&nldo3_set_points,
+	&ln_ldo_set_points,
+	&smps_set_points,
+	&ftsmps_set_points,
+	&ftsmps2p5_set_points,
+	&boost_set_points,
+	&boost_byp_set_points,
+	&ult_lo_smps_set_points,
+	&ult_ho_smps_set_points,
+	&ult_nldo_set_points,
+	&ult_pldo_set_points,
+	&ftsmps426_set_points,
+};
+
+/* Determines which label to add to a debug print statement. */
+enum qpnp_regulator_action {
+	QPNP_REGULATOR_ACTION_INIT,
+	QPNP_REGULATOR_ACTION_ENABLE,
+	QPNP_REGULATOR_ACTION_DISABLE,
+	QPNP_REGULATOR_ACTION_VOLTAGE,
+	QPNP_REGULATOR_ACTION_MODE,
+};
+
+static void qpnp_vreg_show_state(struct regulator_dev *rdev,
+				   enum qpnp_regulator_action action);
+
+#define DEBUG_PRINT_BUFFER_SIZE 64
+static void fill_string(char *str, size_t str_len, u8 *buf, int buf_len)
+{
+	int pos = 0;
+	int i;
+
+	for (i = 0; i < buf_len; i++) {
+		pos += scnprintf(str + pos, str_len - pos, "0x%02X", buf[i]);
+		if (i < buf_len - 1)
+			pos += scnprintf(str + pos, str_len - pos, ", ");
+	}
+}
+
+static inline int qpnp_vreg_read(struct qpnp_regulator *vreg, u16 addr, u8 *buf,
+				 int len)
+{
+	char str[DEBUG_PRINT_BUFFER_SIZE];
+	int rc = 0;
+
+	rc = regmap_bulk_read(vreg->regmap, vreg->base_addr + addr, buf, len);
+
+	if (!rc && (qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_READS)) {
+		str[0] = '\0';
+		fill_string(str, DEBUG_PRINT_BUFFER_SIZE, buf, len);
+		pr_info(" %-11s:  read(0x%04X), sid=%d, len=%d; %s\n",
+			vreg->rdesc.name, vreg->base_addr + addr,
+			to_spmi_device(vreg->pdev->dev.parent)->usid, len,
+			str);
+	}
+
+	return rc;
+}
+
+static inline int qpnp_vreg_write(struct qpnp_regulator *vreg, u16 addr,
+				u8 *buf, int len)
+{
+	char str[DEBUG_PRINT_BUFFER_SIZE];
+	int rc = 0;
+
+	if (qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_WRITES) {
+		str[0] = '\0';
+		fill_string(str, DEBUG_PRINT_BUFFER_SIZE, buf, len);
+		pr_info("%-11s: write(0x%04X), sid=%d, len=%d; %s\n",
+			vreg->rdesc.name, vreg->base_addr + addr,
+			to_spmi_device(vreg->pdev->dev.parent)->usid, len,
+			str);
+	}
+
+	rc = regmap_bulk_write(vreg->regmap, vreg->base_addr + addr, buf, len);
+	if (!rc)
+		vreg->write_count += len;
+
+	return rc;
+}
+
+/*
+ * qpnp_vreg_write_optimized - write the minimum sized contiguous subset of buf
+ * @vreg:	qpnp_regulator pointer for this regulator
+ * @addr:	local SPMI address offset from this peripheral's base address
+ * @buf:	new data to write into the SPMI registers
+ * @buf_save:	old data in the registers
+ * @len:	number of bytes to write
+ *
+ * This function checks for unchanged register values between buf and buf_save
+ * starting at both ends of buf.  Only the contiguous subset in the middle of
+ * buf starting and ending with new values is sent.
+ *
+ * Consider the following example:
+ * buf offset: 0 1 2 3 4 5 6 7
+ * reg state:  U U C C U C U U
+ * (U = unchanged, C = changed)
+ * In this example registers 2 through 5 will be written with a single
+ * transaction.
+ */
+static inline int qpnp_vreg_write_optimized(struct qpnp_regulator *vreg,
+		u16 addr, u8 *buf, u8 *buf_save, int len)
+{
+	int i, rc, start, end;
+
+	for (i = 0; i < len; i++)
+		if (buf[i] != buf_save[i])
+			break;
+	start = i;
+
+	for (i = len - 1; i >= 0; i--)
+		if (buf[i] != buf_save[i])
+			break;
+	end = i;
+
+	if (start > end) {
+		/* No modified register values present. */
+		return 0;
+	}
+
+	rc = qpnp_vreg_write(vreg, addr + start, &buf[start], end - start + 1);
+	if (!rc)
+		for (i = start; i <= end; i++)
+			buf_save[i] = buf[i];
+
+	return rc;
+}
+
+/*
+ * Perform a masked write to a PMIC register only if the new value differs
+ * from the last value written to the register.  This removes redundant
+ * register writing.
+ */
+static int qpnp_vreg_masked_write(struct qpnp_regulator *vreg, u16 addr, u8 val,
+		u8 mask, u8 *reg_save)
+{
+	int rc = 0;
+	u8 reg;
+
+	reg = (*reg_save & ~mask) | (val & mask);
+	if (reg != *reg_save) {
+		rc = qpnp_vreg_write(vreg, addr, &reg, 1);
+
+		if (rc) {
+			vreg_err(vreg, "write failed; addr=0x%03X, rc=%d\n",
+				addr, rc);
+		} else {
+			*reg_save = reg;
+		}
+	}
+
+	return rc;
+}
+
+/*
+ * Perform a masked read-modify-write to a PMIC register only if the new value
+ * differs from the value currently in the register.  This removes redundant
+ * register writing.
+ */
+static int qpnp_vreg_masked_read_write(struct qpnp_regulator *vreg, u16 addr,
+		u8 val, u8 mask)
+{
+	int rc;
+	u8 reg;
+
+	rc = qpnp_vreg_read(vreg, addr, &reg, 1);
+	if (rc) {
+		vreg_err(vreg, "read failed; addr=0x%03X, rc=%d\n", addr, rc);
+		return rc;
+	}
+
+	return qpnp_vreg_masked_write(vreg, addr, val, mask, &reg);
+}
+
+static int qpnp_regulator_common_is_enabled(struct regulator_dev *rdev)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+
+	return (vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]
+		& QPNP_COMMON_ENABLE_MASK)
+			== QPNP_COMMON_ENABLE;
+}
+
+static int qpnp_regulator_common_enable(struct regulator_dev *rdev)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+	int rc;
+
+	rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_ENABLE,
+		QPNP_COMMON_ENABLE, QPNP_COMMON_ENABLE_MASK,
+		&vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]);
+
+	if (rc)
+		vreg_err(vreg, "qpnp_vreg_masked_write failed, rc=%d\n", rc);
+	else
+		qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_ENABLE);
+
+	return rc;
+}
+
+static int qpnp_regulator_vs_enable(struct regulator_dev *rdev)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+
+	if (vreg->ocp_irq) {
+		vreg->ocp_count = 0;
+		vreg->vs_enable_time = ktime_get();
+	}
+
+	return qpnp_regulator_common_enable(rdev);
+}
+
+static int qpnp_regulator_common_disable(struct regulator_dev *rdev)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+	int rc;
+
+	rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_ENABLE,
+		QPNP_COMMON_DISABLE, QPNP_COMMON_ENABLE_MASK,
+		&vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]);
+
+	if (rc)
+		vreg_err(vreg, "qpnp_vreg_masked_write failed, rc=%d\n", rc);
+	else
+		qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_DISABLE);
+
+	return rc;
+}
+
+/*
+ * Returns 1 if the voltage can be set in the current range, 0 if the voltage
+ * cannot be set in the current range, or errno if an error occurred.
+ */
+static int qpnp_regulator_select_voltage_same_range(struct qpnp_regulator *vreg,
+		int min_uV, int max_uV, int *range_sel, int *voltage_sel,
+		unsigned int *selector)
+{
+	struct qpnp_voltage_range *range = NULL;
+	int uV = min_uV;
+	int i;
+
+	*range_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE];
+
+	for (i = 0; i < vreg->set_points->count; i++) {
+		if (vreg->set_points->range[i].range_sel == *range_sel) {
+			range = &vreg->set_points->range[i];
+			break;
+		}
+	}
+
+	if (!range) {
+		/* Unknown range */
+		return 0;
+	}
+
+	if (uV < range->min_uV && max_uV >= range->min_uV)
+		uV = range->min_uV;
+
+	if (uV < range->min_uV || uV > range->max_uV) {
+		/* Current range doesn't support the requested voltage. */
+		return 0;
+	}
+
+	/*
+	 * Force uV to be an allowed set point by applying a ceiling function to
+	 * the uV value.
+	 */
+	*voltage_sel = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
+	uV = *voltage_sel * range->step_uV + range->min_uV;
+
+	if (uV > max_uV) {
+		/*
+		 * No set point in the current voltage range is within the
+		 * requested min_uV to max_uV range.
+		 */
+		return 0;
+	}
+
+	*selector = 0;
+	for (i = 0; i < vreg->set_points->count; i++) {
+		if (uV >= vreg->set_points->range[i].set_point_min_uV
+		    && uV <= vreg->set_points->range[i].set_point_max_uV) {
+			*selector +=
+			    (uV - vreg->set_points->range[i].set_point_min_uV)
+				/ vreg->set_points->range[i].step_uV;
+			break;
+		}
+
+		*selector += vreg->set_points->range[i].n_voltages;
+	}
+
+	if (*selector >= vreg->set_points->n_voltages)
+		return 0;
+
+	return 1;
+}
+
+static int qpnp_regulator_select_voltage(struct qpnp_regulator *vreg,
+		int min_uV, int max_uV, int *range_sel, int *voltage_sel,
+		unsigned int *selector)
+{
+	struct qpnp_voltage_range *range;
+	int uV = min_uV;
+	int lim_min_uV, lim_max_uV, i, range_id, range_max_uV;
+
+	/* Check if request voltage is outside of physically settable range. */
+	lim_min_uV = vreg->set_points->range[0].set_point_min_uV;
+	lim_max_uV =
+	  vreg->set_points->range[vreg->set_points->count - 1].set_point_max_uV;
+
+	if (uV < lim_min_uV && max_uV >= lim_min_uV)
+		uV = lim_min_uV;
+
+	if (uV < lim_min_uV || uV > lim_max_uV) {
+		vreg_err(vreg,
+			"request v=[%d, %d] is outside possible v=[%d, %d]\n",
+			 min_uV, max_uV, lim_min_uV, lim_max_uV);
+		return -EINVAL;
+	}
+
+	/* Find the range which uV is inside of. */
+	for (i = vreg->set_points->count - 1; i > 0; i--) {
+		range_max_uV = vreg->set_points->range[i - 1].set_point_max_uV;
+		if (uV > range_max_uV && range_max_uV > 0)
+			break;
+	}
+
+	range_id = i;
+	range = &vreg->set_points->range[range_id];
+	*range_sel = range->range_sel;
+
+	/*
+	 * Force uV to be an allowed set point by applying a ceiling function to
+	 * the uV value.
