Merge branch 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux

Pull slab changes from Pekka Enberg:
 "The bulk of the changes are more slab unification from Christoph.

  There's also few fixes from Aaron, Glauber, and Joonsoo thrown into
  the mix."

* 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: (24 commits)
  mm, slab_common: Fix bootstrap creation of kmalloc caches
  slab: Return NULL for oversized allocations
  mm: slab: Verify the nodeid passed to ____cache_alloc_node
  slub: tid must be retrieved from the percpu area of the current processor
  slub: Do not dereference NULL pointer in node_match
  slub: add 'likely' macro to inc_slabs_node()
  slub: correct to calculate num of acquired objects in get_partial_node()
  slub: correctly bootstrap boot caches
  mm/sl[au]b: correct allocation type check in kmalloc_slab()
  slab: Fixup CONFIG_PAGE_ALLOC/DEBUG_SLAB_LEAK sections
  slab: Handle ARCH_DMA_MINALIGN correctly
  slab: Common definition for kmem_cache_node
  slab: Rename list3/l3 to node
  slab: Common Kmalloc cache determination
  stat: Use size_t for sizes instead of unsigned
  slab: Common function to create the kmalloc array
  slab: Common definition for the array of kmalloc caches
  slab: Common constants for kmalloc boundaries
  slab: Rename nodelists to node
  slab: Common name for the per node structures
  ...
diff --git a/fs/proc/stat.c b/fs/proc/stat.c
index e296572..1cf86c0 100644
--- a/fs/proc/stat.c
+++ b/fs/proc/stat.c
@@ -184,7 +184,7 @@
 
 static int stat_open(struct inode *inode, struct file *file)
 {
-	unsigned size = 1024 + 128 * num_possible_cpus();
+	size_t size = 1024 + 128 * num_possible_cpus();
 	char *buf;
 	struct seq_file *m;
 	int res;
diff --git a/include/linux/kmalloc_sizes.h b/include/linux/kmalloc_sizes.h
deleted file mode 100644
index e576b84..0000000
--- a/include/linux/kmalloc_sizes.h
+++ /dev/null
@@ -1,45 +0,0 @@
-#if (PAGE_SIZE == 4096)
-	CACHE(32)
-#endif
-	CACHE(64)
-#if L1_CACHE_BYTES < 64
-	CACHE(96)
-#endif
-	CACHE(128)
-#if L1_CACHE_BYTES < 128
-	CACHE(192)
-#endif
-	CACHE(256)
-	CACHE(512)
-	CACHE(1024)
-	CACHE(2048)
-	CACHE(4096)
-	CACHE(8192)
-	CACHE(16384)
-	CACHE(32768)
-	CACHE(65536)
-	CACHE(131072)
-#if KMALLOC_MAX_SIZE >= 262144
-	CACHE(262144)
-#endif
-#if KMALLOC_MAX_SIZE >= 524288
-	CACHE(524288)
-#endif
-#if KMALLOC_MAX_SIZE >= 1048576
-	CACHE(1048576)
-#endif
-#if KMALLOC_MAX_SIZE >= 2097152
-	CACHE(2097152)
-#endif
-#if KMALLOC_MAX_SIZE >= 4194304
-	CACHE(4194304)
-#endif
-#if KMALLOC_MAX_SIZE >= 8388608
-	CACHE(8388608)
-#endif
-#if KMALLOC_MAX_SIZE >= 16777216
-	CACHE(16777216)
-#endif
-#if KMALLOC_MAX_SIZE >= 33554432
-	CACHE(33554432)
-#endif
diff --git a/include/linux/slab.h b/include/linux/slab.h
index 5d168d7..0c62175 100644
--- a/include/linux/slab.h
+++ b/include/linux/slab.h
@@ -94,29 +94,6 @@
 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
 				(unsigned long)ZERO_SIZE_PTR)
 
-/*
- * Common fields provided in kmem_cache by all slab allocators
- * This struct is either used directly by the allocator (SLOB)
- * or the allocator must include definitions for all fields
- * provided in kmem_cache_common in their definition of kmem_cache.
- *
- * Once we can do anonymous structs (C11 standard) we could put a
- * anonymous struct definition in these allocators so that the
- * separate allocations in the kmem_cache structure of SLAB and
- * SLUB is no longer needed.
- */
-#ifdef CONFIG_SLOB
-struct kmem_cache {
-	unsigned int object_size;/* The original size of the object */
-	unsigned int size;	/* The aligned/padded/added on size  */
-	unsigned int align;	/* Alignment as calculated */
-	unsigned long flags;	/* Active flags on the slab */
-	const char *name;	/* Slab name for sysfs */
-	int refcount;		/* Use counter */
-	void (*ctor)(void *);	/* Called on object slot creation */
-	struct list_head list;	/* List of all slab caches on the system */
-};
-#endif
 
 struct mem_cgroup;
 /*
@@ -148,7 +125,63 @@
 		(__flags), NULL)
 
 /*
- * The largest kmalloc size supported by the slab allocators is
+ * Common kmalloc functions provided by all allocators
+ */
+void * __must_check __krealloc(const void *, size_t, gfp_t);
+void * __must_check krealloc(const void *, size_t, gfp_t);
+void kfree(const void *);
+void kzfree(const void *);
+size_t ksize(const void *);
+
+/*
+ * Some archs want to perform DMA into kmalloc caches and need a guaranteed
+ * alignment larger than the alignment of a 64-bit integer.
+ * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
+ */
+#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
+#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
+#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
+#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
+#else
+#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
+#endif
+
+#ifdef CONFIG_SLOB
+/*
+ * Common fields provided in kmem_cache by all slab allocators
+ * This struct is either used directly by the allocator (SLOB)
+ * or the allocator must include definitions for all fields
+ * provided in kmem_cache_common in their definition of kmem_cache.
+ *
+ * Once we can do anonymous structs (C11 standard) we could put a
+ * anonymous struct definition in these allocators so that the
+ * separate allocations in the kmem_cache structure of SLAB and
+ * SLUB is no longer needed.
+ */
+struct kmem_cache {
+	unsigned int object_size;/* The original size of the object */
+	unsigned int size;	/* The aligned/padded/added on size  */
+	unsigned int align;	/* Alignment as calculated */
+	unsigned long flags;	/* Active flags on the slab */
+	const char *name;	/* Slab name for sysfs */
+	int refcount;		/* Use counter */
+	void (*ctor)(void *);	/* Called on object slot creation */
+	struct list_head list;	/* List of all slab caches on the system */
+};
+
+#define KMALLOC_MAX_SIZE (1UL << 30)
+
+#include <linux/slob_def.h>
+
+#else /* CONFIG_SLOB */
+
+/*
+ * Kmalloc array related definitions
+ */
+
+#ifdef CONFIG_SLAB
+/*
+ * The largest kmalloc size supported by the SLAB allocators is
  * 32 megabyte (2^25) or the maximum allocatable page order if that is
  * less than 32 MB.
  *
@@ -158,21 +191,119 @@
  */
 #define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
 				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
+#define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
+#ifndef KMALLOC_SHIFT_LOW
+#define KMALLOC_SHIFT_LOW	5
+#endif
+#else
+/*
+ * SLUB allocates up to order 2 pages directly and otherwise
+ * passes the request to the page allocator.
+ */
+#define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
+#define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT)
+#ifndef KMALLOC_SHIFT_LOW
+#define KMALLOC_SHIFT_LOW	3
+#endif
+#endif
 
-#define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
-#define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
+/* Maximum allocatable size */
+#define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
+/* Maximum size for which we actually use a slab cache */
+#define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
+/* Maximum order allocatable via the slab allocagtor */
+#define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
 
 /*
- * Some archs want to perform DMA into kmalloc caches and need a guaranteed
- * alignment larger than the alignment of a 64-bit integer.
- * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
+ * Kmalloc subsystem.
  */
-#ifdef ARCH_DMA_MINALIGN
-#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
-#else
-#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
+#ifndef KMALLOC_MIN_SIZE
+#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
 #endif
 
+extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
+#ifdef CONFIG_ZONE_DMA
+extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
+#endif
+
+/*
+ * Figure out which kmalloc slab an allocation of a certain size
+ * belongs to.
+ * 0 = zero alloc
+ * 1 =  65 .. 96 bytes
+ * 2 = 120 .. 192 bytes
+ * n = 2^(n-1) .. 2^n -1
+ */
+static __always_inline int kmalloc_index(size_t size)
+{
+	if (!size)
+		return 0;
+
+	if (size <= KMALLOC_MIN_SIZE)
+		return KMALLOC_SHIFT_LOW;
+
+	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
+		return 1;
+	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
+		return 2;
+	if (size <=          8) return 3;
+	if (size <=         16) return 4;
+	if (size <=         32) return 5;
+	if (size <=         64) return 6;
+	if (size <=        128) return 7;
+	if (size <=        256) return 8;
+	if (size <=        512) return 9;
+	if (size <=       1024) return 10;
+	if (size <=   2 * 1024) return 11;
+	if (size <=   4 * 1024) return 12;
+	if (size <=   8 * 1024) return 13;
+	if (size <=  16 * 1024) return 14;
+	if (size <=  32 * 1024) return 15;
+	if (size <=  64 * 1024) return 16;
+	if (size <= 128 * 1024) return 17;
+	if (size <= 256 * 1024) return 18;
+	if (size <= 512 * 1024) return 19;
+	if (size <= 1024 * 1024) return 20;
+	if (size <=  2 * 1024 * 1024) return 21;
+	if (size <=  4 * 1024 * 1024) return 22;
+	if (size <=  8 * 1024 * 1024) return 23;
+	if (size <=  16 * 1024 * 1024) return 24;
+	if (size <=  32 * 1024 * 1024) return 25;
+	if (size <=  64 * 1024 * 1024) return 26;
+	BUG();
+
+	/* Will never be reached. Needed because the compiler may complain */
+	return -1;
+}
+
+#ifdef CONFIG_SLAB
+#include <linux/slab_def.h>
+#elif defined(CONFIG_SLUB)
+#include <linux/slub_def.h>
+#else
+#error "Unknown slab allocator"
+#endif
+
+/*
+ * Determine size used for the nth kmalloc cache.
+ * return size or 0 if a kmalloc cache for that
+ * size does not exist
+ */
+static __always_inline int kmalloc_size(int n)
+{
+	if (n > 2)
+		return 1 << n;
+
+	if (n == 1 && KMALLOC_MIN_SIZE <= 32)
+		return 96;
+
+	if (n == 2 && KMALLOC_MIN_SIZE <= 64)
+		return 192;
+
+	return 0;
+}
+#endif /* !CONFIG_SLOB */
+
 /*
  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
  * Intended for arches that get misalignment faults even for 64 bit integer
@@ -224,42 +355,6 @@
 int cache_show(struct kmem_cache *s, struct seq_file *m);
 void print_slabinfo_header(struct seq_file *m);
 
-/*
- * Common kmalloc functions provided by all allocators
- */
-void * __must_check __krealloc(const void *, size_t, gfp_t);
-void * __must_check krealloc(const void *, size_t, gfp_t);
-void kfree(const void *);
-void kzfree(const void *);
-size_t ksize(const void *);
-
-/*
- * Allocator specific definitions. These are mainly used to establish optimized
- * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
- * selecting the appropriate general cache at compile time.
- *
- * Allocators must define at least:
- *
- *	kmem_cache_alloc()
- *	__kmalloc()
- *	kmalloc()
- *
- * Those wishing to support NUMA must also define:
- *
- *	kmem_cache_alloc_node()
- *	kmalloc_node()
- *
- * See each allocator definition file for additional comments and
- * implementation notes.
- */
-#ifdef CONFIG_SLUB
-#include <linux/slub_def.h>
-#elif defined(CONFIG_SLOB)
-#include <linux/slob_def.h>
-#else
-#include <linux/slab_def.h>
-#endif
-
 /**
  * kmalloc_array - allocate memory for an array.
  * @n: number of elements.
diff --git a/include/linux/slab_def.h b/include/linux/slab_def.h
index 8bb6e0e..cd40158 100644
--- a/include/linux/slab_def.h
+++ b/include/linux/slab_def.h
@@ -11,8 +11,6 @@
  */
 
 #include <linux/init.h>
-#include <asm/page.h>		/* kmalloc_sizes.h needs PAGE_SIZE */
-#include <asm/cache.h>		/* kmalloc_sizes.h needs L1_CACHE_BYTES */
 #include <linux/compiler.h>
 
 /*
@@ -97,23 +95,13 @@
 	 * pointer for each node since "nodelists" uses the remainder of
 	 * available pointers.
 	 */
-	struct kmem_list3 **nodelists;
+	struct kmem_cache_node **node;
 	struct array_cache *array[NR_CPUS + MAX_NUMNODES];
 	/*
 	 * Do not add fields after array[]
 	 */
 };
 
-/* Size description struct for general caches. */
-struct cache_sizes {
-	size_t		 	cs_size;
-	struct kmem_cache	*cs_cachep;
-#ifdef CONFIG_ZONE_DMA
-	struct kmem_cache	*cs_dmacachep;
-#endif
-};
-extern struct cache_sizes malloc_sizes[];
-
 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
 void *__kmalloc(size_t size, gfp_t flags);
 
@@ -133,26 +121,22 @@
 	void *ret;
 
 	if (__builtin_constant_p(size)) {
-		int i = 0;
+		int i;
 
 		if (!size)
 			return ZERO_SIZE_PTR;
 
-#define CACHE(x) \
-		if (size <= x) \
-			goto found; \
-		else \
-			i++;
-#include <linux/kmalloc_sizes.h>
-#undef CACHE
-		return NULL;
-found:
+		if (WARN_ON_ONCE(size > KMALLOC_MAX_SIZE))
+			return NULL;
+
+		i = kmalloc_index(size);
+
 #ifdef CONFIG_ZONE_DMA
 		if (flags & GFP_DMA)
-			cachep = malloc_sizes[i].cs_dmacachep;
+			cachep = kmalloc_dma_caches[i];
 		else
 #endif
-			cachep = malloc_sizes[i].cs_cachep;
+			cachep = kmalloc_caches[i];
 
 		ret = kmem_cache_alloc_trace(cachep, flags, size);
 
@@ -186,26 +170,22 @@
 	struct kmem_cache *cachep;
 
 	if (__builtin_constant_p(size)) {
-		int i = 0;
+		int i;
 
 		if (!size)
 			return ZERO_SIZE_PTR;
 
-#define CACHE(x) \
-		if (size <= x) \
-			goto found; \
-		else \
-			i++;
-#include <linux/kmalloc_sizes.h>
-#undef CACHE
-		return NULL;
-found:
+		if (WARN_ON_ONCE(size > KMALLOC_MAX_SIZE))
+			return NULL;
+
+		i = kmalloc_index(size);
+
 #ifdef CONFIG_ZONE_DMA
 		if (flags & GFP_DMA)
-			cachep = malloc_sizes[i].cs_dmacachep;
+			cachep = kmalloc_dma_caches[i];
 		else
 #endif
-			cachep = malloc_sizes[i].cs_cachep;
+			cachep = kmalloc_caches[i];
 
 		return kmem_cache_alloc_node_trace(cachep, flags, node, size);
 	}
diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h
index 9db4825..027276f 100644
--- a/include/linux/slub_def.h
+++ b/include/linux/slub_def.h
@@ -53,17 +53,6 @@
 #endif
 };
 
-struct kmem_cache_node {
-	spinlock_t list_lock;	/* Protect partial list and nr_partial */
-	unsigned long nr_partial;
-	struct list_head partial;
-#ifdef CONFIG_SLUB_DEBUG
-	atomic_long_t nr_slabs;
-	atomic_long_t total_objects;
-	struct list_head full;
-#endif
-};
-
 /*
  * Word size structure that can be atomically updated or read and that
  * contains both the order and the number of objects that a slab of the
@@ -115,111 +104,6 @@
 	struct kmem_cache_node *node[MAX_NUMNODES];
 };
 
-/*
- * Kmalloc subsystem.
- */
-#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
-#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
-#else
-#define KMALLOC_MIN_SIZE 8
-#endif
-
-#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
-
-/*
- * Maximum kmalloc object size handled by SLUB. Larger object allocations
- * are passed through to the page allocator. The page allocator "fastpath"
- * is relatively slow so we need this value sufficiently high so that
- * performance critical objects are allocated through the SLUB fastpath.
- *
- * This should be dropped to PAGE_SIZE / 2 once the page allocator
- * "fastpath" becomes competitive with the slab allocator fastpaths.
- */
-#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
-
-#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
-
-#ifdef CONFIG_ZONE_DMA
-#define SLUB_DMA __GFP_DMA
-#else
-/* Disable DMA functionality */
-#define SLUB_DMA (__force gfp_t)0
-#endif
-
-/*
- * We keep the general caches in an array of slab caches that are used for
- * 2^x bytes of allocations.
- */
-extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
-
-/*
- * Sorry that the following has to be that ugly but some versions of GCC
- * have trouble with constant propagation and loops.
- */
-static __always_inline int kmalloc_index(size_t size)
-{
-	if (!size)
-		return 0;
-
-	if (size <= KMALLOC_MIN_SIZE)
-		return KMALLOC_SHIFT_LOW;
-
-	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
-		return 1;
-	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
-		return 2;
-	if (size <=          8) return 3;
-	if (size <=         16) return 4;
-	if (size <=         32) return 5;
-	if (size <=         64) return 6;
-	if (size <=        128) return 7;
-	if (size <=        256) return 8;
-	if (size <=        512) return 9;
-	if (size <=       1024) return 10;
-	if (size <=   2 * 1024) return 11;
-	if (size <=   4 * 1024) return 12;
-/*
- * The following is only needed to support architectures with a larger page
- * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
- * size we would have to go up to 128k.
- */
-	if (size <=   8 * 1024) return 13;
-	if (size <=  16 * 1024) return 14;
-	if (size <=  32 * 1024) return 15;
-	if (size <=  64 * 1024) return 16;
-	if (size <= 128 * 1024) return 17;
-	if (size <= 256 * 1024) return 18;
-	if (size <= 512 * 1024) return 19;
-	if (size <= 1024 * 1024) return 20;
-	if (size <=  2 * 1024 * 1024) return 21;
-	BUG();
-	return -1; /* Will never be reached */
-
-/*
- * What we really wanted to do and cannot do because of compiler issues is:
- *	int i;
- *	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
- *		if (size <= (1 << i))
- *			return i;
- */
-}
-
-/*
- * Find the slab cache for a given combination of allocation flags and size.
- *
- * This ought to end up with a global pointer to the right cache
- * in kmalloc_caches.
- */
-static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
-{
-	int index = kmalloc_index(size);
-
-	if (index == 0)
-		return NULL;
-
-	return kmalloc_caches[index];
-}
-
 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
 void *__kmalloc(size_t size, gfp_t flags);
 
