f2fs crypto: add f2fs encryption facilities

Most of parts were copied from ext4, except:

 - add f2fs_restore_and_release_control_page which returns control page and
   restore control page
 - remove ext4_encrypted_zeroout()
 - remove sbi->s_file_encryption_mode & sbi->s_dir_encryption_mode
 - add f2fs_end_io_crypto_work for mpage_end_io

Signed-off-by: Michael Halcrow <mhalcrow@google.com>
Signed-off-by: Ildar Muslukhov <ildarm@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
diff --git a/fs/f2fs/Makefile b/fs/f2fs/Makefile
index 7864f4f..a79907b 100644
--- a/fs/f2fs/Makefile
+++ b/fs/f2fs/Makefile
@@ -6,4 +6,4 @@
 f2fs-$(CONFIG_F2FS_FS_XATTR) += xattr.o
 f2fs-$(CONFIG_F2FS_FS_POSIX_ACL) += acl.o
 f2fs-$(CONFIG_F2FS_IO_TRACE) += trace.o
-f2fs-$(CONFIG_F2FS_FS_ENCRYPTION) += crypto_policy.o
+f2fs-$(CONFIG_F2FS_FS_ENCRYPTION) += crypto_policy.o crypto.o
diff --git a/fs/f2fs/crypto.c b/fs/f2fs/crypto.c
new file mode 100644
index 0000000..c910fa7
--- /dev/null
+++ b/fs/f2fs/crypto.c
@@ -0,0 +1,560 @@
+/*
+ * linux/fs/f2fs/crypto.c
+ *
+ * Copied from linux/fs/ext4/crypto.c
+ *
+ * Copyright (C) 2015, Google, Inc.
+ * Copyright (C) 2015, Motorola Mobility
+ *
+ * This contains encryption functions for f2fs
+ *
+ * Written by Michael Halcrow, 2014.
+ *
+ * Filename encryption additions
+ *	Uday Savagaonkar, 2014
+ * Encryption policy handling additions
+ *	Ildar Muslukhov, 2014
+ * Remove ext4_encrypted_zeroout(),
+ *   add f2fs_restore_and_release_control_page()
+ *	Jaegeuk Kim, 2015.
+ *
+ * This has not yet undergone a rigorous security audit.
+ *
+ * The usage of AES-XTS should conform to recommendations in NIST
+ * Special Publication 800-38E and IEEE P1619/D16.
+ */
+#include <crypto/hash.h>
+#include <crypto/sha.h>
+#include <keys/user-type.h>
+#include <keys/encrypted-type.h>
+#include <linux/crypto.h>
+#include <linux/ecryptfs.h>
+#include <linux/gfp.h>
+#include <linux/kernel.h>
+#include <linux/key.h>
+#include <linux/list.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/random.h>
+#include <linux/scatterlist.h>
+#include <linux/spinlock_types.h>
+#include <linux/f2fs_fs.h>
+#include <linux/ratelimit.h>
+#include <linux/bio.h>
+
+#include "f2fs.h"
+#include "xattr.h"
+
+/* Encryption added and removed here! (L: */
+
+static unsigned int num_prealloc_crypto_pages = 32;
+static unsigned int num_prealloc_crypto_ctxs = 128;
+
+module_param(num_prealloc_crypto_pages, uint, 0444);
+MODULE_PARM_DESC(num_prealloc_crypto_pages,
+		"Number of crypto pages to preallocate");
+module_param(num_prealloc_crypto_ctxs, uint, 0444);
+MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
+		"Number of crypto contexts to preallocate");
+
+static mempool_t *f2fs_bounce_page_pool;
+
+static LIST_HEAD(f2fs_free_crypto_ctxs);
+static DEFINE_SPINLOCK(f2fs_crypto_ctx_lock);
+
+struct workqueue_struct *f2fs_read_workqueue;
+static DEFINE_MUTEX(crypto_init);
+
+/**
+ * f2fs_release_crypto_ctx() - Releases an encryption context
+ * @ctx: The encryption context to release.
+ *
+ * If the encryption context was allocated from the pre-allocated pool, returns
+ * it to that pool. Else, frees it.
+ *
+ * If there's a bounce page in the context, this frees that.