+	 */
+	*voltage_sel = (uV - range->min_uV + range->step_uV - 1)
+			/ range->step_uV;
+	uV = *voltage_sel * range->step_uV + range->min_uV;
+
+	if (uV > max_uV) {
+		vreg_err(vreg,
+			"request v=[%d, %d] cannot be met by any set point; "
+			"next set point: %d\n",
+			min_uV, max_uV, uV);
+		return -EINVAL;
+	}
+
+	*selector = 0;
+	for (i = 0; i < range_id; i++)
+		*selector += vreg->set_points->range[i].n_voltages;
+	*selector += (uV - range->set_point_min_uV) / range->step_uV;
+
+	return 0;
+}
+
+static int qpnp_regulator_delay_for_slewing(struct qpnp_regulator *vreg,
+		int prev_voltage)
+{
+	int current_voltage;
+
+	/* Delay for voltage slewing if a step rate is specified. */
+	if (vreg->slew_rate && vreg->rdesc.ops->get_voltage) {
+		current_voltage = vreg->rdesc.ops->get_voltage(vreg->rdev);
+		if (current_voltage < 0) {
+			vreg_err(vreg, "could not get new voltage, rc=%d\n",
+				current_voltage);
+			return current_voltage;
+		}
+
+		udelay(DIV_ROUND_UP(abs(current_voltage - prev_voltage),
+					vreg->slew_rate));
+	}
+
+	return 0;
+}
+
+static int qpnp_regulator_common_set_voltage(struct regulator_dev *rdev,
+		int min_uV, int max_uV, unsigned int *selector)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+	int rc, range_sel, voltage_sel, voltage_old = 0;
+	u8 buf[2];
+
+	if (vreg->slew_rate && vreg->rdesc.ops->get_voltage) {
+		voltage_old = vreg->rdesc.ops->get_voltage(rdev);
+		if (voltage_old < 0) {
+			vreg_err(vreg, "could not get current voltage, rc=%d\n",
+				voltage_old);
+			return voltage_old;
+		}
+	}
+
+	/*
+	 * Favor staying in the current voltage range if possible.  This avoids
+	 * voltage spikes that occur when changing the voltage range.
+	 */
+	rc = qpnp_regulator_select_voltage_same_range(vreg, min_uV, max_uV,
+		&range_sel, &voltage_sel, selector);
+	if (rc == 0)
+		rc = qpnp_regulator_select_voltage(vreg, min_uV, max_uV,
+			&range_sel, &voltage_sel, selector);
+	if (rc < 0) {
+		vreg_err(vreg, "could not set voltage, rc=%d\n", rc);
+		return rc;
+	}
+
+	buf[0] = range_sel;
+	buf[1] = voltage_sel;
+	if ((vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE] != range_sel)
+	    && (vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET] == voltage_sel)) {
+		/* Handle latched range change. */
+		rc = qpnp_vreg_write(vreg, QPNP_COMMON_REG_VOLTAGE_RANGE,
+				buf, 2);
+		if (!rc) {
+			vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE] = buf[0];
+			vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET] = buf[1];
+		}
+	} else {
+		/* Either write can be optimized away safely. */
+		rc = qpnp_vreg_write_optimized(vreg,
+			QPNP_COMMON_REG_VOLTAGE_RANGE, buf,
+			&vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE], 2);
+	}
+
+	if (rc) {
+		vreg_err(vreg, "SPMI write failed, rc=%d\n", rc);
+	} else {
+		rc = qpnp_regulator_delay_for_slewing(vreg, voltage_old);
+		if (rc)
+			return rc;
+
+		qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_VOLTAGE);
+	}
+
+	return rc;
+}
+
+static int qpnp_regulator_common_get_voltage(struct regulator_dev *rdev)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+	struct qpnp_voltage_range *range = NULL;
+	int range_sel, voltage_sel, i;
+
+	range_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE];
+	voltage_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET];
+
+	for (i = 0; i < vreg->set_points->count; i++) {
+		if (vreg->set_points->range[i].range_sel == range_sel) {
+			range = &vreg->set_points->range[i];
+			break;
+		}
+	}
+
+	if (!range) {
+		vreg_err(vreg, "voltage unknown, range %d is invalid\n",
+			range_sel);
+		return VOLTAGE_UNKNOWN;
+	}
+
+	return range->step_uV * voltage_sel + range->min_uV;
+}
+
+static int qpnp_regulator_single_range_set_voltage(struct regulator_dev *rdev,
+		int min_uV, int max_uV, unsigned int *selector)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+	int rc, range_sel, voltage_sel;
+
+	rc = qpnp_regulator_select_voltage(vreg, min_uV, max_uV, &range_sel,
+		&voltage_sel, selector);
+	if (rc) {
+		vreg_err(vreg, "could not set voltage, rc=%d\n", rc);
+		return rc;
+	}
+
+	/*
+	 * Certain types of regulators do not have a range select register so
+	 * only voltage set register needs to be written.
+	 */
+	rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_VOLTAGE_SET,
+	       voltage_sel, 0xFF, &vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET]);
+
+	if (rc)
+		vreg_err(vreg, "SPMI write failed, rc=%d\n", rc);
+	else
+		qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_VOLTAGE);
+
+	return rc;
+}
+
+static int qpnp_regulator_single_range_get_voltage(struct regulator_dev *rdev)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+	struct qpnp_voltage_range *range = &vreg->set_points->range[0];
+	int voltage_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET];
+
+	return range->step_uV * voltage_sel + range->min_uV;
+}
+
+static int qpnp_regulator_ult_lo_smps_set_voltage(struct regulator_dev *rdev,
+		int min_uV, int max_uV, unsigned int *selector)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+	int rc, range_sel, voltage_sel;
+
+	/*
+	 * Favor staying in the current voltage range if possible. This avoids
+	 * voltage spikes that occur when changing the voltage range.
+	 */
+	rc = qpnp_regulator_select_voltage_same_range(vreg, min_uV, max_uV,
+		&range_sel, &voltage_sel, selector);
+	if (rc == 0)
+		rc = qpnp_regulator_select_voltage(vreg, min_uV, max_uV,
+			&range_sel, &voltage_sel, selector);
+	if (rc < 0) {
+		vreg_err(vreg, "could not set voltage, rc=%d\n", rc);
+		return rc;
+	}
+
+	/*
+	 * Calculate VSET based on range
+	 * In case of range 0: voltage_sel is a 7 bit value, can be written
+	 *			witout any modification.
+	 * In case of range 1: voltage_sel is a 5 bit value, bits[7-5] set to
+	 *			[011].
+	 */
+	if (range_sel == 1)
+		voltage_sel |= ULT_SMPS_RANGE_SPLIT;
+
+	rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_VOLTAGE_SET,
+	       voltage_sel, 0xFF, &vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET]);
+	if (rc) {
+		vreg_err(vreg, "SPMI write failed, rc=%d\n", rc);
+	} else {
+		vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE] = range_sel;
+		qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_VOLTAGE);
+	}
+
+	return rc;
+}
+
+static int qpnp_regulator_ult_lo_smps_get_voltage(struct regulator_dev *rdev)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+	struct qpnp_voltage_range *range = NULL;
+	int range_sel, voltage_sel, i;
+
+	range_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE];
+	voltage_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET];
+
+	for (i = 0; i < vreg->set_points->count; i++) {
+		if (vreg->set_points->range[i].range_sel == range_sel) {
+			range = &vreg->set_points->range[i];
+			break;
+		}
+	}
+
+	if (!range) {
+		vreg_err(vreg, "voltage unknown, range %d is invalid\n",
+			range_sel);
+		return VOLTAGE_UNKNOWN;
+	}
+
+	if (range_sel == 1)
+		voltage_sel &= ~ULT_SMPS_RANGE_SPLIT;
+
+	return range->step_uV * voltage_sel + range->min_uV;
+}
+
+static int qpnp_regulator_common_list_voltage(struct regulator_dev *rdev,
+			unsigned int selector)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+	int uV = 0;
+	int i;
+
+	if (selector >= vreg->set_points->n_voltages)
+		return 0;
+
+	for (i = 0; i < vreg->set_points->count; i++) {
+		if (selector < vreg->set_points->range[i].n_voltages) {
+			uV = selector * vreg->set_points->range[i].step_uV
+				+ vreg->set_points->range[i].set_point_min_uV;
+			break;
+		}
+
+		selector -= vreg->set_points->range[i].n_voltages;
+	}
+
+	return uV;
+}
+
+static int qpnp_regulator_common2_set_voltage(struct regulator_dev *rdev,
+		int min_uV, int max_uV, unsigned int *selector)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+	int rc, range_sel, voltage_sel, voltage_old = 0;
+	int voltage_uV, voltage_mV;
+	u8 buf[2];
+
+	if (vreg->slew_rate && vreg->rdesc.ops->get_voltage) {
+		voltage_old = vreg->rdesc.ops->get_voltage(rdev);
+		if (voltage_old < 0) {
+			vreg_err(vreg, "could not get current voltage, rc=%d\n",
+				voltage_old);
+			return voltage_old;
+		}
+	}
+
+	rc = qpnp_regulator_select_voltage(vreg, min_uV, max_uV, &range_sel,
+					   &voltage_sel, selector);
+	if (rc < 0) {
+		vreg_err(vreg, "could not set voltage, rc=%d\n", rc);
+		return rc;
+	}
+
+	voltage_uV = qpnp_regulator_common_list_voltage(rdev, *selector);
+	voltage_mV = voltage_uV / 1000;
+	buf[0] = voltage_mV & 0xFF;
+	buf[1] = (voltage_mV >> 8) & 0xFF;
+
+	if (vreg->ctrl_reg[QPNP_COMMON2_IDX_VOLTAGE_LSB] != buf[0]
+	    || vreg->ctrl_reg[QPNP_COMMON2_IDX_VOLTAGE_MSB] != buf[1]) {
+		/* MSB must always be written even if it is unchanged. */
+		rc = qpnp_vreg_write(vreg, QPNP_COMMON2_REG_VOLTAGE_LSB,
+				     buf, 2);
+		if (rc) {
+			vreg_err(vreg, "SPMI write failed, rc=%d\n", rc);
+			return rc;
+		}
+
+		vreg->ctrl_reg[QPNP_COMMON2_IDX_VOLTAGE_LSB] = buf[0];
+		vreg->ctrl_reg[QPNP_COMMON2_IDX_VOLTAGE_MSB] = buf[1];
+
+		rc = qpnp_regulator_delay_for_slewing(vreg, voltage_old);
+		if (rc)
+			return rc;
+
+		qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_VOLTAGE);
+	}
+
+	return rc;
+}
+
+static int qpnp_regulator_common2_get_voltage(struct regulator_dev *rdev)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+
+	return (((int)vreg->ctrl_reg[QPNP_COMMON2_IDX_VOLTAGE_MSB] << 8)
+		| (int)vreg->ctrl_reg[QPNP_COMMON2_IDX_VOLTAGE_LSB]) * 1000;
+}
+
+static unsigned int qpnp_regulator_common_get_mode(struct regulator_dev *rdev)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+
+	return (vreg->ctrl_reg[QPNP_COMMON_IDX_MODE]
+		& QPNP_COMMON_MODE_HPM_MASK)
+			? REGULATOR_MODE_NORMAL : REGULATOR_MODE_IDLE;
+}
+
+static int qpnp_regulator_common_set_mode(struct regulator_dev *rdev,
+					unsigned int mode)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+	int rc = 0;
+	u8 val;
+
+	if (mode != REGULATOR_MODE_NORMAL && mode != REGULATOR_MODE_IDLE) {
+		vreg_err(vreg, "invalid mode: %u\n", mode);
+		return -EINVAL;
+	}
+
+	val = (mode == REGULATOR_MODE_NORMAL ? QPNP_COMMON_MODE_HPM_MASK : 0);
+
+	rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_MODE, val,
+		QPNP_COMMON_MODE_HPM_MASK,
+		&vreg->ctrl_reg[QPNP_COMMON_IDX_MODE]);
+
+	if (rc)
+		vreg_err(vreg, "SPMI write failed, rc=%d\n", rc);
+	else
+		qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_MODE);
+
+	return rc;
+}
+
+static unsigned int qpnp_regulator_common_get_optimum_mode(
+		struct regulator_dev *rdev, int input_uV, int output_uV,
+		int load_uA)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+	unsigned int mode;
+
+	if (load_uA + vreg->system_load >= vreg->hpm_min_load)
+		mode = REGULATOR_MODE_NORMAL;
+	else
+		mode = REGULATOR_MODE_IDLE;
+
+	return mode;
+}
+
+static unsigned int qpnp_regulator_common2_get_mode(struct regulator_dev *rdev)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+
+	return vreg->ctrl_reg[QPNP_COMMON2_IDX_MODE] == QPNP_COMMON2_MODE_HPM
+		? REGULATOR_MODE_NORMAL : REGULATOR_MODE_IDLE;
+}
+
+static int qpnp_regulator_common2_set_mode(struct regulator_dev *rdev,
+					unsigned int mode)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+	int rc = 0;
+	u8 val = QPNP_COMMON2_MODE_HPM;
+
+	if (mode != REGULATOR_MODE_NORMAL && mode != REGULATOR_MODE_IDLE) {
+		vreg_err(vreg, "invalid mode: %u\n", mode);
+		return -EINVAL;
+	}
+
+	/*
+	 * Use init_mode as the low power mode unless it is equal to HPM.  This
+	 * ensures that AUTO mode is re-asserted after switching away from
+	 * forced HPM if it was configured initially.