@@ -274,16 +158,17 @@
 static __always_inline void *kmalloc(size_t size, gfp_t flags)
 {
 	if (__builtin_constant_p(size)) {
-		if (size > SLUB_MAX_SIZE)
+		if (size > KMALLOC_MAX_CACHE_SIZE)
 			return kmalloc_large(size, flags);
 
-		if (!(flags & SLUB_DMA)) {
-			struct kmem_cache *s = kmalloc_slab(size);
+		if (!(flags & GFP_DMA)) {
+			int index = kmalloc_index(size);
 
-			if (!s)
+			if (!index)
 				return ZERO_SIZE_PTR;
 
-			return kmem_cache_alloc_trace(s, flags, size);
+			return kmem_cache_alloc_trace(kmalloc_caches[index],
+					flags, size);
 		}
 	}
 	return __kmalloc(size, flags);
@@ -310,13 +195,14 @@
 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
 {
 	if (__builtin_constant_p(size) &&
-		size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
-			struct kmem_cache *s = kmalloc_slab(size);
+		size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
+		int index = kmalloc_index(size);
 
-		if (!s)
+		if (!index)
 			return ZERO_SIZE_PTR;
 
-		return kmem_cache_alloc_node_trace(s, flags, node, size);
+		return kmem_cache_alloc_node_trace(kmalloc_caches[index],
+			       flags, node, size);
 	}
 	return __kmalloc_node(size, flags, node);
 }
diff --git a/mm/slab.c b/mm/slab.c
index 96079244..8ccd296 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -286,68 +286,27 @@
 };
 
 /*
- * The slab lists for all objects.
- */
-struct kmem_list3 {
-	struct list_head slabs_partial;	/* partial list first, better asm code */
-	struct list_head slabs_full;
-	struct list_head slabs_free;
-	unsigned long free_objects;
-	unsigned int free_limit;
-	unsigned int colour_next;	/* Per-node cache coloring */
-	spinlock_t list_lock;
-	struct array_cache *shared;	/* shared per node */
-	struct array_cache **alien;	/* on other nodes */
-	unsigned long next_reap;	/* updated without locking */
-	int free_touched;		/* updated without locking */
-};
-
-/*
  * Need this for bootstrapping a per node allocator.
  */
 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
-static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
+static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 #define	CACHE_CACHE 0
 #define	SIZE_AC MAX_NUMNODES
-#define	SIZE_L3 (2 * MAX_NUMNODES)
+#define	SIZE_NODE (2 * MAX_NUMNODES)
 
 static int drain_freelist(struct kmem_cache *cache,
-			struct kmem_list3 *l3, int tofree);
+			struct kmem_cache_node *n, int tofree);
 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 			int node);
 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 static void cache_reap(struct work_struct *unused);
 
-/*
- * This function must be completely optimized away if a constant is passed to
- * it.  Mostly the same as what is in linux/slab.h except it returns an index.
- */
-static __always_inline int index_of(const size_t size)
-{
-	extern void __bad_size(void);
-
-	if (__builtin_constant_p(size)) {
-		int i = 0;
-
-#define CACHE(x) \
-	if (size <=x) \
-		return i; \
-	else \
-		i++;
-#include <linux/kmalloc_sizes.h>
-#undef CACHE
-		__bad_size();
-	} else
-		__bad_size();
-	return 0;
-}
-
 static int slab_early_init = 1;
 
-#define INDEX_AC index_of(sizeof(struct arraycache_init))
-#define INDEX_L3 index_of(sizeof(struct kmem_list3))
+#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
+#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 
-static void kmem_list3_init(struct kmem_list3 *parent)
+static void kmem_cache_node_init(struct kmem_cache_node *parent)
 {
 	INIT_LIST_HEAD(&parent->slabs_full);
 	INIT_LIST_HEAD(&parent->slabs_partial);
@@ -363,7 +322,7 @@
 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
 	do {								\
 		INIT_LIST_HEAD(listp);					\
-		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
+		list_splice(&(cachep->node[nodeid]->slab), listp);	\
 	} while (0)
 
 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
@@ -524,30 +483,6 @@
 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 }
 
-/*
- * These are the default caches for kmalloc. Custom caches can have other sizes.
- */
-struct cache_sizes malloc_sizes[] = {
-#define CACHE(x) { .cs_size = (x) },
-#include <linux/kmalloc_sizes.h>
-	CACHE(ULONG_MAX)
-#undef CACHE
-};
-EXPORT_SYMBOL(malloc_sizes);
-
-/* Must match cache_sizes above. Out of line to keep cache footprint low. */
-struct cache_names {
-	char *name;
-	char *name_dma;
-};
-
-static struct cache_names __initdata cache_names[] = {
-#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
-#include <linux/kmalloc_sizes.h>
-	{NULL,}
-#undef CACHE
-};
-
 static struct arraycache_init initarray_generic =
     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 
@@ -586,15 +521,15 @@
 		int q)
 {
 	struct array_cache **alc;
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 	int r;
 
-	l3 = cachep->nodelists[q];
-	if (!l3)
+	n = cachep->node[q];
+	if (!n)
 		return;
 
-	lockdep_set_class(&l3->list_lock, l3_key);
-	alc = l3->alien;
+	lockdep_set_class(&n->list_lock, l3_key);
+	alc = n->alien;
 	/*
 	 * FIXME: This check for BAD_ALIEN_MAGIC
 	 * should go away when common slab code is taught to
@@ -625,28 +560,30 @@
 
 static void init_node_lock_keys(int q)
 {
-	struct cache_sizes *s = malloc_sizes;
+	int i;
 
 	if (slab_state < UP)
 		return;
 
-	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
-		struct kmem_list3 *l3;
+	for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
+		struct kmem_cache_node *n;
+		struct kmem_cache *cache = kmalloc_caches[i];
 
-		l3 = s->cs_cachep->nodelists[q];
-		if (!l3 || OFF_SLAB(s->cs_cachep))
+		if (!cache)
 			continue;
 
-		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
+		n = cache->node[q];
+		if (!n || OFF_SLAB(cache))
+			continue;
+
+		slab_set_lock_classes(cache, &on_slab_l3_key,
 				&on_slab_alc_key, q);
 	}
 }
 
 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
 {
-	struct kmem_list3 *l3;
-	l3 = cachep->nodelists[q];
-	if (!l3)
+	if (!cachep->node[q])
 		return;
 
 	slab_set_lock_classes(cachep, &on_slab_l3_key,
@@ -702,41 +639,6 @@
 	return cachep->array[smp_processor_id()];
 }
 
-static inline struct kmem_cache *__find_general_cachep(size_t size,
-							gfp_t gfpflags)
-{
-	struct cache_sizes *csizep = malloc_sizes;
-
-#if DEBUG
-	/* This happens if someone tries to call
-	 * kmem_cache_create(), or __kmalloc(), before
-	 * the generic caches are initialized.
-	 */
-	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
-#endif
-	if (!size)
-		return ZERO_SIZE_PTR;
-
-	while (size > csizep->cs_size)
-		csizep++;
-
-	/*
-	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
-	 * has cs_{dma,}cachep==NULL. Thus no special case
-	 * for large kmalloc calls required.
-	 */
-#ifdef CONFIG_ZONE_DMA
-	if (unlikely(gfpflags & GFP_DMA))
-		return csizep->cs_dmacachep;
-#endif
-	return csizep->cs_cachep;
-}
-
-static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
-{
-	return __find_general_cachep(size, gfpflags);
-}
-
 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
 {
 	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
@@ -938,29 +840,29 @@
 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
 						struct array_cache *ac)
 {
-	struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
+	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
 	struct slab *slabp;
 	unsigned long flags;
 
 	if (!pfmemalloc_active)
 		return;
 
-	spin_lock_irqsave(&l3->list_lock, flags);
-	list_for_each_entry(slabp, &l3->slabs_full, list)
+	spin_lock_irqsave(&n->list_lock, flags);
+	list_for_each_entry(slabp, &n->slabs_full, list)
 		if (is_slab_pfmemalloc(slabp))
 			goto out;
 
-	list_for_each_entry(slabp, &l3->slabs_partial, list)
+	list_for_each_entry(slabp, &n->slabs_partial, list)
 		if (is_slab_pfmemalloc(slabp))
 			goto out;
 
-	list_for_each_entry(slabp, &l3->slabs_free, list)
+	list_for_each_entry(slabp, &n->slabs_free, list)
 		if (is_slab_pfmemalloc(slabp))
 			goto out;
 
 	pfmemalloc_active = false;
 out:
-	spin_unlock_irqrestore(&l3->list_lock, flags);
+	spin_unlock_irqrestore(&n->list_lock, flags);
 }
 