+ */
+void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *ctx)
+{
+	unsigned long flags;
+
+	if (ctx->bounce_page) {
+		if (ctx->flags & F2FS_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
+			__free_page(ctx->bounce_page);
+		else
+			mempool_free(ctx->bounce_page, f2fs_bounce_page_pool);
+		ctx->bounce_page = NULL;
+	}
+	ctx->control_page = NULL;
+	if (ctx->flags & F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
+		if (ctx->tfm)
+			crypto_free_tfm(ctx->tfm);
+		kfree(ctx);
+	} else {
+		spin_lock_irqsave(&f2fs_crypto_ctx_lock, flags);
+		list_add(&ctx->free_list, &f2fs_free_crypto_ctxs);
+		spin_unlock_irqrestore(&f2fs_crypto_ctx_lock, flags);
+	}
+}
+
+/**
+ * f2fs_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context
+ * @mask: The allocation mask.
+ *
+ * Return: An allocated and initialized encryption context on success. An error
+ * value or NULL otherwise.
+ */
+static struct f2fs_crypto_ctx *f2fs_alloc_and_init_crypto_ctx(gfp_t mask)
+{
+	struct f2fs_crypto_ctx *ctx = kzalloc(sizeof(struct f2fs_crypto_ctx),
+						mask);
+
+	if (!ctx)
+		return ERR_PTR(-ENOMEM);
+	return ctx;
+}
+
+/**
+ * f2fs_get_crypto_ctx() - Gets an encryption context
+ * @inode:       The inode for which we are doing the crypto
+ *
+ * Allocates and initializes an encryption context.
+ *
+ * Return: An allocated and initialized encryption context on success; error
+ * value or NULL otherwise.
+ */
+struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *inode)
+{
+	struct f2fs_crypto_ctx *ctx = NULL;
+	int res = 0;
+	unsigned long flags;
+	struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
+
+	BUG_ON(ci == NULL);
+	/*
+	 * We first try getting the ctx from a free list because in
+	 * the common case the ctx will have an allocated and
+	 * initialized crypto tfm, so it's probably a worthwhile
+	 * optimization. For the bounce page, we first try getting it
+	 * from the kernel allocator because that's just about as fast
+	 * as getting it from a list and because a cache of free pages
+	 * should generally be a "last resort" option for a filesystem
+	 * to be able to do its job.
+	 */
+	spin_lock_irqsave(&f2fs_crypto_ctx_lock, flags);
+	ctx = list_first_entry_or_null(&f2fs_free_crypto_ctxs,
+					struct f2fs_crypto_ctx, free_list);
+	if (ctx)
+		list_del(&ctx->free_list);
+	spin_unlock_irqrestore(&f2fs_crypto_ctx_lock, flags);
+	if (!ctx) {
+		ctx = f2fs_alloc_and_init_crypto_ctx(GFP_NOFS);
+		if (IS_ERR(ctx)) {
+			res = PTR_ERR(ctx);
+			goto out;
+		}
+		ctx->flags |= F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
+	} else {
+		ctx->flags &= ~F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
+	}
+
+	/*
+	 * Allocate a new Crypto API context if we don't already have
+	 * one or if it isn't the right mode.
+	 */
+	BUG_ON(ci->ci_mode == F2FS_ENCRYPTION_MODE_INVALID);
+	if (ctx->tfm && (ctx->mode != ci->ci_mode)) {
+		crypto_free_tfm(ctx->tfm);
+		ctx->tfm = NULL;
+		ctx->mode = F2FS_ENCRYPTION_MODE_INVALID;
+	}
+	if (!ctx->tfm) {
+		switch (ci->ci_mode) {
+		case F2FS_ENCRYPTION_MODE_AES_256_XTS:
+			ctx->tfm = crypto_ablkcipher_tfm(
+				crypto_alloc_ablkcipher("xts(aes)", 0, 0));
+			break;
+		case F2FS_ENCRYPTION_MODE_AES_256_GCM:
+			/*
+			 * TODO(mhalcrow): AEAD w/ gcm(aes);
+			 * crypto_aead_setauthsize()
+			 */
+			ctx->tfm = ERR_PTR(-ENOTSUPP);
+			break;
+		default:
+			BUG();
+		}
+		if (IS_ERR_OR_NULL(ctx->tfm)) {
+			res = PTR_ERR(ctx->tfm);
+			ctx->tfm = NULL;
+			goto out;
+		}
+		ctx->mode = ci->ci_mode;
+	}
+	BUG_ON(ci->ci_size != f2fs_encryption_key_size(ci->ci_mode));
+
+	/*
+	 * There shouldn't be a bounce page attached to the crypto
+	 * context at this point.
+	 */
+	BUG_ON(ctx->bounce_page);
+
+out:
+	if (res) {
+		if (!IS_ERR_OR_NULL(ctx))
+			f2fs_release_crypto_ctx(ctx);
+		ctx = ERR_PTR(res);
+	}
+	return ctx;
+}
+
+/*
+ * Call f2fs_decrypt on every single page, reusing the encryption
+ * context.