+	 */
+	if (mode == REGULATOR_MODE_NORMAL)
+		val = QPNP_COMMON2_MODE_HPM;
+	else if (vreg->init_mode == QPNP_COMMON2_MODE_HPM)
+		val = QPNP_COMMON2_MODE_LPM;
+	else
+		val = vreg->init_mode;
+
+	rc = qpnp_vreg_write_optimized(vreg, QPNP_COMMON2_REG_MODE, &val,
+				&vreg->ctrl_reg[QPNP_COMMON2_IDX_MODE], 1);
+	if (rc)
+		vreg_err(vreg, "SPMI write failed, rc=%d\n", rc);
+	else
+		qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_MODE);
+
+	return rc;
+}
+
+static int qpnp_regulator_common_enable_time(struct regulator_dev *rdev)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+
+	return vreg->enable_time;
+}
+
+static int qpnp_regulator_vs_clear_ocp(struct qpnp_regulator *vreg)
+{
+	int rc;
+
+	rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_ENABLE,
+		QPNP_COMMON_DISABLE, QPNP_COMMON_ENABLE_MASK,
+		&vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]);
+	if (rc)
+		vreg_err(vreg, "qpnp_vreg_masked_write failed, rc=%d\n", rc);
+
+	vreg->vs_enable_time = ktime_get();
+
+	rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_ENABLE,
+		QPNP_COMMON_ENABLE, QPNP_COMMON_ENABLE_MASK,
+		&vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]);
+	if (rc)
+		vreg_err(vreg, "qpnp_vreg_masked_write failed, rc=%d\n", rc);
+
+	if (qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_OCP) {
+		pr_info("%s: switch state toggled after OCP event\n",
+			vreg->rdesc.name);
+	}
+
+	return rc;
+}
+
+static void qpnp_regulator_vs_ocp_work(struct work_struct *work)
+{
+	struct delayed_work *dwork
+		= container_of(work, struct delayed_work, work);
+	struct qpnp_regulator *vreg
+		= container_of(dwork, struct qpnp_regulator, ocp_work);
+
+	qpnp_regulator_vs_clear_ocp(vreg);
+}
+
+static irqreturn_t qpnp_regulator_vs_ocp_isr(int irq, void *data)
+{
+	struct qpnp_regulator *vreg = data;
+	ktime_t ocp_irq_time;
+	s64 ocp_trigger_delay_us;
+
+	ocp_irq_time = ktime_get();
+	ocp_trigger_delay_us = ktime_us_delta(ocp_irq_time,
+						vreg->vs_enable_time);
+
+	/*
+	 * Reset the OCP count if there is a large delay between switch enable
+	 * and when OCP triggers.  This is indicative of a hotplug event as
+	 * opposed to a fault.
+	 */
+	if (ocp_trigger_delay_us > QPNP_VS_OCP_FAULT_DELAY_US)
+		vreg->ocp_count = 0;
+
+	/* Wait for switch output to settle back to 0 V after OCP triggered. */
+	udelay(QPNP_VS_OCP_FALL_DELAY_US);
+
+	vreg->ocp_count++;
+
+	if (qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_OCP) {
+		pr_info("%s: VS OCP triggered, count = %d, delay = %lld us\n",
+			vreg->rdesc.name, vreg->ocp_count,
+			ocp_trigger_delay_us);
+	}
+
+	if (vreg->ocp_count == 1) {
+		/* Immediately clear the over current condition. */
+		qpnp_regulator_vs_clear_ocp(vreg);
+	} else if (vreg->ocp_count <= vreg->ocp_max_retries) {
+		/* Schedule the over current clear task to run later. */
+		schedule_delayed_work(&vreg->ocp_work,
+			msecs_to_jiffies(vreg->ocp_retry_delay_ms) + 1);
+	} else {
+		vreg_err(vreg, "OCP triggered %d times; no further retries\n",
+			vreg->ocp_count);
+	}
+
+	return IRQ_HANDLED;
+}
+
+static const char * const qpnp_print_actions[] = {
+	[QPNP_REGULATOR_ACTION_INIT]	= "initial    ",
+	[QPNP_REGULATOR_ACTION_ENABLE]	= "enable     ",
+	[QPNP_REGULATOR_ACTION_DISABLE]	= "disable    ",
+	[QPNP_REGULATOR_ACTION_VOLTAGE]	= "set voltage",
+	[QPNP_REGULATOR_ACTION_MODE]	= "set mode   ",
+};
+
+static const char * const qpnp_common2_mode_label[] = {
+	[0]				= "RSV",
+	[1]				= "RSV",
+	[2]				= "RSV",
+	[QPNP_COMMON2_MODE_BYPASS]	= "BYP",
+	[QPNP_COMMON2_MODE_RETENTION]	= "RET",
+	[QPNP_COMMON2_MODE_LPM]		= "LPM",
+	[QPNP_COMMON2_MODE_AUTO]	= "AUTO",
+	[QPNP_COMMON2_MODE_HPM]		= "HPM",
+};
+
+static void qpnp_vreg_show_state(struct regulator_dev *rdev,
+				   enum qpnp_regulator_action action)
+{
+	struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
+	const char *action_label = qpnp_print_actions[action];
+	unsigned int mode = 0;
+	int uV = 0;
+	const char *mode_label = "";
+	enum qpnp_regulator_logical_type type;
+	const char *enable_label = "";
+	char pc_enable_label[5] = {'\0'};
+	char pc_mode_label[8] = {'\0'};
+	bool show_req, show_dupe, show_init, has_changed;
+	u8 en_reg, mode_reg;
+
+	/* Do not print unless appropriate flags are set. */
+	show_req = qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_REQUEST;
+	show_dupe = qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_DUPLICATE;
+	show_init = qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_INIT;
+	has_changed = vreg->write_count != vreg->prev_write_count;
+	if (!((show_init && action == QPNP_REGULATOR_ACTION_INIT)
+	      || (show_req && (has_changed || show_dupe)))) {
+		return;
+	}
+
+	vreg->prev_write_count = vreg->write_count;
+
+	type = vreg->logical_type;
+
+	if (vreg->rdesc.ops->is_enabled)
+		enable_label = vreg->rdesc.ops->is_enabled(rdev)
+				? "on " : "off";
+
+	if (vreg->rdesc.ops->get_voltage)
+		uV = vreg->rdesc.ops->get_voltage(rdev);
+
+	if (vreg->rdesc.ops->get_mode) {
+		mode = vreg->rdesc.ops->get_mode(rdev);
+		mode_label = mode == REGULATOR_MODE_NORMAL ? "HPM" : "LPM";
+	}
+
+	if (type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS
+	    || type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
+	    || type == QPNP_REGULATOR_LOGICAL_TYPE_VS) {
+		en_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE];
+		pc_enable_label[0] =
+		     en_reg & QPNP_COMMON_ENABLE_FOLLOW_HW_EN3_MASK ? '3' : '_';
+		pc_enable_label[1] =
+		     en_reg & QPNP_COMMON_ENABLE_FOLLOW_HW_EN2_MASK ? '2' : '_';
+		pc_enable_label[2] =
+		     en_reg & QPNP_COMMON_ENABLE_FOLLOW_HW_EN1_MASK ? '1' : '_';
+		pc_enable_label[3] =
+		     en_reg & QPNP_COMMON_ENABLE_FOLLOW_HW_EN0_MASK ? '0' : '_';
+	}
+
+	switch (type) {
+	case QPNP_REGULATOR_LOGICAL_TYPE_SMPS:
+		mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
+		pc_mode_label[0] =
+		     mode_reg & QPNP_COMMON_MODE_AUTO_MASK          ? 'A' : '_';
+		pc_mode_label[1] =
+		     mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK  ? 'W' : '_';
+		pc_mode_label[2] =
+		     mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN3_MASK ? '3' : '_';
+		pc_mode_label[3] =
+		     mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN2_MASK ? '2' : '_';
+		pc_mode_label[4] =
+		     mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN1_MASK ? '1' : '_';
+		pc_mode_label[5] =
+		     mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN0_MASK ? '0' : '_';
+
+		pr_info("%s %-11s: %s, v=%7d uV, mode=%s, pc_en=%s, alt_mode=%s\n",
+			action_label, vreg->rdesc.name, enable_label, uV,
+			mode_label, pc_enable_label, pc_mode_label);
+		break;
+	case QPNP_REGULATOR_LOGICAL_TYPE_LDO:
+		mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
+		pc_mode_label[0] =
+		     mode_reg & QPNP_COMMON_MODE_AUTO_MASK          ? 'A' : '_';
+		pc_mode_label[1] =
+		     mode_reg & QPNP_COMMON_MODE_BYPASS_MASK        ? 'B' : '_';
+		pc_mode_label[2] =
+		     mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK  ? 'W' : '_';
+		pc_mode_label[3] =
+		     mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN3_MASK ? '3' : '_';
+		pc_mode_label[4] =
+		     mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN2_MASK ? '2' : '_';
+		pc_mode_label[5] =
+		     mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN1_MASK ? '1' : '_';
+		pc_mode_label[6] =
+		     mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN0_MASK ? '0' : '_';
+
+		pr_info("%s %-11s: %s, v=%7d uV, mode=%s, pc_en=%s, alt_mode=%s\n",
+			action_label, vreg->rdesc.name, enable_label, uV,
+			mode_label, pc_enable_label, pc_mode_label);
+		break;
+	case QPNP_REGULATOR_LOGICAL_TYPE_LN_LDO:
+		mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
+		pc_mode_label[0] =
+		     mode_reg & QPNP_COMMON_MODE_BYPASS_MASK ? 'B' : '_';
+
+		pr_info("%s %-11s: %s, v=%7d uV, alt_mode=%s\n",
+			action_label, vreg->rdesc.name, enable_label, uV,
+			pc_mode_label);
+		break;
+	case QPNP_REGULATOR_LOGICAL_TYPE_VS:
+		mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
+		pc_mode_label[0] =
+		     mode_reg & QPNP_COMMON_MODE_AUTO_MASK          ? 'A' : '_';
+		pc_mode_label[1] =
+		     mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK  ? 'W' : '_';
+
+		pr_info("%s %-11s: %s, mode=%s, pc_en=%s, alt_mode=%s\n",
+			action_label, vreg->rdesc.name, enable_label,
+			mode_label, pc_enable_label, pc_mode_label);
+		break;