 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
@@ -971,7 +873,7 @@
 
 	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
 	if (unlikely(is_obj_pfmemalloc(objp))) {
-		struct kmem_list3 *l3;
+		struct kmem_cache_node *n;
 
 		if (gfp_pfmemalloc_allowed(flags)) {
 			clear_obj_pfmemalloc(&objp);
@@ -993,8 +895,8 @@
 		 * If there are empty slabs on the slabs_free list and we are
 		 * being forced to refill the cache, mark this one !pfmemalloc.
 		 */
-		l3 = cachep->nodelists[numa_mem_id()];
-		if (!list_empty(&l3->slabs_free) && force_refill) {
+		n = cachep->node[numa_mem_id()];
+		if (!list_empty(&n->slabs_free) && force_refill) {
 			struct slab *slabp = virt_to_slab(objp);
 			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
 			clear_obj_pfmemalloc(&objp);
@@ -1071,7 +973,7 @@
 #ifndef CONFIG_NUMA
 
 #define drain_alien_cache(cachep, alien) do { } while (0)
-#define reap_alien(cachep, l3) do { } while (0)
+#define reap_alien(cachep, n) do { } while (0)
 
 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 {
@@ -1143,33 +1045,33 @@
 static void __drain_alien_cache(struct kmem_cache *cachep,
 				struct array_cache *ac, int node)
 {
-	struct kmem_list3 *rl3 = cachep->nodelists[node];
+	struct kmem_cache_node *n = cachep->node[node];
 
 	if (ac->avail) {
-		spin_lock(&rl3->list_lock);
+		spin_lock(&n->list_lock);
 		/*
 		 * Stuff objects into the remote nodes shared array first.
 		 * That way we could avoid the overhead of putting the objects
 		 * into the free lists and getting them back later.
 		 */
-		if (rl3->shared)
-			transfer_objects(rl3->shared, ac, ac->limit);
+		if (n->shared)
+			transfer_objects(n->shared, ac, ac->limit);
 
 		free_block(cachep, ac->entry, ac->avail, node);
 		ac->avail = 0;
-		spin_unlock(&rl3->list_lock);
+		spin_unlock(&n->list_lock);
 	}
 }
 
 /*
  * Called from cache_reap() to regularly drain alien caches round robin.
  */
-static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
+static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 {
 	int node = __this_cpu_read(slab_reap_node);
 
-	if (l3->alien) {
-		struct array_cache *ac = l3->alien[node];
+	if (n->alien) {
+		struct array_cache *ac = n->alien[node];
 
 		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
 			__drain_alien_cache(cachep, ac, node);
@@ -1199,7 +1101,7 @@
 {
 	struct slab *slabp = virt_to_slab(objp);
 	int nodeid = slabp->nodeid;
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 	struct array_cache *alien = NULL;
 	int node;
 
@@ -1212,10 +1114,10 @@
 	if (likely(slabp->nodeid == node))
 		return 0;
 
-	l3 = cachep->nodelists[node];
+	n = cachep->node[node];
 	STATS_INC_NODEFREES(cachep);
-	if (l3->alien && l3->alien[nodeid]) {
-		alien = l3->alien[nodeid];
+	if (n->alien && n->alien[nodeid]) {
+		alien = n->alien[nodeid];
 		spin_lock(&alien->lock);
 		if (unlikely(alien->avail == alien->limit)) {
 			STATS_INC_ACOVERFLOW(cachep);
@@ -1224,28 +1126,28 @@
 		ac_put_obj(cachep, alien, objp);
 		spin_unlock(&alien->lock);
 	} else {
-		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
+		spin_lock(&(cachep->node[nodeid])->list_lock);
 		free_block(cachep, &objp, 1, nodeid);
-		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
+		spin_unlock(&(cachep->node[nodeid])->list_lock);
 	}
 	return 1;
 }
 #endif
 
 /*
- * Allocates and initializes nodelists for a node on each slab cache, used for
- * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
+ * Allocates and initializes node for a node on each slab cache, used for
+ * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
  * will be allocated off-node since memory is not yet online for the new node.
- * When hotplugging memory or a cpu, existing nodelists are not replaced if
+ * When hotplugging memory or a cpu, existing node are not replaced if
  * already in use.
  *
  * Must hold slab_mutex.
  */
-static int init_cache_nodelists_node(int node)
+static int init_cache_node_node(int node)
 {
 	struct kmem_cache *cachep;
-	struct kmem_list3 *l3;
-	const int memsize = sizeof(struct kmem_list3);
+	struct kmem_cache_node *n;
+	const int memsize = sizeof(struct kmem_cache_node);
 
 	list_for_each_entry(cachep, &slab_caches, list) {
 		/*
@@ -1253,12 +1155,12 @@
 		 * begin anything. Make sure some other cpu on this
 		 * node has not already allocated this
 		 */
-		if (!cachep->nodelists[node]) {
-			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
-			if (!l3)
+		if (!cachep->node[node]) {
+			n = kmalloc_node(memsize, GFP_KERNEL, node);
+			if (!n)
 				return -ENOMEM;
-			kmem_list3_init(l3);
-			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
+			kmem_cache_node_init(n);
+			n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
 			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
 
 			/*
@@ -1266,14 +1168,14 @@
 			 * go.  slab_mutex is sufficient
 			 * protection here.
 			 */
-			cachep->nodelists[node] = l3;
+			cachep->node[node] = n;
 		}
 
-		spin_lock_irq(&cachep->nodelists[node]->list_lock);
-		cachep->nodelists[node]->free_limit =
+		spin_lock_irq(&cachep->node[node]->list_lock);
+		cachep->node[node]->free_limit =
 			(1 + nr_cpus_node(node)) *
 			cachep->batchcount + cachep->num;
-		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
+		spin_unlock_irq(&cachep->node[node]->list_lock);
 	}
 	return 0;
 }
@@ -1281,7 +1183,7 @@
 static void __cpuinit cpuup_canceled(long cpu)
 {
 	struct kmem_cache *cachep;
-	struct kmem_list3 *l3 = NULL;
+	struct kmem_cache_node *n = NULL;
 	int node = cpu_to_mem(cpu);
 	const struct cpumask *mask = cpumask_of_node(node);
 
@@ -1293,34 +1195,34 @@
 		/* cpu is dead; no one can alloc from it. */
 		nc = cachep->array[cpu];
 		cachep->array[cpu] = NULL;
-		l3 = cachep->nodelists[node];
+		n = cachep->node[node];
 
-		if (!l3)
+		if (!n)
 			goto free_array_cache;
 
-		spin_lock_irq(&l3->list_lock);
+		spin_lock_irq(&n->list_lock);
 
-		/* Free limit for this kmem_list3 */
-		l3->free_limit -= cachep->batchcount;
+		/* Free limit for this kmem_cache_node */
+		n->free_limit -= cachep->batchcount;
 		if (nc)
 			free_block(cachep, nc->entry, nc->avail, node);
 
 		if (!cpumask_empty(mask)) {
-			spin_unlock_irq(&l3->list_lock);
+			spin_unlock_irq(&n->list_lock);
 			goto free_array_cache;
 		}
 
-		shared = l3->shared;
+		shared = n->shared;
 		if (shared) {
 			free_block(cachep, shared->entry,
 				   shared->avail, node);
-			l3->shared = NULL;
+			n->shared = NULL;
 		}
 
-		alien = l3->alien;
-		l3->alien = NULL;
+		alien = n->alien;
+		n->alien = NULL;
 
-		spin_unlock_irq(&l3->list_lock);
+		spin_unlock_irq(&n->list_lock);
 
 		kfree(shared);
 		if (alien) {
@@ -1336,17 +1238,17 @@
 	 * shrink each nodelist to its limit.
 	 */
 	list_for_each_entry(cachep, &slab_caches, list) {
-		l3 = cachep->nodelists[node];
-		if (!l3)
+		n = cachep->node[node];
+		if (!n)
 			continue;
-		drain_freelist(cachep, l3, l3->free_objects);
+		drain_freelist(cachep, n, n->free_objects);
 	}
 }
 
 static int __cpuinit cpuup_prepare(long cpu)
 {
 	struct kmem_cache *cachep;
-	struct kmem_list3 *l3 = NULL;
+	struct kmem_cache_node *n = NULL;
 	int node = cpu_to_mem(cpu);
 	int err;
 
@@ -1354,9 +1256,9 @@
 	 * We need to do this right in the beginning since
 	 * alloc_arraycache's are going to use this list.
 	 * kmalloc_node allows us to add the slab to the right
-	 * kmem_list3 and not this cpu's kmem_list3
+	 * kmem_cache_node and not this cpu's kmem_cache_node
 	 */
-	err = init_cache_nodelists_node(node);
+	err = init_cache_node_node(node);
 	if (err < 0)
 		goto bad;
 
@@ -1391,25 +1293,25 @@
 			}
 		}
 		cachep->array[cpu] = nc;
-		l3 = cachep->nodelists[node];
-		BUG_ON(!l3);
+		n = cachep->node[node];
+		BUG_ON(!n);
 