+ */
+static void completion_pages(struct work_struct *work)
+{
+	struct f2fs_crypto_ctx *ctx =
+		container_of(work, struct f2fs_crypto_ctx, work);
+	struct bio *bio	= ctx->bio;
+	struct bio_vec *bv;
+	int i;
+
+	bio_for_each_segment_all(bv, bio, i) {
+		struct page *page = bv->bv_page;
+		int ret = f2fs_decrypt(ctx, page);
+
+		if (ret) {
+			WARN_ON_ONCE(1);
+			SetPageError(page);
+		} else
+			SetPageUptodate(page);
+		unlock_page(page);
+	}
+	f2fs_release_crypto_ctx(ctx);
+	bio_put(bio);
+}
+
+void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *ctx, struct bio *bio)
+{
+	INIT_WORK(&ctx->work, completion_pages);
+	ctx->bio = bio;
+	queue_work(f2fs_read_workqueue, &ctx->work);
+}
+
+/**
+ * f2fs_exit_crypto() - Shutdown the f2fs encryption system
+ */
+void f2fs_exit_crypto(void)
+{
+	struct f2fs_crypto_ctx *pos, *n;
+
+	list_for_each_entry_safe(pos, n, &f2fs_free_crypto_ctxs, free_list) {
+		if (pos->bounce_page) {
+			if (pos->flags &
+				F2FS_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
+				__free_page(pos->bounce_page);
+			else
+				mempool_free(pos->bounce_page,
+						f2fs_bounce_page_pool);
+		}
+		if (pos->tfm)
+			crypto_free_tfm(pos->tfm);
+		kfree(pos);
+	}
+	INIT_LIST_HEAD(&f2fs_free_crypto_ctxs);
+	if (f2fs_bounce_page_pool)
+		mempool_destroy(f2fs_bounce_page_pool);
+	f2fs_bounce_page_pool = NULL;
+	if (f2fs_read_workqueue)
+		destroy_workqueue(f2fs_read_workqueue);
+	f2fs_read_workqueue = NULL;
+}
+
+/**
+ * f2fs_init_crypto() - Set up for f2fs encryption.
+ *
+ * We only call this when we start accessing encrypted files, since it
+ * results in memory getting allocated that wouldn't otherwise be used.
+ *
+ * Return: Zero on success, non-zero otherwise.
+ */
+int f2fs_init_crypto(void)
+{
+	int i, res;
+
+	mutex_lock(&crypto_init);
+	if (f2fs_read_workqueue)
+		goto already_initialized;
+
+	f2fs_read_workqueue = alloc_workqueue("f2fs_crypto", WQ_HIGHPRI, 0);
+	if (!f2fs_read_workqueue) {
+		res = -ENOMEM;
+		goto fail;
+	}
+
+	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
+		struct f2fs_crypto_ctx *ctx;
+
+		ctx = f2fs_alloc_and_init_crypto_ctx(GFP_KERNEL);
+		if (IS_ERR(ctx)) {
+			res = PTR_ERR(ctx);
+			goto fail;
+		}
+		list_add(&ctx->free_list, &f2fs_free_crypto_ctxs);
+	}
+
+	f2fs_bounce_page_pool =
+		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
+	if (!f2fs_bounce_page_pool) {
+		res = -ENOMEM;
+		goto fail;
+	}
+already_initialized:
+	mutex_unlock(&crypto_init);
+	return 0;
+fail:
+	f2fs_exit_crypto();
+	mutex_unlock(&crypto_init);
+	return res;
+}
+
+void f2fs_restore_and_release_control_page(struct page **page)
+{
+	struct f2fs_crypto_ctx *ctx;
+	struct page *bounce_page;
+
+	/* The bounce data pages are unmapped. */
+	if ((*page)->mapping)
+		return;
+
+	/* The bounce data page is unmapped. */
+	bounce_page = *page;
+	ctx = (struct f2fs_crypto_ctx *)page_private(bounce_page);
+
+	/* restore control page */
+	*page = ctx->control_page;
+
+	f2fs_restore_control_page(bounce_page);
+}
+
+void f2fs_restore_control_page(struct page *data_page)
+{
+	struct f2fs_crypto_ctx *ctx =
+		(struct f2fs_crypto_ctx *)page_private(data_page);
+
+	set_page_private(data_page, (unsigned long)NULL);
+	ClearPagePrivate(data_page);
+	unlock_page(data_page);
+	f2fs_release_crypto_ctx(ctx);
+}
+
+/**
+ * f2fs_crypt_complete() - The completion callback for page encryption
+ * @req: The asynchronous encryption request context
+ * @res: The result of the encryption operation
+ */
+static void f2fs_crypt_complete(struct crypto_async_request *req, int res)