+	case QPNP_REGULATOR_LOGICAL_TYPE_BOOST:
+		pr_info("%s %-11s: %s, v=%7d uV\n",
+			action_label, vreg->rdesc.name, enable_label, uV);
+		break;
+	case QPNP_REGULATOR_LOGICAL_TYPE_BOOST_BYP:
+		pr_info("%s %-11s: %s, v=%7d uV\n",
+			action_label, vreg->rdesc.name, enable_label, uV);
+		break;
+	case QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS:
+		mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
+		pc_mode_label[0] =
+		     mode_reg & QPNP_COMMON_MODE_AUTO_MASK          ? 'A' : '_';
+
+		pr_info("%s %-11s: %s, v=%7d uV, mode=%s, alt_mode=%s\n",
+			action_label, vreg->rdesc.name, enable_label, uV,
+			mode_label, pc_mode_label);
+		break;
+	case QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS:
+	case QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS:
+		mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
+		pc_mode_label[0] =
+		     mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK  ? 'W' : '_';
+		pr_info("%s %-11s: %s, v=%7d uV, mode=%s, alt_mode=%s\n",
+			action_label, vreg->rdesc.name, enable_label, uV,
+			mode_label, pc_mode_label);
+		break;
+	case QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO:
+		mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
+		pc_mode_label[0] =
+		     mode_reg & QPNP_COMMON_MODE_BYPASS_MASK        ? 'B' : '_';
+		pc_mode_label[1] =
+		     mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK  ? 'W' : '_';
+		pr_info("%s %-11s: %s, v=%7d uV, mode=%s, alt_mode=%s\n",
+			action_label, vreg->rdesc.name, enable_label, uV,
+			mode_label, pc_mode_label);
+		break;
+	case QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS2:
+		mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
+		mode_label = qpnp_common2_mode_label[mode_reg
+						     & QPNP_COMMON2_MODE_MASK];
+		pr_info("%s %-11s: %s, v=%7d uV, mode=%s\n",
+			action_label, vreg->rdesc.name, enable_label, uV,
+			mode_label);
+		break;
+	default:
+		break;
+	}
+}
+
+static struct regulator_ops qpnp_smps_ops = {
+	.enable			= qpnp_regulator_common_enable,
+	.disable		= qpnp_regulator_common_disable,
+	.is_enabled		= qpnp_regulator_common_is_enabled,
+	.set_voltage		= qpnp_regulator_common_set_voltage,
+	.get_voltage		= qpnp_regulator_common_get_voltage,
+	.list_voltage		= qpnp_regulator_common_list_voltage,
+	.set_mode		= qpnp_regulator_common_set_mode,
+	.get_mode		= qpnp_regulator_common_get_mode,
+	.get_optimum_mode	= qpnp_regulator_common_get_optimum_mode,
+	.enable_time		= qpnp_regulator_common_enable_time,
+};
+
+static struct regulator_ops qpnp_ldo_ops = {
+	.enable			= qpnp_regulator_common_enable,
+	.disable		= qpnp_regulator_common_disable,
+	.is_enabled		= qpnp_regulator_common_is_enabled,
+	.set_voltage		= qpnp_regulator_common_set_voltage,
+	.get_voltage		= qpnp_regulator_common_get_voltage,
+	.list_voltage		= qpnp_regulator_common_list_voltage,
+	.set_mode		= qpnp_regulator_common_set_mode,
+	.get_mode		= qpnp_regulator_common_get_mode,
+	.get_optimum_mode	= qpnp_regulator_common_get_optimum_mode,
+	.enable_time		= qpnp_regulator_common_enable_time,
+};
+
+static struct regulator_ops qpnp_ln_ldo_ops = {
+	.enable			= qpnp_regulator_common_enable,
+	.disable		= qpnp_regulator_common_disable,
+	.is_enabled		= qpnp_regulator_common_is_enabled,
+	.set_voltage		= qpnp_regulator_common_set_voltage,
+	.get_voltage		= qpnp_regulator_common_get_voltage,
+	.list_voltage		= qpnp_regulator_common_list_voltage,
+	.enable_time		= qpnp_regulator_common_enable_time,
+};
+
+static struct regulator_ops qpnp_vs_ops = {
+	.enable			= qpnp_regulator_vs_enable,
+	.disable		= qpnp_regulator_common_disable,
+	.is_enabled		= qpnp_regulator_common_is_enabled,
+	.enable_time		= qpnp_regulator_common_enable_time,
+};
+
+static struct regulator_ops qpnp_boost_ops = {
+	.enable			= qpnp_regulator_common_enable,
+	.disable		= qpnp_regulator_common_disable,
+	.is_enabled		= qpnp_regulator_common_is_enabled,
+	.set_voltage		= qpnp_regulator_single_range_set_voltage,
+	.get_voltage		= qpnp_regulator_single_range_get_voltage,
+	.list_voltage		= qpnp_regulator_common_list_voltage,
+	.enable_time		= qpnp_regulator_common_enable_time,
+};
+
+static struct regulator_ops qpnp_ftsmps_ops = {
+	.enable			= qpnp_regulator_common_enable,
+	.disable		= qpnp_regulator_common_disable,
+	.is_enabled		= qpnp_regulator_common_is_enabled,
+	.set_voltage		= qpnp_regulator_common_set_voltage,
+	.get_voltage		= qpnp_regulator_common_get_voltage,
+	.list_voltage		= qpnp_regulator_common_list_voltage,
+	.set_mode		= qpnp_regulator_common_set_mode,
+	.get_mode		= qpnp_regulator_common_get_mode,
+	.get_optimum_mode	= qpnp_regulator_common_get_optimum_mode,
+	.enable_time		= qpnp_regulator_common_enable_time,
+};
+
+static struct regulator_ops qpnp_ult_lo_smps_ops = {
+	.enable			= qpnp_regulator_common_enable,
+	.disable		= qpnp_regulator_common_disable,
+	.is_enabled		= qpnp_regulator_common_is_enabled,
+	.set_voltage		= qpnp_regulator_ult_lo_smps_set_voltage,
+	.get_voltage		= qpnp_regulator_ult_lo_smps_get_voltage,
+	.list_voltage		= qpnp_regulator_common_list_voltage,
+	.set_mode		= qpnp_regulator_common_set_mode,
+	.get_mode		= qpnp_regulator_common_get_mode,
+	.get_optimum_mode	= qpnp_regulator_common_get_optimum_mode,
+	.enable_time		= qpnp_regulator_common_enable_time,
+};
+
+static struct regulator_ops qpnp_ult_ho_smps_ops = {
+	.enable			= qpnp_regulator_common_enable,
+	.disable		= qpnp_regulator_common_disable,
+	.is_enabled		= qpnp_regulator_common_is_enabled,
+	.set_voltage		= qpnp_regulator_single_range_set_voltage,
+	.get_voltage		= qpnp_regulator_single_range_get_voltage,
+	.list_voltage		= qpnp_regulator_common_list_voltage,
+	.set_mode		= qpnp_regulator_common_set_mode,
+	.get_mode		= qpnp_regulator_common_get_mode,
+	.get_optimum_mode	= qpnp_regulator_common_get_optimum_mode,
+	.enable_time		= qpnp_regulator_common_enable_time,
+};
+
+static struct regulator_ops qpnp_ult_ldo_ops = {
+	.enable			= qpnp_regulator_common_enable,
+	.disable		= qpnp_regulator_common_disable,
+	.is_enabled		= qpnp_regulator_common_is_enabled,
+	.set_voltage		= qpnp_regulator_single_range_set_voltage,
+	.get_voltage		= qpnp_regulator_single_range_get_voltage,
+	.list_voltage		= qpnp_regulator_common_list_voltage,
+	.set_mode		= qpnp_regulator_common_set_mode,
+	.get_mode		= qpnp_regulator_common_get_mode,
+	.get_optimum_mode	= qpnp_regulator_common_get_optimum_mode,
+	.enable_time		= qpnp_regulator_common_enable_time,
+};
+
+static struct regulator_ops qpnp_ftsmps426_ops = {
+	.enable			= qpnp_regulator_common_enable,
+	.disable		= qpnp_regulator_common_disable,
+	.is_enabled		= qpnp_regulator_common_is_enabled,
+	.set_voltage		= qpnp_regulator_common2_set_voltage,
+	.get_voltage		= qpnp_regulator_common2_get_voltage,
+	.list_voltage		= qpnp_regulator_common_list_voltage,
+	.set_mode		= qpnp_regulator_common2_set_mode,
+	.get_mode		= qpnp_regulator_common2_get_mode,
+	.get_optimum_mode	= qpnp_regulator_common_get_optimum_mode,
+	.enable_time		= qpnp_regulator_common_enable_time,
+};
+
+/* Maximum possible digital major revision value */
+#define INF 0xFF
+
+static const struct qpnp_regulator_mapping supported_regulators[] = {
+	/*           type subtype dig_min dig_max ltype ops setpoints hpm_min */
+	QPNP_VREG_MAP(BUCK,  GP_CTL,   0, INF, SMPS,   smps,   smps,   100000),
+	QPNP_VREG_MAP(LDO,   N300,     0, INF, LDO,    ldo,    nldo1,   10000),
+	QPNP_VREG_MAP(LDO,   N600,     0,   0, LDO,    ldo,    nldo2,   10000),
+	QPNP_VREG_MAP(LDO,   N1200,    0,   0, LDO,    ldo,    nldo2,   10000),
+	QPNP_VREG_MAP(LDO,   N600,     1, INF, LDO,    ldo,    nldo3,   10000),
+	QPNP_VREG_MAP(LDO,   N1200,    1, INF, LDO,    ldo,    nldo3,   10000),
+	QPNP_VREG_MAP(LDO,   N600_ST,  0,   0, LDO,    ldo,    nldo2,   10000),
+	QPNP_VREG_MAP(LDO,   N1200_ST, 0,   0, LDO,    ldo,    nldo2,   10000),
+	QPNP_VREG_MAP(LDO,   N600_ST,  1, INF, LDO,    ldo,    nldo3,   10000),
+	QPNP_VREG_MAP(LDO,   N1200_ST, 1, INF, LDO,    ldo,    nldo3,   10000),
+	QPNP_VREG_MAP(LDO,   P50,      0, INF, LDO,    ldo,    pldo,     5000),
+	QPNP_VREG_MAP(LDO,   P150,     0, INF, LDO,    ldo,    pldo,    10000),
+	QPNP_VREG_MAP(LDO,   P300,     0, INF, LDO,    ldo,    pldo,    10000),
+	QPNP_VREG_MAP(LDO,   P600,     0, INF, LDO,    ldo,    pldo,    10000),
+	QPNP_VREG_MAP(LDO,   P1200,    0, INF, LDO,    ldo,    pldo,    10000),
+	QPNP_VREG_MAP(LDO,   LN,       0, INF, LN_LDO, ln_ldo, ln_ldo,      0),