-		spin_lock_irq(&l3->list_lock);
-		if (!l3->shared) {
+		spin_lock_irq(&n->list_lock);
+		if (!n->shared) {
 			/*
 			 * We are serialised from CPU_DEAD or
 			 * CPU_UP_CANCELLED by the cpucontrol lock
 			 */
-			l3->shared = shared;
+			n->shared = shared;
 			shared = NULL;
 		}
 #ifdef CONFIG_NUMA
-		if (!l3->alien) {
-			l3->alien = alien;
+		if (!n->alien) {
+			n->alien = alien;
 			alien = NULL;
 		}
 #endif
-		spin_unlock_irq(&l3->list_lock);
+		spin_unlock_irq(&n->list_lock);
 		kfree(shared);
 		free_alien_cache(alien);
 		if (cachep->flags & SLAB_DEBUG_OBJECTS)
@@ -1464,9 +1366,9 @@
 	case CPU_DEAD_FROZEN:
 		/*
 		 * Even if all the cpus of a node are down, we don't free the
-		 * kmem_list3 of any cache. This to avoid a race between
+		 * kmem_cache_node of any cache. This to avoid a race between
 		 * cpu_down, and a kmalloc allocation from another cpu for
-		 * memory from the node of the cpu going down.  The list3
+		 * memory from the node of the cpu going down.  The node
 		 * structure is usually allocated from kmem_cache_create() and
 		 * gets destroyed at kmem_cache_destroy().
 		 */
@@ -1494,22 +1396,22 @@
  *
  * Must hold slab_mutex.
  */
-static int __meminit drain_cache_nodelists_node(int node)
+static int __meminit drain_cache_node_node(int node)
 {
 	struct kmem_cache *cachep;
 	int ret = 0;
 
 	list_for_each_entry(cachep, &slab_caches, list) {
-		struct kmem_list3 *l3;
+		struct kmem_cache_node *n;
 
-		l3 = cachep->nodelists[node];
-		if (!l3)
+		n = cachep->node[node];
+		if (!n)
 			continue;
 
-		drain_freelist(cachep, l3, l3->free_objects);
+		drain_freelist(cachep, n, n->free_objects);
 
-		if (!list_empty(&l3->slabs_full) ||
-		    !list_empty(&l3->slabs_partial)) {
+		if (!list_empty(&n->slabs_full) ||
+		    !list_empty(&n->slabs_partial)) {
 			ret = -EBUSY;
 			break;
 		}
@@ -1531,12 +1433,12 @@
 	switch (action) {
 	case MEM_GOING_ONLINE:
 		mutex_lock(&slab_mutex);
-		ret = init_cache_nodelists_node(nid);
+		ret = init_cache_node_node(nid);
 		mutex_unlock(&slab_mutex);
 		break;
 	case MEM_GOING_OFFLINE:
 		mutex_lock(&slab_mutex);
-		ret = drain_cache_nodelists_node(nid);
+		ret = drain_cache_node_node(nid);
 		mutex_unlock(&slab_mutex);
 		break;
 	case MEM_ONLINE:
@@ -1551,37 +1453,37 @@
 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
 
 /*
- * swap the static kmem_list3 with kmalloced memory
+ * swap the static kmem_cache_node with kmalloced memory
  */
-static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
+static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
 				int nodeid)
 {
-	struct kmem_list3 *ptr;
+	struct kmem_cache_node *ptr;
 
-	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
+	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
 	BUG_ON(!ptr);
 
-	memcpy(ptr, list, sizeof(struct kmem_list3));
+	memcpy(ptr, list, sizeof(struct kmem_cache_node));
 	/*
 	 * Do not assume that spinlocks can be initialized via memcpy:
 	 */
 	spin_lock_init(&ptr->list_lock);
 
 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
-	cachep->nodelists[nodeid] = ptr;
+	cachep->node[nodeid] = ptr;
 }
 
 /*
- * For setting up all the kmem_list3s for cache whose buffer_size is same as
- * size of kmem_list3.
+ * For setting up all the kmem_cache_node for cache whose buffer_size is same as
+ * size of kmem_cache_node.
  */
-static void __init set_up_list3s(struct kmem_cache *cachep, int index)
+static void __init set_up_node(struct kmem_cache *cachep, int index)
 {
 	int node;
 
 	for_each_online_node(node) {
-		cachep->nodelists[node] = &initkmem_list3[index + node];
-		cachep->nodelists[node]->next_reap = jiffies +
+		cachep->node[node] = &init_kmem_cache_node[index + node];
+		cachep->node[node]->next_reap = jiffies +
 		    REAPTIMEOUT_LIST3 +
 		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
 	}
@@ -1589,11 +1491,11 @@
 
 /*
  * The memory after the last cpu cache pointer is used for the
- * the nodelists pointer.
+ * the node pointer.
  */
-static void setup_nodelists_pointer(struct kmem_cache *cachep)
+static void setup_node_pointer(struct kmem_cache *cachep)
 {
-	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
+	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
 }
 
 /*
@@ -1602,20 +1504,18 @@
  */
 void __init kmem_cache_init(void)
 {
-	struct cache_sizes *sizes;
-	struct cache_names *names;
 	int i;
 
 	kmem_cache = &kmem_cache_boot;
-	setup_nodelists_pointer(kmem_cache);
+	setup_node_pointer(kmem_cache);
 
 	if (num_possible_nodes() == 1)
 		use_alien_caches = 0;
 
 	for (i = 0; i < NUM_INIT_LISTS; i++)
-		kmem_list3_init(&initkmem_list3[i]);
+		kmem_cache_node_init(&init_kmem_cache_node[i]);
 
-	set_up_list3s(kmem_cache, CACHE_CACHE);
+	set_up_node(kmem_cache, CACHE_CACHE);
 
 	/*
 	 * Fragmentation resistance on low memory - only use bigger
@@ -1631,7 +1531,7 @@
 	 *    kmem_cache structures of all caches, except kmem_cache itself:
 	 *    kmem_cache is statically allocated.
 	 *    Initially an __init data area is used for the head array and the
-	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
+	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
 	 *    array at the end of the bootstrap.
 	 * 2) Create the first kmalloc cache.
 	 *    The struct kmem_cache for the new cache is allocated normally.
@@ -1640,7 +1540,7 @@
 	 *    head arrays.
 	 * 4) Replace the __init data head arrays for kmem_cache and the first
 	 *    kmalloc cache with kmalloc allocated arrays.
-	 * 5) Replace the __init data for kmem_list3 for kmem_cache and
+	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
 	 *    the other cache's with kmalloc allocated memory.
 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
 	 */
@@ -1652,50 +1552,28 @@
 	 */
 	create_boot_cache(kmem_cache, "kmem_cache",
 		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
-				  nr_node_ids * sizeof(struct kmem_list3 *),
+				  nr_node_ids * sizeof(struct kmem_cache_node *),
 				  SLAB_HWCACHE_ALIGN);
 	list_add(&kmem_cache->list, &slab_caches);
 
 	/* 2+3) create the kmalloc caches */
-	sizes = malloc_sizes;
-	names = cache_names;
 
 	/*
 	 * Initialize the caches that provide memory for the array cache and the
-	 * kmem_list3 structures first.  Without this, further allocations will
+	 * kmem_cache_node structures first.  Without this, further allocations will
 	 * bug.
 	 */
 
-	sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name,
-					sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS);
+	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
+					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
 
-	if (INDEX_AC != INDEX_L3)
-		sizes[INDEX_L3].cs_cachep =
-			create_kmalloc_cache(names[INDEX_L3].name,
-				sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS);
+	if (INDEX_AC != INDEX_NODE)
+		kmalloc_caches[INDEX_NODE] =
+			create_kmalloc_cache("kmalloc-node",
+				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
 
 	slab_early_init = 0;
 
-	while (sizes->cs_size != ULONG_MAX) {
-		/*
-		 * For performance, all the general caches are L1 aligned.
-		 * This should be particularly beneficial on SMP boxes, as it
-		 * eliminates "false sharing".
-		 * Note for systems short on memory removing the alignment will
-		 * allow tighter packing of the smaller caches.
-		 */
-		if (!sizes->cs_cachep)
-			sizes->cs_cachep = create_kmalloc_cache(names->name,
-					sizes->cs_size, ARCH_KMALLOC_FLAGS);
-
-#ifdef CONFIG_ZONE_DMA
-		sizes->cs_dmacachep = create_kmalloc_cache(
-			names->name_dma, sizes->cs_size,
-			SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
-#endif
-		sizes++;
-		names++;
-	}
 	/* 4) Replace the bootstrap head arrays */
 	{
 		struct array_cache *ptr;
@@ -1713,36 +1591,35 @@
 
 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
 
-		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
+		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
 		       != &initarray_generic.cache);
-		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
+		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
 		       sizeof(struct arraycache_init));
 		/*
 		 * Do not assume that spinlocks can be initialized via memcpy:
 		 */
 		spin_lock_init(&ptr->lock);
 
-		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
-		    ptr;
+		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
 	}
-	/* 5) Replace the bootstrap kmem_list3's */
+	/* 5) Replace the bootstrap kmem_cache_node */
 	{
 		int nid;
 
 		for_each_online_node(nid) {
-			init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
+			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
 
-			init_list(malloc_sizes[INDEX_AC].cs_cachep,
-				  &initkmem_list3[SIZE_AC + nid], nid);
+			init_list(kmalloc_caches[INDEX_AC],
+				  &init_kmem_cache_node[SIZE_AC + nid], nid);
 
-			if (INDEX_AC != INDEX_L3) {
-				init_list(malloc_sizes[INDEX_L3].cs_cachep,
-					  &initkmem_list3[SIZE_L3 + nid], nid);
+			if (INDEX_AC != INDEX_NODE) {
+				init_list(kmalloc_caches[INDEX_NODE],
+					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
 			}
 		}
 	}
 