+{
+	struct f2fs_completion_result *ecr = req->data;
+
+	if (res == -EINPROGRESS)
+		return;
+	ecr->res = res;
+	complete(&ecr->completion);
+}
+
+typedef enum {
+	F2FS_DECRYPT = 0,
+	F2FS_ENCRYPT,
+} f2fs_direction_t;
+
+static int f2fs_page_crypto(struct f2fs_crypto_ctx *ctx,
+				struct inode *inode,
+				f2fs_direction_t rw,
+				pgoff_t index,
+				struct page *src_page,
+				struct page *dest_page)
+{
+	u8 xts_tweak[F2FS_XTS_TWEAK_SIZE];
+	struct ablkcipher_request *req = NULL;
+	DECLARE_F2FS_COMPLETION_RESULT(ecr);
+	struct scatterlist dst, src;
+	struct f2fs_inode_info *fi = F2FS_I(inode);
+	struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
+	int res = 0;
+
+	BUG_ON(!ctx->tfm);
+	BUG_ON(ctx->mode != fi->i_crypt_info->ci_mode);
+
+	if (ctx->mode != F2FS_ENCRYPTION_MODE_AES_256_XTS) {
+		printk_ratelimited(KERN_ERR
+				"%s: unsupported crypto algorithm: %d\n",
+				__func__, ctx->mode);
+		return -ENOTSUPP;
+	}
+
+	crypto_ablkcipher_clear_flags(atfm, ~0);
+	crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
+
+	res = crypto_ablkcipher_setkey(atfm, fi->i_crypt_info->ci_raw,
+					fi->i_crypt_info->ci_size);
+	if (res) {
+		printk_ratelimited(KERN_ERR
+				"%s: crypto_ablkcipher_setkey() failed\n",
+				__func__);
+		return res;
+	}
+	req = ablkcipher_request_alloc(atfm, GFP_NOFS);
+	if (!req) {
+		printk_ratelimited(KERN_ERR
+				"%s: crypto_request_alloc() failed\n",
+				__func__);
+		return -ENOMEM;
+	}
+	ablkcipher_request_set_callback(
+		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
+		f2fs_crypt_complete, &ecr);
+
+	BUILD_BUG_ON(F2FS_XTS_TWEAK_SIZE < sizeof(index));
+	memcpy(xts_tweak, &index, sizeof(index));
+	memset(&xts_tweak[sizeof(index)], 0,
+			F2FS_XTS_TWEAK_SIZE - sizeof(index));
+
+	sg_init_table(&dst, 1);
+	sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
+	sg_init_table(&src, 1);
+	sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
+	ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
+					xts_tweak);
+	if (rw == F2FS_DECRYPT)
+		res = crypto_ablkcipher_decrypt(req);
+	else
+		res = crypto_ablkcipher_encrypt(req);
+	if (res == -EINPROGRESS || res == -EBUSY) {
+		BUG_ON(req->base.data != &ecr);
+		wait_for_completion(&ecr.completion);
+		res = ecr.res;
+	}
+	ablkcipher_request_free(req);
+	if (res) {
+		printk_ratelimited(KERN_ERR
+			"%s: crypto_ablkcipher_encrypt() returned %d\n",
+			__func__, res);
+		return res;
+	}
+	return 0;
+}
+
+/**
+ * f2fs_encrypt() - Encrypts a page
+ * @inode:          The inode for which the encryption should take place
+ * @plaintext_page: The page to encrypt. Must be locked.
+ *
+ * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
+ * encryption context.
+ *
+ * Called on the page write path.  The caller must call
+ * f2fs_restore_control_page() on the returned ciphertext page to
+ * release the bounce buffer and the encryption context.
+ *
+ * Return: An allocated page with the encrypted content on success. Else, an
+ * error value or NULL.
+ */
+struct page *f2fs_encrypt(struct inode *inode,
+			  struct page *plaintext_page)
+{
+	struct f2fs_crypto_ctx *ctx;
+	struct page *ciphertext_page = NULL;
+	int err;
+
+	BUG_ON(!PageLocked(plaintext_page));
+
+	ctx = f2fs_get_crypto_ctx(inode);
+	if (IS_ERR(ctx))
+		return (struct page *)ctx;
+
+	/* The encryption operation will require a bounce page. */
+	ciphertext_page = alloc_page(GFP_NOFS);
+	if (!ciphertext_page) {
+		/*
+		 * This is a potential bottleneck, but at least we'll have
+		 * forward progress.