+	QPNP_VREG_MAP(LDO,   LV_P50,   0, INF, LDO,    ldo,    pldo,     5000),
+	QPNP_VREG_MAP(LDO,   LV_P150,  0, INF, LDO,    ldo,    pldo,    10000),
+	QPNP_VREG_MAP(LDO,   LV_P300,  0, INF, LDO,    ldo,    pldo,    10000),
+	QPNP_VREG_MAP(LDO,   LV_P600,  0, INF, LDO,    ldo,    pldo,    10000),
+	QPNP_VREG_MAP(LDO,   LV_P1200, 0, INF, LDO,    ldo,    pldo,    10000),
+	QPNP_VREG_MAP(VS,    LV100,    0, INF, VS,     vs,     none,        0),
+	QPNP_VREG_MAP(VS,    LV300,    0, INF, VS,     vs,     none,        0),
+	QPNP_VREG_MAP(VS,    MV300,    0, INF, VS,     vs,     none,        0),
+	QPNP_VREG_MAP(VS,    MV500,    0, INF, VS,     vs,     none,        0),
+	QPNP_VREG_MAP(VS,    HDMI,     0, INF, VS,     vs,     none,        0),
+	QPNP_VREG_MAP(VS,    OTG,      0, INF, VS,     vs,     none,        0),
+	QPNP_VREG_MAP(BOOST, 5V_BOOST, 0, INF, BOOST,  boost,  boost,       0),
+	QPNP_VREG_MAP(FTS,   FTS_CTL,  0, INF, FTSMPS, ftsmps, ftsmps, 100000),
+	QPNP_VREG_MAP(FTS, FTS2p5_CTL, 0, INF, FTSMPS, ftsmps, ftsmps2p5,
+								       100000),
+	QPNP_VREG_MAP(BOOST_BYP, BB_2A, 0, INF, BOOST_BYP, boost, boost_byp, 0),
+	QPNP_VREG_MAP(ULT_BUCK, ULT_HF_CTL1, 0, INF, ULT_LO_SMPS, ult_lo_smps,
+							ult_lo_smps,   100000),
+	QPNP_VREG_MAP(ULT_BUCK, ULT_HF_CTL2, 0, INF, ULT_LO_SMPS, ult_lo_smps,
+							ult_lo_smps,   100000),
+	QPNP_VREG_MAP(ULT_BUCK, ULT_HF_CTL3, 0, INF, ULT_LO_SMPS, ult_lo_smps,
+							ult_lo_smps,   100000),
+	QPNP_VREG_MAP(ULT_BUCK, ULT_HF_CTL4, 0, INF, ULT_HO_SMPS, ult_ho_smps,
+							ult_ho_smps,   100000),
+	QPNP_VREG_MAP(ULT_LDO, N300_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo,
+									10000),
+	QPNP_VREG_MAP(ULT_LDO, N600_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo,
+									10000),
+	QPNP_VREG_MAP(ULT_LDO, N1200_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo,
+									10000),
+	QPNP_VREG_MAP(ULT_LDO, LV_P150,  0, INF, ULT_LDO, ult_ldo, ult_pldo,
+									10000),
+	QPNP_VREG_MAP(ULT_LDO, LV_P300,  0, INF, ULT_LDO, ult_ldo, ult_pldo,
+									10000),
+	QPNP_VREG_MAP(ULT_LDO, P600,     0, INF, ULT_LDO, ult_ldo, ult_pldo,
+									10000),
+	QPNP_VREG_MAP(ULT_LDO, P150,     0, INF, ULT_LDO, ult_ldo, ult_pldo,
+									10000),
+	QPNP_VREG_MAP(ULT_LDO, P50,     0, INF, ULT_LDO, ult_ldo, ult_pldo,
+									 5000),
+	QPNP_VREG_MAP(FTS,     FTS426,  0, INF, FTSMPS2, ftsmps426, ftsmps426,
+								       100000),
+};
+
+static int qpnp_regulator_match(struct qpnp_regulator *vreg)
+{
+	const struct qpnp_regulator_mapping *mapping;
+	struct device_node *node = vreg->pdev->dev.of_node;
+	int rc, i;
+	u32 type_reg[2], dig_major_rev;
+	u8 version[QPNP_COMMON_REG_SUBTYPE - QPNP_COMMON_REG_DIG_MAJOR_REV + 1];
+	u8 type, subtype;
+
+	rc = qpnp_vreg_read(vreg, QPNP_COMMON_REG_DIG_MAJOR_REV, version,
+		ARRAY_SIZE(version));
+	if (rc) {
+		vreg_err(vreg, "could not read version registers, rc=%d\n", rc);
+		return rc;
+	}
+	dig_major_rev	= version[QPNP_COMMON_REG_DIG_MAJOR_REV
+					- QPNP_COMMON_REG_DIG_MAJOR_REV];
+	type		= version[QPNP_COMMON_REG_TYPE
+					- QPNP_COMMON_REG_DIG_MAJOR_REV];
+	subtype		= version[QPNP_COMMON_REG_SUBTYPE
+					- QPNP_COMMON_REG_DIG_MAJOR_REV];
+
+	/*
+	 * Override type and subtype register values if qcom,force-type is
+	 * present in the device tree node.
+	 */
+	rc = of_property_read_u32_array(node, "qcom,force-type", type_reg, 2);
+	if (!rc) {
+		type = type_reg[0];
+		subtype = type_reg[1];
+	}
+
+	rc = -ENODEV;
+	for (i = 0; i < ARRAY_SIZE(supported_regulators); i++) {
+		mapping = &supported_regulators[i];
+		if (mapping->type == type && mapping->subtype == subtype
+		    && mapping->revision_min <= dig_major_rev
+		    && mapping->revision_max >= dig_major_rev) {
+			vreg->logical_type	= mapping->logical_type;
+			vreg->set_points	= mapping->set_points;
+			vreg->hpm_min_load	= mapping->hpm_min_load;
+			vreg->rdesc.ops		= mapping->ops;
+			vreg->rdesc.n_voltages
+				= mapping->set_points->n_voltages;
+			rc = 0;
+			break;
+		}
+	}
+
+	if (rc)
+		vreg_err(vreg, "unsupported regulator: type=0x%02X, subtype=0x%02X, dig major rev=0x%02X\n",
+			type, subtype, dig_major_rev);
+
+	return rc;
+}
+
+static int qpnp_regulator_ftsmps_init_slew_rate(struct qpnp_regulator *vreg)
+{
+	int rc;
+	u8 reg = 0;
+	int step = 0, delay, i, range_sel;
+	struct qpnp_voltage_range *range = NULL;
+
+	rc = qpnp_vreg_read(vreg, QPNP_COMMON_REG_STEP_CTRL, &reg, 1);
+	if (rc) {
+		vreg_err(vreg, "spmi read failed, rc=%d\n", rc);
+		return rc;
+	}
+
+	range_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE];
+
+	for (i = 0; i < vreg->set_points->count; i++) {
+		if (vreg->set_points->range[i].range_sel == range_sel) {
+			range = &vreg->set_points->range[i];
+			break;
+		}
+	}
+
+	if (!range) {
+		vreg_err(vreg, "range %d is invalid\n", range_sel);
+		return -EINVAL;
+	}
+
+	step = (reg & QPNP_FTSMPS_STEP_CTRL_STEP_MASK)
+		>> QPNP_FTSMPS_STEP_CTRL_STEP_SHIFT;
+
+	delay = (reg & QPNP_FTSMPS_STEP_CTRL_DELAY_MASK)
+		>> QPNP_FTSMPS_STEP_CTRL_DELAY_SHIFT;
+
+	/* slew_rate has units of uV/us. */
+	vreg->slew_rate = QPNP_FTSMPS_CLOCK_RATE * range->step_uV * (1 << step);
+
+	vreg->slew_rate /= 1000 * (QPNP_FTSMPS_STEP_DELAY << delay);
+
+	vreg->slew_rate = vreg->slew_rate * QPNP_FTSMPS_STEP_MARGIN_NUM
+				/ QPNP_FTSMPS_STEP_MARGIN_DEN;
+
+	/* Ensure that the slew rate is greater than 0. */
+	vreg->slew_rate = max(vreg->slew_rate, 1);
+
+	return rc;
+}
+
+static int qpnp_regulator_ftsmps2_init_slew_rate(struct qpnp_regulator *vreg)
+{
+	struct qpnp_voltage_range *range = NULL;
+	int i, rc, delay;
+	u8 reg = 0;
+
+	rc = qpnp_vreg_read(vreg, QPNP_COMMON2_REG_STEP_CTRL, &reg, 1);
+	if (rc) {
+		vreg_err(vreg, "spmi read failed, rc=%d\n", rc);
+		return rc;
+	}
+
+	/*
+	 * Regulators using the common #2 register layout do not have a voltage
+	 * range select register.  Choose the lowest possible step size to be
+	 * conservative in the slew rate calculation.
+	 */
+	for (i = 0; i < vreg->set_points->count; i++) {
+		if (!range || vreg->set_points->range[i].step_uV
+				< range->step_uV)
+			range = &vreg->set_points->range[i];
+	}
+
+	if (!range) {
+		vreg_err(vreg, "range is invalid\n");
+		return -EINVAL;
+	}
+
+	delay = (reg & QPNP_FTSMPS2_STEP_CTRL_DELAY_MASK)
+		>> QPNP_FTSMPS2_STEP_CTRL_DELAY_SHIFT;
+
+	/* slew_rate has units of uV/us. */
+	vreg->slew_rate = QPNP_FTSMPS2_CLOCK_RATE * range->step_uV;
+	vreg->slew_rate /= 1000 * (QPNP_FTSMPS2_STEP_DELAY << delay);
+	vreg->slew_rate = vreg->slew_rate * QPNP_FTSMPS2_STEP_MARGIN_NUM
+				/ QPNP_FTSMPS2_STEP_MARGIN_DEN;
+
+	/* Ensure that the slew rate is greater than 0. */
+	vreg->slew_rate = max(vreg->slew_rate, 1);
+
+	return rc;
+}
+
+static int qpnp_regulator_init_registers(struct qpnp_regulator *vreg,
+				struct qpnp_regulator_platform_data *pdata)
+{
+	int rc, i;
+	enum qpnp_regulator_logical_type type;
+	u8 ctrl_reg[8], reg, mask;
+
+	type = vreg->logical_type;
+
+	rc = qpnp_vreg_read(vreg, QPNP_COMMON_REG_VOLTAGE_RANGE,
+			    vreg->ctrl_reg, 8);
+	if (rc) {
+		vreg_err(vreg, "spmi read failed, rc=%d\n", rc);
+		return rc;
+	}
+
+	for (i = 0; i < ARRAY_SIZE(ctrl_reg); i++)
+		ctrl_reg[i] = vreg->ctrl_reg[i];
+
+	/* Set up enable pin control. */
+	if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS
+	     || type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
+	     || type == QPNP_REGULATOR_LOGICAL_TYPE_VS)
+	    && !(pdata->pin_ctrl_enable
+			& QPNP_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT)) {
+		ctrl_reg[QPNP_COMMON_IDX_ENABLE] &=
+			~QPNP_COMMON_ENABLE_FOLLOW_ALL_MASK;
+		ctrl_reg[QPNP_COMMON_IDX_ENABLE] |=
+		    pdata->pin_ctrl_enable & QPNP_COMMON_ENABLE_FOLLOW_ALL_MASK;
+	}
+
+	/* Set up HPM control. */
+	if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS
+	     || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS
+	     || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS
+	     || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO
+	     || type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
+	     || type == QPNP_REGULATOR_LOGICAL_TYPE_VS
+	     || type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS)
+	    && (pdata->hpm_enable != QPNP_REGULATOR_USE_HW_DEFAULT)) {
+		ctrl_reg[QPNP_COMMON_IDX_MODE] &= ~QPNP_COMMON_MODE_HPM_MASK;
+		ctrl_reg[QPNP_COMMON_IDX_MODE] |=
+		     (pdata->hpm_enable ? QPNP_COMMON_MODE_HPM_MASK : 0);