-	slab_state = UP;
+	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
 }
 
 void __init kmem_cache_init_late(void)
@@ -1773,7 +1650,7 @@
 #ifdef CONFIG_NUMA
 	/*
 	 * Register a memory hotplug callback that initializes and frees
-	 * nodelists.
+	 * node.
 	 */
 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
 #endif
@@ -1803,7 +1680,7 @@
 static noinline void
 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
 {
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 	struct slab *slabp;
 	unsigned long flags;
 	int node;
@@ -1818,24 +1695,24 @@
 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
 		unsigned long active_slabs = 0, num_slabs = 0;
 
-		l3 = cachep->nodelists[node];
-		if (!l3)
+		n = cachep->node[node];
+		if (!n)
 			continue;
 
-		spin_lock_irqsave(&l3->list_lock, flags);
-		list_for_each_entry(slabp, &l3->slabs_full, list) {
+		spin_lock_irqsave(&n->list_lock, flags);
+		list_for_each_entry(slabp, &n->slabs_full, list) {
 			active_objs += cachep->num;
 			active_slabs++;
 		}
-		list_for_each_entry(slabp, &l3->slabs_partial, list) {
+		list_for_each_entry(slabp, &n->slabs_partial, list) {
 			active_objs += slabp->inuse;
 			active_slabs++;
 		}
-		list_for_each_entry(slabp, &l3->slabs_free, list)
+		list_for_each_entry(slabp, &n->slabs_free, list)
 			num_slabs++;
 
-		free_objects += l3->free_objects;
-		spin_unlock_irqrestore(&l3->list_lock, flags);
+		free_objects += n->free_objects;
+		spin_unlock_irqrestore(&n->list_lock, flags);
 
 		num_slabs += active_slabs;
 		num_objs = num_slabs * cachep->num;
@@ -2258,7 +2135,7 @@
 	if (slab_state == DOWN) {
 		/*
 		 * Note: Creation of first cache (kmem_cache).
-		 * The setup_list3s is taken care
+		 * The setup_node is taken care
 		 * of by the caller of __kmem_cache_create
 		 */
 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
@@ -2272,13 +2149,13 @@
 		cachep->array[smp_processor_id()] = &initarray_generic.cache;
 
 		/*
-		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
-		 * the second cache, then we need to set up all its list3s,
+		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
+		 * the second cache, then we need to set up all its node/,
 		 * otherwise the creation of further caches will BUG().
 		 */
-		set_up_list3s(cachep, SIZE_AC);
-		if (INDEX_AC == INDEX_L3)
-			slab_state = PARTIAL_L3;
+		set_up_node(cachep, SIZE_AC);
+		if (INDEX_AC == INDEX_NODE)
+			slab_state = PARTIAL_NODE;
 		else
 			slab_state = PARTIAL_ARRAYCACHE;
 	} else {
@@ -2287,20 +2164,20 @@
 			kmalloc(sizeof(struct arraycache_init), gfp);
 
 		if (slab_state == PARTIAL_ARRAYCACHE) {
-			set_up_list3s(cachep, SIZE_L3);
-			slab_state = PARTIAL_L3;
+			set_up_node(cachep, SIZE_NODE);
+			slab_state = PARTIAL_NODE;
 		} else {
 			int node;
 			for_each_online_node(node) {
-				cachep->nodelists[node] =
-				    kmalloc_node(sizeof(struct kmem_list3),
+				cachep->node[node] =
+				    kmalloc_node(sizeof(struct kmem_cache_node),
 						gfp, node);
-				BUG_ON(!cachep->nodelists[node]);
-				kmem_list3_init(cachep->nodelists[node]);
+				BUG_ON(!cachep->node[node]);
+				kmem_cache_node_init(cachep->node[node]);
 			}
 		}
 	}
-	cachep->nodelists[numa_mem_id()]->next_reap =
+	cachep->node[numa_mem_id()]->next_reap =
 			jiffies + REAPTIMEOUT_LIST3 +
 			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
 
@@ -2403,7 +2280,7 @@
 	else
 		gfp = GFP_NOWAIT;
 
-	setup_nodelists_pointer(cachep);
+	setup_node_pointer(cachep);
 #if DEBUG
 
 	/*
@@ -2426,7 +2303,7 @@
 			size += BYTES_PER_WORD;
 	}
 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
-	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
+	if (size >= kmalloc_size(INDEX_NODE + 1)
 	    && cachep->object_size > cache_line_size()
 	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
 		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
@@ -2497,7 +2374,7 @@
 	cachep->reciprocal_buffer_size = reciprocal_value(size);
 
 	if (flags & CFLGS_OFF_SLAB) {
-		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
+		cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
 		/*
 		 * This is a possibility for one of the malloc_sizes caches.
 		 * But since we go off slab only for object size greater than
@@ -2543,7 +2420,7 @@
 {
 #ifdef CONFIG_SMP
 	check_irq_off();
-	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
+	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
 #endif
 }
 
@@ -2551,7 +2428,7 @@
 {
 #ifdef CONFIG_SMP
 	check_irq_off();
-	assert_spin_locked(&cachep->nodelists[node]->list_lock);
+	assert_spin_locked(&cachep->node[node]->list_lock);
 #endif
 }
 
@@ -2562,7 +2439,7 @@
 #define check_spinlock_acquired_node(x, y) do { } while(0)
 #endif
 
-static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
+static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
 			struct array_cache *ac,
 			int force, int node);
 
@@ -2574,29 +2451,29 @@
 
 	check_irq_off();
 	ac = cpu_cache_get(cachep);
-	spin_lock(&cachep->nodelists[node]->list_lock);
+	spin_lock(&cachep->node[node]->list_lock);
 	free_block(cachep, ac->entry, ac->avail, node);
-	spin_unlock(&cachep->nodelists[node]->list_lock);
+	spin_unlock(&cachep->node[node]->list_lock);
 	ac->avail = 0;
 }
 
 static void drain_cpu_caches(struct kmem_cache *cachep)
 {
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 	int node;
 
 	on_each_cpu(do_drain, cachep, 1);
 	check_irq_on();
 	for_each_online_node(node) {
-		l3 = cachep->nodelists[node];
-		if (l3 && l3->alien)
-			drain_alien_cache(cachep, l3->alien);
+		n = cachep->node[node];
+		if (n && n->alien)
+			drain_alien_cache(cachep, n->alien);
 	}
 
 	for_each_online_node(node) {
-		l3 = cachep->nodelists[node];
-		if (l3)
-			drain_array(cachep, l3, l3->shared, 1, node);
+		n = cachep->node[node];
+		if (n)
+			drain_array(cachep, n, n->shared, 1, node);
 	}
 }
 
@@ -2607,19 +2484,19 @@
  * Returns the actual number of slabs released.
  */
 static int drain_freelist(struct kmem_cache *cache,
-			struct kmem_list3 *l3, int tofree)
+			struct kmem_cache_node *n, int tofree)
 {
 	struct list_head *p;
 	int nr_freed;
 	struct slab *slabp;
 
 	nr_freed = 0;
-	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
+	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
 
-		spin_lock_irq(&l3->list_lock);
-		p = l3->slabs_free.prev;
-		if (p == &l3->slabs_free) {
-			spin_unlock_irq(&l3->list_lock);
+		spin_lock_irq(&n->list_lock);
+		p = n->slabs_free.prev;
+		if (p == &n->slabs_free) {
+			spin_unlock_irq(&n->list_lock);
 			goto out;
 		}
 
@@ -2632,8 +2509,8 @@
 		 * Safe to drop the lock. The slab is no longer linked
 		 * to the cache.
 		 */
-		l3->free_objects -= cache->num;
-		spin_unlock_irq(&l3->list_lock);
+		n->free_objects -= cache->num;
+		spin_unlock_irq(&n->list_lock);
 		slab_destroy(cache, slabp);
 		nr_freed++;
 	}
@@ -2645,20 +2522,20 @@
 static int __cache_shrink(struct kmem_cache *cachep)
 {
 	int ret = 0, i = 0;
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 
 	drain_cpu_caches(cachep);
 
 	check_irq_on();
 	for_each_online_node(i) {
-		l3 = cachep->nodelists[i];
-		if (!l3)
+		n = cachep->node[i];
+		if (!n)
 			continue;
 
-		drain_freelist(cachep, l3, l3->free_objects);
+		drain_freelist(cachep, n, n->free_objects);
 
-		ret += !list_empty(&l3->slabs_full) ||
-			!list_empty(&l3->slabs_partial);
+		ret += !list_empty(&n->slabs_full) ||
+			!list_empty(&n->slabs_partial);
 	}
 	return (ret ? 1 : 0);
 }
@@ -2687,7 +2564,7 @@
 int __kmem_cache_shutdown(struct kmem_cache *cachep)
 {
 	int i;
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 	int rc = __cache_shrink(cachep);
 
 	if (rc)
@@ -2696,13 +2573,13 @@
 	for_each_online_cpu(i)
 	    kfree(cachep->array[i]);
 
-	/* NUMA: free the list3 structures */
+	/* NUMA: free the node structures */
 	for_each_online_node(i) {
-		l3 = cachep->nodelists[i];
-		if (l3) {
-			kfree(l3->shared);
-			free_alien_cache(l3->alien);
-			kfree(l3);
+		n = cachep->node[i];
+		if (n) {
+			kfree(n->shared);
+			free_alien_cache(n->alien);
+			kfree(n);
 		}
 	}
 	return 0;
@@ -2884,7 +2761,7 @@
 	struct slab *slabp;
 	size_t offset;
 	gfp_t local_flags;
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 
 	/*
 	 * Be lazy and only check for valid flags here,  keeping it out of the
@@ -2893,17 +2770,17 @@
 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
 