+		 */
+		ciphertext_page = mempool_alloc(f2fs_bounce_page_pool,
+							GFP_NOFS);
+		if (WARN_ON_ONCE(!ciphertext_page))
+			ciphertext_page = mempool_alloc(f2fs_bounce_page_pool,
+						GFP_NOFS | __GFP_WAIT);
+		ctx->flags &= ~F2FS_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
+	} else {
+		ctx->flags |= F2FS_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
+	}
+	ctx->bounce_page = ciphertext_page;
+	ctx->control_page = plaintext_page;
+	err = f2fs_page_crypto(ctx, inode, F2FS_ENCRYPT, plaintext_page->index,
+					plaintext_page, ciphertext_page);
+	if (err) {
+		f2fs_release_crypto_ctx(ctx);
+		return ERR_PTR(err);
+	}
+	SetPagePrivate(ciphertext_page);
+	set_page_private(ciphertext_page, (unsigned long)ctx);
+	lock_page(ciphertext_page);
+	return ciphertext_page;
+}
+
+/**
+ * f2fs_decrypt() - Decrypts a page in-place
+ * @ctx:  The encryption context.
+ * @page: The page to decrypt. Must be locked.
+ *
+ * Decrypts page in-place using the ctx encryption context.
+ *
+ * Called from the read completion callback.
+ *
+ * Return: Zero on success, non-zero otherwise.
+ */
+int f2fs_decrypt(struct f2fs_crypto_ctx *ctx, struct page *page)
+{
+	BUG_ON(!PageLocked(page));
+
+	return f2fs_page_crypto(ctx, page->mapping->host,
+				F2FS_DECRYPT, page->index, page, page);
+}
+
+/*
+ * Convenience function which takes care of allocating and
+ * deallocating the encryption context
+ */
+int f2fs_decrypt_one(struct inode *inode, struct page *page)
+{
+	struct f2fs_crypto_ctx *ctx = f2fs_get_crypto_ctx(inode);
+	int ret;
+
+	if (!ctx)
+		return -ENOMEM;
+	ret = f2fs_decrypt(ctx, page);
+	f2fs_release_crypto_ctx(ctx);
+	return ret;
+}
+
+bool f2fs_valid_contents_enc_mode(uint32_t mode)
+{
+	return (mode == F2FS_ENCRYPTION_MODE_AES_256_XTS);
+}
+
+/**
+ * f2fs_validate_encryption_key_size() - Validate the encryption key size
+ * @mode: The key mode.
+ * @size: The key size to validate.
+ *
+ * Return: The validated key size for @mode. Zero if invalid.
+ */
+uint32_t f2fs_validate_encryption_key_size(uint32_t mode, uint32_t size)
+{
+	if (size == f2fs_encryption_key_size(mode))
+		return size;
+	return 0;
+}
diff --git a/fs/f2fs/f2fs.h b/fs/f2fs/f2fs.h
index 709660b..b0490cb 100644
--- a/fs/f2fs/f2fs.h
+++ b/fs/f2fs/f2fs.h
@@ -1962,4 +1962,29 @@
 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
+
+/* crypt.c */
+extern struct workqueue_struct *f2fs_read_workqueue;
+bool f2fs_valid_contents_enc_mode(uint32_t);
+uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
+struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
+void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
+struct page *f2fs_encrypt(struct inode *, struct page *);
+int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
+int f2fs_decrypt_one(struct inode *, struct page *);
+void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
+
+#ifdef CONFIG_F2FS_FS_ENCRYPTION
+void f2fs_restore_and_release_control_page(struct page **);
+void f2fs_restore_control_page(struct page *);
+
+int f2fs_init_crypto(void);
+void f2fs_exit_crypto(void);
+#else
+static inline void f2fs_restore_and_release_control_page(struct page **p) { }
+static inline void f2fs_restore_control_page(struct page *p) { }
+
+static inline int f2fs_init_crypto(void) { return 0; }
+static inline void f2fs_exit_crypto(void) { }
+#endif
 #endif
diff --git a/fs/f2fs/super.c b/fs/f2fs/super.c
index 138fa93..d61f74a 100644
--- a/fs/f2fs/super.c
+++ b/fs/f2fs/super.c
@@ -416,6 +416,9 @@
 	/* Will be used by directory only */
 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
 
+#ifdef CONFIG_F2FS_FS_ENCRYPTION
+	fi->i_crypt_info = NULL;
+#endif
 	return &fi->vfs_inode;
 }