+	}
+
+	/* Set up auto mode control. */
+	if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS
+	     || type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
+	     || type == QPNP_REGULATOR_LOGICAL_TYPE_VS
+	     || type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS)
+	    && (pdata->auto_mode_enable != QPNP_REGULATOR_USE_HW_DEFAULT)) {
+		ctrl_reg[QPNP_COMMON_IDX_MODE] &=
+			~QPNP_COMMON_MODE_AUTO_MASK;
+		ctrl_reg[QPNP_COMMON_IDX_MODE] |=
+		     (pdata->auto_mode_enable ? QPNP_COMMON_MODE_AUTO_MASK : 0);
+	}
+
+	if (type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS2) {
+		if (pdata->hpm_enable == QPNP_REGULATOR_ENABLE)
+			ctrl_reg[QPNP_COMMON2_IDX_MODE]
+				= QPNP_COMMON2_MODE_HPM;
+		else if (pdata->auto_mode_enable == QPNP_REGULATOR_ENABLE)
+			ctrl_reg[QPNP_COMMON2_IDX_MODE]
+				= QPNP_COMMON2_MODE_AUTO;
+		else if (pdata->hpm_enable == QPNP_REGULATOR_DISABLE
+			 && ctrl_reg[QPNP_COMMON2_IDX_MODE]
+					== QPNP_COMMON2_MODE_HPM)
+			ctrl_reg[QPNP_COMMON2_IDX_MODE]
+				= QPNP_COMMON2_MODE_LPM;
+		else if (pdata->auto_mode_enable == QPNP_REGULATOR_DISABLE
+			 && ctrl_reg[QPNP_COMMON2_IDX_MODE]
+					== QPNP_COMMON2_MODE_AUTO)
+			ctrl_reg[QPNP_COMMON2_IDX_MODE]
+				= QPNP_COMMON2_MODE_LPM;
+	}
+
+	/* Set up mode pin control. */
+	if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS
+	    || type == QPNP_REGULATOR_LOGICAL_TYPE_LDO)
+		&& !(pdata->pin_ctrl_hpm
+			& QPNP_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
+		ctrl_reg[QPNP_COMMON_IDX_MODE] &=
+			~QPNP_COMMON_MODE_FOLLOW_ALL_MASK;
+		ctrl_reg[QPNP_COMMON_IDX_MODE] |=
+			pdata->pin_ctrl_hpm & QPNP_COMMON_MODE_FOLLOW_ALL_MASK;
+	}
+
+	if (type == QPNP_REGULATOR_LOGICAL_TYPE_VS
+	   && !(pdata->pin_ctrl_hpm & QPNP_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
+		ctrl_reg[QPNP_COMMON_IDX_MODE] &=
+			~QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK;
+		ctrl_reg[QPNP_COMMON_IDX_MODE] |=
+		       pdata->pin_ctrl_hpm & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK;
+	}
+
+	if ((type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS
+		|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS
+		|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO)
+		&& !(pdata->pin_ctrl_hpm
+			& QPNP_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
+		ctrl_reg[QPNP_COMMON_IDX_MODE] &=
+			~QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK;
+		ctrl_reg[QPNP_COMMON_IDX_MODE] |=
+		       pdata->pin_ctrl_hpm & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK;
+	}
+
+	if ((type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
+	    || type == QPNP_REGULATOR_LOGICAL_TYPE_LN_LDO
+	    || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO)
+	      && pdata->bypass_mode_enable != QPNP_REGULATOR_USE_HW_DEFAULT) {
+		ctrl_reg[QPNP_COMMON_IDX_MODE] &=
+			~QPNP_COMMON_MODE_BYPASS_MASK;
+		ctrl_reg[QPNP_COMMON_IDX_MODE] |=
+			(pdata->bypass_mode_enable
+				? QPNP_COMMON_MODE_BYPASS_MASK : 0);
+	}
+
+	/* Set boost current limit. */
+	if ((type == QPNP_REGULATOR_LOGICAL_TYPE_BOOST
+	    || type == QPNP_REGULATOR_LOGICAL_TYPE_BOOST_BYP)
+		&& pdata->boost_current_limit
+			!= QPNP_BOOST_CURRENT_LIMIT_HW_DEFAULT) {
+		reg = pdata->boost_current_limit;
+		mask = QPNP_BOOST_CURRENT_LIMIT_MASK;
+		rc = qpnp_vreg_masked_read_write(vreg,
+			(type == QPNP_REGULATOR_LOGICAL_TYPE_BOOST
+				? QPNP_BOOST_REG_CURRENT_LIMIT
+				: QPNP_BOOST_BYP_REG_CURRENT_LIMIT),
+			reg, mask);
+		if (rc) {
+			vreg_err(vreg, "spmi write failed, rc=%d\n", rc);
+			return rc;
+		}
+	}
+
+	/* Write back any control register values that were modified. */
+	rc = qpnp_vreg_write_optimized(vreg, QPNP_COMMON_REG_VOLTAGE_RANGE,
+		ctrl_reg, vreg->ctrl_reg, 8);
+	if (rc) {
+		vreg_err(vreg, "spmi write failed, rc=%d\n", rc);
+		return rc;
+	}
+
+	/* Setup initial range for ULT_LO_SMPS */
+	if (type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS) {
+		ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE] =
+			(ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET]
+			 < ULT_SMPS_RANGE_SPLIT) ? 0 : 1;
+	}
+
+	/* Set pull down. */
+	if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS
+	    || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS
+	    || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS
+	    || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO
+	    || type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
+	    || type == QPNP_REGULATOR_LOGICAL_TYPE_VS)
+	    && pdata->pull_down_enable != QPNP_REGULATOR_USE_HW_DEFAULT) {
+		reg = pdata->pull_down_enable
+			? QPNP_COMMON_PULL_DOWN_ENABLE_MASK : 0;
+		rc = qpnp_vreg_write(vreg, QPNP_COMMON_REG_PULL_DOWN, &reg, 1);
+		if (rc) {
+			vreg_err(vreg, "spmi write failed, rc=%d\n", rc);
+			return rc;
+		}
+	}
+
+	if ((type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS
+	    || type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS2)
+	    && pdata->pull_down_enable != QPNP_REGULATOR_USE_HW_DEFAULT) {
+		/* FTSMPS has other bits in the pull down control register. */
+		reg = pdata->pull_down_enable
+			? QPNP_COMMON_PULL_DOWN_ENABLE_MASK : 0;
+		rc = qpnp_vreg_masked_read_write(vreg,
+			QPNP_COMMON_REG_PULL_DOWN, reg,
+			QPNP_COMMON_PULL_DOWN_ENABLE_MASK);
+		if (rc) {
+			vreg_err(vreg, "spmi write failed, rc=%d\n", rc);
+			return rc;
+		}
+	}
+
+	/* Set soft start for LDO. */
+	if ((type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
+	    || type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO)
+	    && pdata->soft_start_enable != QPNP_REGULATOR_USE_HW_DEFAULT) {
+		reg = pdata->soft_start_enable
+			? QPNP_LDO_SOFT_START_ENABLE_MASK : 0;
+		rc = qpnp_vreg_write(vreg, QPNP_LDO_REG_SOFT_START, &reg, 1);
+		if (rc) {
+			vreg_err(vreg, "spmi write failed, rc=%d\n", rc);
+			return rc;
+		}
+	}
+
+	/* Set soft start strength and over current protection for VS. */
+	if (type == QPNP_REGULATOR_LOGICAL_TYPE_VS) {
+		reg = 0;
+		mask = 0;
+		if (pdata->soft_start_enable != QPNP_REGULATOR_USE_HW_DEFAULT) {
+			reg |= pdata->soft_start_enable
+				? QPNP_VS_SOFT_START_ENABLE_MASK : 0;
+			mask |= QPNP_VS_SOFT_START_ENABLE_MASK;
+		}
+		if (pdata->vs_soft_start_strength
+				!= QPNP_VS_SOFT_START_STR_HW_DEFAULT) {
+			reg |= pdata->vs_soft_start_strength
+				& QPNP_VS_SOFT_START_SEL_MASK;
+			mask |= QPNP_VS_SOFT_START_SEL_MASK;
+		}
+		rc = qpnp_vreg_masked_read_write(vreg, QPNP_VS_REG_SOFT_START,
+						 reg, mask);
+		if (rc) {
+			vreg_err(vreg, "spmi write failed, rc=%d\n", rc);
+			return rc;
+		}
+
+		if (pdata->ocp_enable != QPNP_REGULATOR_USE_HW_DEFAULT) {
+			reg = pdata->ocp_enable ? QPNP_VS_OCP_NO_OVERRIDE
+						: QPNP_VS_OCP_OVERRIDE;
+			rc = qpnp_vreg_write(vreg, QPNP_VS_REG_OCP, &reg, 1);
+			if (rc) {
+				vreg_err(vreg, "spmi write failed, rc=%d\n",
+					rc);
+				return rc;
+			}
+		}
+	}
+
+	/* Calculate the slew rate for FTSMPS regulators. */
+	if (type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS) {
+		rc = qpnp_regulator_ftsmps_init_slew_rate(vreg);
+		if (rc) {
+			vreg_err(vreg, "failed to initialize step rate, rc=%d\n",
+				 rc);
+			return rc;
+		}
+	}
+
+	/* Calculate the slew rate for FTSMPS2 regulators. */
+	if (type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS2) {
+		rc = qpnp_regulator_ftsmps2_init_slew_rate(vreg);
+		if (rc) {
+			vreg_err(vreg, "failed to initialize step rate, rc=%d\n",
+				 rc);
+			return rc;
+		}
+	}
+
+	vreg->init_mode = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
+
+	return rc;
+}
+
+/* Fill in pdata elements based on values found in device tree. */
+static int qpnp_regulator_get_dt_config(struct platform_device *pdev,
+				struct qpnp_regulator_platform_data *pdata)
+{
+	unsigned int base;
+	struct device_node *node = pdev->dev.of_node;
+	int rc = 0;
+
+	pdata->init_data.constraints.input_uV
+		= pdata->init_data.constraints.max_uV;
+
+	rc = of_property_read_u32(pdev->dev.of_node, "reg", &base);
+	if (rc < 0) {
+		dev_err(&pdev->dev,
+			"Couldn't find reg in node = %s rc = %d\n",
+			pdev->dev.of_node->full_name, rc);
+		return rc;
+	}
+	pdata->base_addr = base;
+
+	/* OCP IRQ is optional so ignore get errors. */
+	pdata->ocp_irq = platform_get_irq_byname(pdev, "ocp");
+	if (pdata->ocp_irq < 0)
+		pdata->ocp_irq = 0;
+
+	/*
+	 * Initialize configuration parameters to use hardware default in case
+	 * no value is specified via device tree.