-	/* Take the l3 list lock to change the colour_next on this node */
+	/* Take the node list lock to change the colour_next on this node */
 	check_irq_off();
-	l3 = cachep->nodelists[nodeid];
-	spin_lock(&l3->list_lock);
+	n = cachep->node[nodeid];
+	spin_lock(&n->list_lock);
 
 	/* Get colour for the slab, and cal the next value. */
-	offset = l3->colour_next;
-	l3->colour_next++;
-	if (l3->colour_next >= cachep->colour)
-		l3->colour_next = 0;
-	spin_unlock(&l3->list_lock);
+	offset = n->colour_next;
+	n->colour_next++;
+	if (n->colour_next >= cachep->colour)
+		n->colour_next = 0;
+	spin_unlock(&n->list_lock);
 
 	offset *= cachep->colour_off;
 
@@ -2940,13 +2817,13 @@
 	if (local_flags & __GFP_WAIT)
 		local_irq_disable();
 	check_irq_off();
-	spin_lock(&l3->list_lock);
+	spin_lock(&n->list_lock);
 
 	/* Make slab active. */
-	list_add_tail(&slabp->list, &(l3->slabs_free));
+	list_add_tail(&slabp->list, &(n->slabs_free));
 	STATS_INC_GROWN(cachep);
-	l3->free_objects += cachep->num;
-	spin_unlock(&l3->list_lock);
+	n->free_objects += cachep->num;
+	spin_unlock(&n->list_lock);
 	return 1;
 opps1:
 	kmem_freepages(cachep, objp);
@@ -3074,7 +2951,7 @@
 							bool force_refill)
 {
 	int batchcount;
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 	struct array_cache *ac;
 	int node;
 
@@ -3093,14 +2970,14 @@
 		 */
 		batchcount = BATCHREFILL_LIMIT;
 	}
-	l3 = cachep->nodelists[node];
+	n = cachep->node[node];
 
-	BUG_ON(ac->avail > 0 || !l3);
-	spin_lock(&l3->list_lock);
+	BUG_ON(ac->avail > 0 || !n);
+	spin_lock(&n->list_lock);
 
 	/* See if we can refill from the shared array */
-	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
-		l3->shared->touched = 1;
+	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
+		n->shared->touched = 1;
 		goto alloc_done;
 	}
 
@@ -3108,11 +2985,11 @@
 		struct list_head *entry;
 		struct slab *slabp;
 		/* Get slab alloc is to come from. */
-		entry = l3->slabs_partial.next;
-		if (entry == &l3->slabs_partial) {
-			l3->free_touched = 1;
-			entry = l3->slabs_free.next;
-			if (entry == &l3->slabs_free)
+		entry = n->slabs_partial.next;
+		if (entry == &n->slabs_partial) {
+			n->free_touched = 1;
+			entry = n->slabs_free.next;
+			if (entry == &n->slabs_free)
 				goto must_grow;
 		}
 
@@ -3140,15 +3017,15 @@
 		/* move slabp to correct slabp list: */
 		list_del(&slabp->list);
 		if (slabp->free == BUFCTL_END)
-			list_add(&slabp->list, &l3->slabs_full);
+			list_add(&slabp->list, &n->slabs_full);
 		else
-			list_add(&slabp->list, &l3->slabs_partial);
+			list_add(&slabp->list, &n->slabs_partial);
 	}
 
 must_grow:
-	l3->free_objects -= ac->avail;
+	n->free_objects -= ac->avail;
 alloc_done:
-	spin_unlock(&l3->list_lock);
+	spin_unlock(&n->list_lock);
 
 	if (unlikely(!ac->avail)) {
 		int x;
@@ -3315,7 +3192,7 @@
 /*
  * Fallback function if there was no memory available and no objects on a
  * certain node and fall back is permitted. First we scan all the
- * available nodelists for available objects. If that fails then we
+ * available node for available objects. If that fails then we
  * perform an allocation without specifying a node. This allows the page
  * allocator to do its reclaim / fallback magic. We then insert the
  * slab into the proper nodelist and then allocate from it.
@@ -3349,8 +3226,8 @@
 		nid = zone_to_nid(zone);
 
 		if (cpuset_zone_allowed_hardwall(zone, flags) &&
-			cache->nodelists[nid] &&
-			cache->nodelists[nid]->free_objects) {
+			cache->node[nid] &&
+			cache->node[nid]->free_objects) {
 				obj = ____cache_alloc_node(cache,
 					flags | GFP_THISNODE, nid);
 				if (obj)
@@ -3406,21 +3283,22 @@
 {
 	struct list_head *entry;
 	struct slab *slabp;
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 	void *obj;
 	int x;
 
-	l3 = cachep->nodelists[nodeid];
-	BUG_ON(!l3);
+	VM_BUG_ON(nodeid > num_online_nodes());
+	n = cachep->node[nodeid];
+	BUG_ON(!n);
 
 retry:
 	check_irq_off();
-	spin_lock(&l3->list_lock);
-	entry = l3->slabs_partial.next;
-	if (entry == &l3->slabs_partial) {
-		l3->free_touched = 1;
-		entry = l3->slabs_free.next;
-		if (entry == &l3->slabs_free)
+	spin_lock(&n->list_lock);
+	entry = n->slabs_partial.next;
+	if (entry == &n->slabs_partial) {
+		n->free_touched = 1;
+		entry = n->slabs_free.next;
+		if (entry == &n->slabs_free)
 			goto must_grow;
 	}
 
@@ -3436,20 +3314,20 @@
 
 	obj = slab_get_obj(cachep, slabp, nodeid);
 	check_slabp(cachep, slabp);
-	l3->free_objects--;
+	n->free_objects--;
 	/* move slabp to correct slabp list: */
 	list_del(&slabp->list);
 
 	if (slabp->free == BUFCTL_END)
-		list_add(&slabp->list, &l3->slabs_full);
+		list_add(&slabp->list, &n->slabs_full);
 	else
-		list_add(&slabp->list, &l3->slabs_partial);
+		list_add(&slabp->list, &n->slabs_partial);
 
-	spin_unlock(&l3->list_lock);
+	spin_unlock(&n->list_lock);
 	goto done;
 
 must_grow:
-	spin_unlock(&l3->list_lock);
+	spin_unlock(&n->list_lock);
 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
 	if (x)
 		goto retry;
@@ -3495,7 +3373,7 @@
 	if (nodeid == NUMA_NO_NODE)
 		nodeid = slab_node;
 
-	if (unlikely(!cachep->nodelists[nodeid])) {
+	if (unlikely(!cachep->node[nodeid])) {
 		/* Node not bootstrapped yet */
 		ptr = fallback_alloc(cachep, flags);
 		goto out;
@@ -3601,7 +3479,7 @@
 		       int node)
 {
 	int i;
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 
 	for (i = 0; i < nr_objects; i++) {
 		void *objp;
@@ -3611,19 +3489,19 @@
 		objp = objpp[i];
 
 		slabp = virt_to_slab(objp);
-		l3 = cachep->nodelists[node];
+		n = cachep->node[node];
 		list_del(&slabp->list);
 		check_spinlock_acquired_node(cachep, node);
 		check_slabp(cachep, slabp);
 		slab_put_obj(cachep, slabp, objp, node);
 		STATS_DEC_ACTIVE(cachep);
-		l3->free_objects++;
+		n->free_objects++;
 		check_slabp(cachep, slabp);
 
 		/* fixup slab chains */
 		if (slabp->inuse == 0) {
-			if (l3->free_objects > l3->free_limit) {
-				l3->free_objects -= cachep->num;
+			if (n->free_objects > n->free_limit) {
+				n->free_objects -= cachep->num;
 				/* No need to drop any previously held
 				 * lock here, even if we have a off-slab slab
 				 * descriptor it is guaranteed to come from
@@ -3632,14 +3510,14 @@
 				 */
 				slab_destroy(cachep, slabp);
 			} else {
-				list_add(&slabp->list, &l3->slabs_free);
+				list_add(&slabp->list, &n->slabs_free);
 			}
 		} else {
 			/* Unconditionally move a slab to the end of the
 			 * partial list on free - maximum time for the
 			 * other objects to be freed, too.
 			 */
-			list_add_tail(&slabp->list, &l3->slabs_partial);
+			list_add_tail(&slabp->list, &n->slabs_partial);
 		}
 	}
 }
@@ -3647,7 +3525,7 @@
 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
 {
 	int batchcount;
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 	int node = numa_mem_id();
 
 	batchcount = ac->batchcount;
@@ -3655,10 +3533,10 @@
 	BUG_ON(!batchcount || batchcount > ac->avail);
 #endif
 	check_irq_off();
-	l3 = cachep->nodelists[node];
-	spin_lock(&l3->list_lock);
-	if (l3->shared) {
-		struct array_cache *shared_array = l3->shared;
+	n = cachep->node[node];
+	spin_lock(&n->list_lock);
+	if (n->shared) {
+		struct array_cache *shared_array = n->shared;
 		int max = shared_array->limit - shared_array->avail;
 		if (max) {
 			if (batchcount > max)
@@ -3677,8 +3555,8 @@
 		int i = 0;
 		struct list_head *p;
 