+	 */
+	pdata->auto_mode_enable		= QPNP_REGULATOR_USE_HW_DEFAULT;
+	pdata->bypass_mode_enable	= QPNP_REGULATOR_USE_HW_DEFAULT;
+	pdata->ocp_enable		= QPNP_REGULATOR_USE_HW_DEFAULT;
+	pdata->pull_down_enable		= QPNP_REGULATOR_USE_HW_DEFAULT;
+	pdata->soft_start_enable	= QPNP_REGULATOR_USE_HW_DEFAULT;
+	pdata->boost_current_limit	= QPNP_BOOST_CURRENT_LIMIT_HW_DEFAULT;
+	pdata->pin_ctrl_enable	    = QPNP_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT;
+	pdata->pin_ctrl_hpm	    = QPNP_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT;
+	pdata->vs_soft_start_strength	= QPNP_VS_SOFT_START_STR_HW_DEFAULT;
+	pdata->hpm_enable		= QPNP_REGULATOR_USE_HW_DEFAULT;
+
+	/* These bindings are optional, so it is okay if they are not found. */
+	of_property_read_u32(node, "qcom,auto-mode-enable",
+		&pdata->auto_mode_enable);
+	of_property_read_u32(node, "qcom,bypass-mode-enable",
+		&pdata->bypass_mode_enable);
+	of_property_read_u32(node, "qcom,ocp-enable", &pdata->ocp_enable);
+	of_property_read_u32(node, "qcom,ocp-max-retries",
+		&pdata->ocp_max_retries);
+	of_property_read_u32(node, "qcom,ocp-retry-delay",
+		&pdata->ocp_retry_delay_ms);
+	of_property_read_u32(node, "qcom,pull-down-enable",
+		&pdata->pull_down_enable);
+	of_property_read_u32(node, "qcom,soft-start-enable",
+		&pdata->soft_start_enable);
+	of_property_read_u32(node, "qcom,boost-current-limit",
+		&pdata->boost_current_limit);
+	of_property_read_u32(node, "qcom,pin-ctrl-enable",
+		&pdata->pin_ctrl_enable);
+	of_property_read_u32(node, "qcom,pin-ctrl-hpm", &pdata->pin_ctrl_hpm);
+	of_property_read_u32(node, "qcom,hpm-enable", &pdata->hpm_enable);
+	of_property_read_u32(node, "qcom,vs-soft-start-strength",
+		&pdata->vs_soft_start_strength);
+	of_property_read_u32(node, "qcom,system-load", &pdata->system_load);
+	of_property_read_u32(node, "qcom,enable-time", &pdata->enable_time);
+
+	return rc;
+}
+
+static const struct of_device_id spmi_match_table[];
+
+#define MAX_NAME_LEN	127
+
+static int qpnp_regulator_probe(struct platform_device *pdev)
+{
+	struct regulator_config reg_config = {};
+	struct qpnp_regulator_platform_data *pdata;
+	struct qpnp_regulator *vreg;
+	struct regulator_desc *rdesc;
+	struct qpnp_regulator_platform_data of_pdata;
+	struct regulator_init_data *init_data;
+	char *reg_name;
+	int rc;
+	bool is_dt;
+
+	vreg = kzalloc(sizeof(struct qpnp_regulator), GFP_KERNEL);
+	if (!vreg)
+		return -ENOMEM;
+
+	vreg->regmap = dev_get_regmap(pdev->dev.parent, NULL);
+	if (!vreg->regmap) {
+		dev_err(&pdev->dev, "Couldn't get parent's regmap\n");
+		return -EINVAL;
+	}
+
+	is_dt = of_match_device(spmi_match_table, &pdev->dev);
+
+	/* Check if device tree is in use. */
+	if (is_dt) {
+		init_data = of_get_regulator_init_data(&pdev->dev,
+						       pdev->dev.of_node,
+						       &vreg->rdesc);
+		if (!init_data) {
+			dev_err(&pdev->dev, "%s: unable to allocate memory\n",
+					__func__);
+			kfree(vreg);
+			return -ENOMEM;
+		}
+		memset(&of_pdata, 0,
+			sizeof(struct qpnp_regulator_platform_data));
+		memcpy(&of_pdata.init_data, init_data,
+			sizeof(struct regulator_init_data));
+
+		if (of_get_property(pdev->dev.of_node, "parent-supply", NULL))
+			of_pdata.init_data.supply_regulator = "parent";
+
+		rc = qpnp_regulator_get_dt_config(pdev, &of_pdata);
+		if (rc) {
+			dev_err(&pdev->dev, "%s: DT parsing failed, rc=%d\n",
+					__func__, rc);
+			kfree(vreg);
+			return -ENOMEM;
+		}
+
+		pdata = &of_pdata;
+	} else {
+		pdata = pdev->dev.platform_data;
+	}
+
+	if (pdata == NULL) {
+		dev_err(&pdev->dev, "%s: no platform data specified\n",
+			__func__);
+		kfree(vreg);
+		return -EINVAL;
+	}
+
+	vreg->pdev		= pdev;
+	vreg->prev_write_count	= -1;
+	vreg->write_count	= 0;
+	vreg->base_addr		= pdata->base_addr;
+	vreg->enable_time	= pdata->enable_time;
+	vreg->system_load	= pdata->system_load;
+	vreg->ocp_enable	= pdata->ocp_enable;
+	vreg->ocp_irq		= pdata->ocp_irq;
+	vreg->ocp_max_retries	= pdata->ocp_max_retries;
+	vreg->ocp_retry_delay_ms = pdata->ocp_retry_delay_ms;
+
+	if (vreg->ocp_max_retries == 0)
+		vreg->ocp_max_retries = QPNP_VS_OCP_DEFAULT_MAX_RETRIES;
+	if (vreg->ocp_retry_delay_ms == 0)
+		vreg->ocp_retry_delay_ms = QPNP_VS_OCP_DEFAULT_RETRY_DELAY_MS;
+
+	rdesc			= &vreg->rdesc;
+	rdesc->id		= to_spmi_device(pdev->dev.parent)->ctrl->nr;
+	rdesc->owner		= THIS_MODULE;
+	rdesc->type		= REGULATOR_VOLTAGE;
+
+	reg_name = kzalloc(strnlen(pdata->init_data.constraints.name,
+				MAX_NAME_LEN) + 1, GFP_KERNEL);
+	if (!reg_name) {
+		kfree(vreg);
+		return -ENOMEM;
+	}
+	strlcpy(reg_name, pdata->init_data.constraints.name,
+		strnlen(pdata->init_data.constraints.name, MAX_NAME_LEN) + 1);
+	rdesc->name = reg_name;
+
+	dev_set_drvdata(&pdev->dev, vreg);
+
+	rc = qpnp_regulator_match(vreg);
+	if (rc)
+		goto bail;
+
+	if (is_dt && rdesc->ops) {
+		/* Fill in ops and mode masks when using device tree. */
+		if (rdesc->ops->enable)
+			pdata->init_data.constraints.valid_ops_mask
+				|= REGULATOR_CHANGE_STATUS;
+		if (rdesc->ops->get_voltage)
+			pdata->init_data.constraints.valid_ops_mask
+				|= REGULATOR_CHANGE_VOLTAGE;
+		if (rdesc->ops->get_mode) {
+			pdata->init_data.constraints.valid_ops_mask
+				|= REGULATOR_CHANGE_MODE
+				| REGULATOR_CHANGE_DRMS;
+			pdata->init_data.constraints.valid_modes_mask
+				= REGULATOR_MODE_NORMAL | REGULATOR_MODE_IDLE;
+		}
+	}
+
+	rc = qpnp_regulator_init_registers(vreg, pdata);
+	if (rc) {
+		vreg_err(vreg, "common initialization failed, rc=%d\n", rc);
+		goto bail;
+	}
+
+	if (vreg->logical_type != QPNP_REGULATOR_LOGICAL_TYPE_VS)
+		vreg->ocp_irq = 0;
+
+	if (vreg->ocp_irq) {
+		rc = devm_request_irq(&pdev->dev, vreg->ocp_irq,
+			qpnp_regulator_vs_ocp_isr, IRQF_TRIGGER_RISING, "ocp",
+			vreg);
+		if (rc < 0) {
+			vreg_err(vreg, "failed to request irq %d, rc=%d\n",
+				vreg->ocp_irq, rc);
+			goto bail;
+		}
+
+		INIT_DELAYED_WORK(&vreg->ocp_work, qpnp_regulator_vs_ocp_work);
+	}
+
+	reg_config.dev = &pdev->dev;
+	reg_config.init_data = &pdata->init_data;
+	reg_config.driver_data = vreg;
+	reg_config.of_node = pdev->dev.of_node;
+	vreg->rdev = regulator_register(rdesc, &reg_config);
+	if (IS_ERR(vreg->rdev)) {
+		rc = PTR_ERR(vreg->rdev);
+		if (rc != -EPROBE_DEFER)
+			vreg_err(vreg, "regulator_register failed, rc=%d\n",
+				rc);
+		goto cancel_ocp_work;
+	}
+
+	if (qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_INIT && vreg->slew_rate)
+		pr_info("%-11s: step rate=%d uV/us\n", vreg->rdesc.name,
+			vreg->slew_rate);
+
+	qpnp_vreg_show_state(vreg->rdev, QPNP_REGULATOR_ACTION_INIT);
+
+	return 0;
+
+cancel_ocp_work:
+	if (vreg->ocp_irq)
+		cancel_delayed_work_sync(&vreg->ocp_work);
+bail:
+	if (rc && rc != -EPROBE_DEFER)
+		vreg_err(vreg, "probe failed, rc=%d\n", rc);
+
+	kfree(vreg->rdesc.name);
+	kfree(vreg);
+
+	return rc;
+}
+
+static int qpnp_regulator_remove(struct platform_device *pdev)
+{
+	struct qpnp_regulator *vreg;
+
+	vreg = dev_get_drvdata(&pdev->dev);
+	dev_set_drvdata(&pdev->dev, NULL);
+
+	if (vreg) {
+		regulator_unregister(vreg->rdev);
+		if (vreg->ocp_irq)
+			cancel_delayed_work_sync(&vreg->ocp_work);
+		kfree(vreg->rdesc.name);
+		kfree(vreg);
+	}
+
+	return 0;
+}
+
+static const struct of_device_id spmi_match_table[] = {
+	{ .compatible = QPNP_REGULATOR_DRIVER_NAME, },
+	{}
+};
+
+static const struct platform_device_id qpnp_regulator_id[] = {
+	{ QPNP_REGULATOR_DRIVER_NAME, 0 },
+	{ }
+};
+MODULE_DEVICE_TABLE(spmi, qpnp_regulator_id);
+
+static struct platform_driver qpnp_regulator_driver = {
+	.driver		= {
+		.name		= QPNP_REGULATOR_DRIVER_NAME,
+		.of_match_table	= spmi_match_table,
+		.owner		= THIS_MODULE,
+	},
+	.probe		= qpnp_regulator_probe,
+	.remove		= qpnp_regulator_remove,
+	.id_table	= qpnp_regulator_id,
+};
+
+/*
+ * Pre-compute the number of set points available for each regulator type to
+ * avoid unnecessary calculations later in runtime.
+ */
+static void qpnp_regulator_set_point_init(void)
+{
+	struct qpnp_voltage_set_points **set_points;
+	int i, j, temp;
+
+	set_points = all_set_points;
+
+	for (i = 0; i < ARRAY_SIZE(all_set_points); i++) {
+		temp = 0;
+		for (j = 0; j < all_set_points[i]->count; j++) {
+			all_set_points[i]->range[j].n_voltages
+				= (all_set_points[i]->range[j].set_point_max_uV
+				 - all_set_points[i]->range[j].set_point_min_uV)
+				   / all_set_points[i]->range[j].step_uV + 1;
+			if (all_set_points[i]->range[j].set_point_max_uV == 0)
+				all_set_points[i]->range[j].n_voltages = 0;
+			temp += all_set_points[i]->range[j].n_voltages;
+		}
+		all_set_points[i]->n_voltages = temp;
+	}
+}
+
+/**
+ * qpnp_regulator_init() - register spmi driver for qpnp-regulator
+ *
+ * This initialization function should be called in systems in which driver
+ * registration ordering must be controlled precisely.
+ */
+int __init qpnp_regulator_init(void)
+{
+	static bool has_registered;
+
+	if (has_registered)
+		return 0;
+	has_registered = true;
+
+	qpnp_regulator_set_point_init();
+
+	return platform_driver_register(&qpnp_regulator_driver);
+}
+EXPORT_SYMBOL(qpnp_regulator_init);
+
+static void __exit qpnp_regulator_exit(void)
+{
+	platform_driver_unregister(&qpnp_regulator_driver);
+}
+
+MODULE_DESCRIPTION("QPNP PMIC regulator driver");
+MODULE_LICENSE("GPL v2");
+
+arch_initcall(qpnp_regulator_init);
+module_exit(qpnp_regulator_exit);
diff --git a/include/linux/power/qcom/apm.h b/include/linux/power/qcom/apm.h
new file mode 100644
index 0000000..8ac8863
--- /dev/null
+++ b/include/linux/power/qcom/apm.h
@@ -0,0 +1,48 @@
+/*
+ * Copyright (c) 2015, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#ifndef __LINUX_POWER_QCOM_APM_H__
+#define __LINUX_POWER_QCOM_APM_H__
+
+#include <linux/device.h>
+#include <linux/err.h>
+
+/**
+ * enum msm_apm_supply - supported power rails to supply memory arrays
+ * %MSM_APM_SUPPLY_APCC:	to enable selection of VDD_APCC rail as supply
+ * %MSM_APM_SUPPLY_MX:		to enable selection of VDD_MX rail as supply
+ */
+enum msm_apm_supply {
+	MSM_APM_SUPPLY_APCC,
+	MSM_APM_SUPPLY_MX,
+};
+
+/* Handle used to identify an APM controller device  */
+struct msm_apm_ctrl_dev;
+
+#ifdef CONFIG_MSM_APM
+struct msm_apm_ctrl_dev *msm_apm_ctrl_dev_get(struct device *dev);
+int msm_apm_set_supply(struct msm_apm_ctrl_dev *ctrl_dev,
+		       enum msm_apm_supply supply);
+int msm_apm_get_supply(struct msm_apm_ctrl_dev *ctrl_dev);
+
+#else
+static inline struct msm_apm_ctrl_dev *msm_apm_ctrl_dev_get(struct device *dev)
+{ return ERR_PTR(-EPERM); }
+static inline int msm_apm_set_supply(struct msm_apm_ctrl_dev *ctrl_dev,
+		       enum msm_apm_supply supply)
+{ return -EPERM; }
+static inline int msm_apm_get_supply(struct msm_apm_ctrl_dev *ctrl_dev)
+{ return -EPERM; }
+#endif
+#endif
diff --git a/include/linux/regulator/msm-ldo-regulator.h b/include/linux/regulator/msm-ldo-regulator.h
new file mode 100644
index 0000000..ad04e29
--- /dev/null
+++ b/include/linux/regulator/msm-ldo-regulator.h
@@ -0,0 +1,32 @@
+/*
+ * Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#ifndef __MSM_LDO_REGULATOR_H__
+#define __MSM_LDO_REGULATOR_H__
+
+/**
+ * enum msm_ldo_supply_mode - supported operating modes by this regulator type.
+ * Use negative logic to ensure BHS mode is treated as the safe default by the
+ * the regulator framework. This is necessary since LDO mode can only be enabled
+ * when several constraints are satisfied. Consumers of this regulator are
+ * expected to request changes in operating modes through the use of
+ * regulator_allow_bypass() passing in the desired LDO supply mode.
+ * %BHS_MODE:	to select BHS as operating mode
+ * %LDO_MODE:	to select LDO as operating mode
+ */
+enum msm_ldo_supply_mode {
+	BHS_MODE = false,
+	LDO_MODE = true,
+};
+
+#endif /* __MSM_LDO_REGULATOR_H__ */
diff --git a/include/linux/regulator/qpnp-regulator.h b/include/linux/regulator/qpnp-regulator.h
new file mode 100644
index 0000000..36288c0
--- /dev/null
+++ b/include/linux/regulator/qpnp-regulator.h
@@ -0,0 +1,197 @@
+/*
+ * Copyright (c) 2012-2013, 2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#ifndef __REGULATOR_QPNP_REGULATOR_H__
+#define __REGULATOR_QPNP_REGULATOR_H__
+
+#include <linux/regulator/machine.h>
+
+#define QPNP_REGULATOR_DRIVER_NAME "qcom,qpnp-regulator"
+
+/* Pin control enable input pins. */
+#define QPNP_REGULATOR_PIN_CTRL_ENABLE_NONE		0x00
+#define QPNP_REGULATOR_PIN_CTRL_ENABLE_EN0		0x01
+#define QPNP_REGULATOR_PIN_CTRL_ENABLE_EN1		0x02
+#define QPNP_REGULATOR_PIN_CTRL_ENABLE_EN2		0x04
+#define QPNP_REGULATOR_PIN_CTRL_ENABLE_EN3		0x08
+#define QPNP_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT	0x10
+
+/* Pin control high power mode input pins. */
+#define QPNP_REGULATOR_PIN_CTRL_HPM_NONE		0x00
+#define QPNP_REGULATOR_PIN_CTRL_HPM_EN0			0x01
+#define QPNP_REGULATOR_PIN_CTRL_HPM_EN1			0x02
+#define QPNP_REGULATOR_PIN_CTRL_HPM_EN2			0x04
+#define QPNP_REGULATOR_PIN_CTRL_HPM_EN3			0x08
+#define QPNP_REGULATOR_PIN_CTRL_HPM_SLEEP_B		0x10
+#define QPNP_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT		0x20
+
+/*
+ * Used with enable parameters to specify that hardware default register values
+ * should be left unaltered.
+ */
+#define QPNP_REGULATOR_DISABLE				0
+#define QPNP_REGULATOR_ENABLE				1
+#define QPNP_REGULATOR_USE_HW_DEFAULT			2
+
+/* Soft start strength of a voltage switch type regulator */
+enum qpnp_vs_soft_start_str {
+	QPNP_VS_SOFT_START_STR_0P05_UA,
+	QPNP_VS_SOFT_START_STR_0P25_UA,
+	QPNP_VS_SOFT_START_STR_0P55_UA,
+	QPNP_VS_SOFT_START_STR_0P75_UA,
+	QPNP_VS_SOFT_START_STR_HW_DEFAULT,
+};
+
+/* Current limit of a boost type regulator */
+enum qpnp_boost_current_limit {
+	QPNP_BOOST_CURRENT_LIMIT_300_MA,
+	QPNP_BOOST_CURRENT_LIMIT_600_MA,
+	QPNP_BOOST_CURRENT_LIMIT_900_MA,
+	QPNP_BOOST_CURRENT_LIMIT_1200_MA,
+	QPNP_BOOST_CURRENT_LIMIT_1500_MA,
+	QPNP_BOOST_CURRENT_LIMIT_1800_MA,
+	QPNP_BOOST_CURRENT_LIMIT_2100_MA,
+	QPNP_BOOST_CURRENT_LIMIT_2400_MA,
+	QPNP_BOOST_CURRENT_LIMIT_HW_DEFAULT,
+};
+
+/**
+ * struct qpnp_regulator_platform_data - qpnp-regulator initialization data
+ * @init_data:		regulator constraints
+ * @pull_down_enable:       1 = Enable output pull down resistor when the
+ *			        regulator is disabled
+ *			    0 = Disable pull down resistor
+ *			    QPNP_REGULATOR_USE_HW_DEFAULT = do not modify
+ *			        pull down state
+ * @pin_ctrl_enable:        Bit mask specifying which hardware pins should be
+ *				used to enable the regulator, if any
+ *			    Value should be an ORing of
+ *				QPNP_REGULATOR_PIN_CTRL_ENABLE_* constants.  If
+ *				the bit specified by
+ *				QPNP_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT is
+ *				set, then pin control enable hardware registers
+ *				will not be modified.
+ * @pin_ctrl_hpm:           Bit mask specifying which hardware pins should be
+ *				used to force the regulator into high power
+ *				mode, if any
+ *			    Value should be an ORing of
+ *				QPNP_REGULATOR_PIN_CTRL_HPM_* constants.  If
+ *				the bit specified by
+ *				QPNP_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT is
+ *				set, then pin control mode hardware registers
+ *				will not be modified.
+ * @system_load:            Load in uA present on regulator that is not captured
+ *				by any consumer request
+ * @enable_time:            Time in us to delay after enabling the regulator
+ * @ocp_enable:             1 = Allow over current protection (OCP) to be
+ *				enabled for voltage switch type regulators so
+ *				that they latch off automatically when over
+ *				current is detected.  OCP is enabled when in HPM
+ *				or auto mode.
+ *			    0 = Disable OCP
+ *			    QPNP_REGULATOR_USE_HW_DEFAULT = do not modify
+ *			        OCP state
+ * @ocp_irq:                IRQ number of the voltage switch OCP IRQ.  If
+ *				specified the voltage switch will be toggled off
+ *				and back on when OCP triggers in order to handle
+ *				high in-rush current.
+ * @ocp_max_retries:        Maximum number of times to try toggling a voltage
+ *				switch off and back on as a result of
+ *				consecutive over current events.
+ * @ocp_retry_delay_ms:     Time to delay in milliseconds between each
+ *				voltage switch toggle after an over current
+ *				event takes place.
+ * @boost_current_limit:    This parameter sets the current limit of boost type
+ *				regulators.  Its value should be one of
+ *				QPNP_BOOST_CURRENT_LIMIT_*.  If its value is
+ *				QPNP_BOOST_CURRENT_LIMIT_HW_DEFAULT, then the
+ *				boost current limit will be left at its default
+ *				hardware value.
+ * @soft_start_enable:      1 = Enable soft start for LDO and voltage switch
+ *				type regulators so that output voltage slowly
+ *				ramps up when the regulator is enabled
+ *			    0 = Disable soft start
+ *			    QPNP_REGULATOR_USE_HW_DEFAULT = do not modify
+ *			        soft start state
+ * @vs_soft_start_strength: This parameter sets the soft start strength for
+ *				voltage switch type regulators.  Its value
+ *				should be one of QPNP_VS_SOFT_START_STR_*.  If
+ *				its value is QPNP_VS_SOFT_START_STR_HW_DEFAULT,
+ *				then the soft start strength will be left at its
+ *				default hardware value.
+ * @auto_mode_enable:       1 = Enable automatic hardware selection of regulator
+ *				mode (HPM vs LPM).  Auto mode is not available
+ *				on boost type regulators
+ *			    0 = Disable auto mode selection
+ *			    QPNP_REGULATOR_USE_HW_DEFAULT = do not modify
+ *			        auto mode state
+ * @bypass_mode_enable:     1 = Enable bypass mode for an LDO type regulator so
+ *				that it acts like a switch and simply outputs
+ *				its input voltage
+ *			    0 = Do not enable bypass mode
+ *			    QPNP_REGULATOR_USE_HW_DEFAULT = do not modify
+ *			        bypass mode state
+ * @hpm_enable:             1 = Enable high power mode (HPM), also referred to
+ *				as NPM.  HPM consumes more ground current than
+ *				LPM, but it can source significantly higher load
+ *				current.  HPM is not available on boost type
+ *				regulators.  For voltage switch type regulators,
+ *				HPM implies that over current protection and
+ *				soft start are active all the time.  This
+ *				configuration can be overwritten by changing the
+ *				regulator's mode dynamically.
+ *			    0 = Do not enable HPM
+ *			    QPNP_REGULATOR_USE_HW_DEFAULT = do not modify
+ *			        HPM state
+ * @base_addr:              SMPI base address for the regulator peripheral
+ */
+struct qpnp_regulator_platform_data {
+	struct regulator_init_data		init_data;
+	int					pull_down_enable;
+	unsigned int				pin_ctrl_enable;
+	unsigned int				pin_ctrl_hpm;
+	int					system_load;
+	int					enable_time;
+	int					ocp_enable;
+	int					ocp_irq;
+	int					ocp_max_retries;
+	int					ocp_retry_delay_ms;
+	enum qpnp_boost_current_limit		boost_current_limit;
+	int					soft_start_enable;
+	enum qpnp_vs_soft_start_str		vs_soft_start_strength;
+	int					auto_mode_enable;
+	int					bypass_mode_enable;
+	int					hpm_enable;
+	u16					base_addr;
+};
+
+#ifdef CONFIG_REGULATOR_QPNP
+
+/**
+ * qpnp_regulator_init() - register spmi driver for qpnp-regulator
+ *
+ * This initialization function should be called in systems in which driver
+ * registration ordering must be controlled precisely.
+ */
+int __init qpnp_regulator_init(void);
+
+#else
+
+static inline int __init qpnp_regulator_init(void)
+{
+	return -ENODEV;
+}
+
+#endif /* CONFIG_REGULATOR_QPNP */
+
+#endif