-		p = l3->slabs_free.next;
-		while (p != &(l3->slabs_free)) {
+		p = n->slabs_free.next;
+		while (p != &(n->slabs_free)) {
 			struct slab *slabp;
 
 			slabp = list_entry(p, struct slab, list);
@@ -3690,7 +3568,7 @@
 		STATS_SET_FREEABLE(cachep, i);
 	}
 #endif
-	spin_unlock(&l3->list_lock);
+	spin_unlock(&n->list_lock);
 	ac->avail -= batchcount;
 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
 }
@@ -3800,7 +3678,7 @@
 {
 	struct kmem_cache *cachep;
 
-	cachep = kmem_find_general_cachep(size, flags);
+	cachep = kmalloc_slab(size, flags);
 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
 		return cachep;
 	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
@@ -3845,7 +3723,7 @@
 	 * Then kmalloc uses the uninlined functions instead of the inline
 	 * functions.
 	 */
-	cachep = __find_general_cachep(size, flags);
+	cachep = kmalloc_slab(size, flags);
 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
 		return cachep;
 	ret = slab_alloc(cachep, flags, caller);
@@ -3934,12 +3812,12 @@
 EXPORT_SYMBOL(kfree);
 
 /*
- * This initializes kmem_list3 or resizes various caches for all nodes.
+ * This initializes kmem_cache_node or resizes various caches for all nodes.
  */
 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
 {
 	int node;
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 	struct array_cache *new_shared;
 	struct array_cache **new_alien = NULL;
 
@@ -3962,43 +3840,43 @@
 			}
 		}
 
-		l3 = cachep->nodelists[node];
-		if (l3) {
-			struct array_cache *shared = l3->shared;
+		n = cachep->node[node];
+		if (n) {
+			struct array_cache *shared = n->shared;
 
-			spin_lock_irq(&l3->list_lock);
+			spin_lock_irq(&n->list_lock);
 
 			if (shared)
 				free_block(cachep, shared->entry,
 						shared->avail, node);
 
-			l3->shared = new_shared;
-			if (!l3->alien) {
-				l3->alien = new_alien;
+			n->shared = new_shared;
+			if (!n->alien) {
+				n->alien = new_alien;
 				new_alien = NULL;
 			}
-			l3->free_limit = (1 + nr_cpus_node(node)) *
+			n->free_limit = (1 + nr_cpus_node(node)) *
 					cachep->batchcount + cachep->num;
-			spin_unlock_irq(&l3->list_lock);
+			spin_unlock_irq(&n->list_lock);
 			kfree(shared);
 			free_alien_cache(new_alien);
 			continue;
 		}
-		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
-		if (!l3) {
+		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
+		if (!n) {
 			free_alien_cache(new_alien);
 			kfree(new_shared);
 			goto fail;
 		}
 
-		kmem_list3_init(l3);
-		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
+		kmem_cache_node_init(n);
+		n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
 				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
-		l3->shared = new_shared;
-		l3->alien = new_alien;
-		l3->free_limit = (1 + nr_cpus_node(node)) *
+		n->shared = new_shared;
+		n->alien = new_alien;
+		n->free_limit = (1 + nr_cpus_node(node)) *
 					cachep->batchcount + cachep->num;
-		cachep->nodelists[node] = l3;
+		cachep->node[node] = n;
 	}
 	return 0;
 
@@ -4007,13 +3885,13 @@
 		/* Cache is not active yet. Roll back what we did */
 		node--;
 		while (node >= 0) {
-			if (cachep->nodelists[node]) {
-				l3 = cachep->nodelists[node];
+			if (cachep->node[node]) {
+				n = cachep->node[node];
 
-				kfree(l3->shared);
-				free_alien_cache(l3->alien);
-				kfree(l3);
-				cachep->nodelists[node] = NULL;
+				kfree(n->shared);
+				free_alien_cache(n->alien);
+				kfree(n);
+				cachep->node[node] = NULL;
 			}
 			node--;
 		}
@@ -4073,9 +3951,9 @@
 		struct array_cache *ccold = new->new[i];
 		if (!ccold)
 			continue;
-		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
+		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
 		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
-		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
+		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
 		kfree(ccold);
 	}
 	kfree(new);
@@ -4176,11 +4054,11 @@
 }
 
 /*
- * Drain an array if it contains any elements taking the l3 lock only if
- * necessary. Note that the l3 listlock also protects the array_cache
+ * Drain an array if it contains any elements taking the node lock only if
+ * necessary. Note that the node listlock also protects the array_cache
  * if drain_array() is used on the shared array.
  */
-static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
+static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
 			 struct array_cache *ac, int force, int node)
 {
 	int tofree;
@@ -4190,7 +4068,7 @@
 	if (ac->touched && !force) {
 		ac->touched = 0;
 	} else {
-		spin_lock_irq(&l3->list_lock);
+		spin_lock_irq(&n->list_lock);
 		if (ac->avail) {
 			tofree = force ? ac->avail : (ac->limit + 4) / 5;
 			if (tofree > ac->avail)
@@ -4200,7 +4078,7 @@
 			memmove(ac->entry, &(ac->entry[tofree]),
 				sizeof(void *) * ac->avail);
 		}
-		spin_unlock_irq(&l3->list_lock);
+		spin_unlock_irq(&n->list_lock);
 	}
 }
 
@@ -4219,7 +4097,7 @@
 static void cache_reap(struct work_struct *w)
 {
 	struct kmem_cache *searchp;
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 	int node = numa_mem_id();
 	struct delayed_work *work = to_delayed_work(w);
 
@@ -4231,33 +4109,33 @@
 		check_irq_on();
 
 		/*
-		 * We only take the l3 lock if absolutely necessary and we
+		 * We only take the node lock if absolutely necessary and we
 		 * have established with reasonable certainty that
 		 * we can do some work if the lock was obtained.
 		 */
-		l3 = searchp->nodelists[node];
+		n = searchp->node[node];
 
-		reap_alien(searchp, l3);
+		reap_alien(searchp, n);
 
-		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
+		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
 
 		/*
 		 * These are racy checks but it does not matter
 		 * if we skip one check or scan twice.
 		 */
-		if (time_after(l3->next_reap, jiffies))
+		if (time_after(n->next_reap, jiffies))
 			goto next;
 
-		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
+		n->next_reap = jiffies + REAPTIMEOUT_LIST3;
 
-		drain_array(searchp, l3, l3->shared, 0, node);
+		drain_array(searchp, n, n->shared, 0, node);
 
-		if (l3->free_touched)
-			l3->free_touched = 0;
+		if (n->free_touched)
+			n->free_touched = 0;
 		else {
 			int freed;
 
-			freed = drain_freelist(searchp, l3, (l3->free_limit +
+			freed = drain_freelist(searchp, n, (n->free_limit +
 				5 * searchp->num - 1) / (5 * searchp->num));
 			STATS_ADD_REAPED(searchp, freed);
 		}
@@ -4283,25 +4161,25 @@
 	const char *name;
 	char *error = NULL;
 	int node;
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 
 	active_objs = 0;
 	num_slabs = 0;
 	for_each_online_node(node) {
-		l3 = cachep->nodelists[node];
-		if (!l3)
+		n = cachep->node[node];
+		if (!n)
 			continue;
 
 		check_irq_on();
-		spin_lock_irq(&l3->list_lock);
+		spin_lock_irq(&n->list_lock);
 
-		list_for_each_entry(slabp, &l3->slabs_full, list) {
+		list_for_each_entry(slabp, &n->slabs_full, list) {
 			if (slabp->inuse != cachep->num && !error)
 				error = "slabs_full accounting error";
 			active_objs += cachep->num;
 			active_slabs++;
 		}
-		list_for_each_entry(slabp, &l3->slabs_partial, list) {
+		list_for_each_entry(slabp, &n->slabs_partial, list) {
 			if (slabp->inuse == cachep->num && !error)
 				error = "slabs_partial inuse accounting error";
 			if (!slabp->inuse && !error)
@@ -4309,16 +4187,16 @@
 			active_objs += slabp->inuse;
 			active_slabs++;
 		}
-		list_for_each_entry(slabp, &l3->slabs_free, list) {
+		list_for_each_entry(slabp, &n->slabs_free, list) {
 			if (slabp->inuse && !error)
 				error = "slabs_free/inuse accounting error";
 			num_slabs++;
 		}
-		free_objects += l3->free_objects;
-		if (l3->shared)
-			shared_avail += l3->shared->avail;
+		free_objects += n->free_objects;
+		if (n->shared)
+			shared_avail += n->shared->avail;
 
-		spin_unlock_irq(&l3->list_lock);
+		spin_unlock_irq(&n->list_lock);
 	}
 	num_slabs += active_slabs;
 	num_objs = num_slabs * cachep->num;
@@ -4344,7 +4222,7 @@
 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
 {
 #if STATS
-	{			/* list3 stats */
+	{			/* node stats */
 		unsigned long high = cachep->high_mark;
 		unsigned long allocs = cachep->num_allocations;
 		unsigned long grown = cachep->grown;
@@ -4497,9 +4375,9 @@
 {
 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
 	struct slab *slabp;
-	struct kmem_list3 *l3;
+	struct kmem_cache_node *n;
 	const char *name;
-	unsigned long *n = m->private;
+	unsigned long *x = m->private;
 	int node;
 	int i;
 
@@ -4510,43 +4388,43 @@
 
 	/* OK, we can do it */
 
-	n[1] = 0;
+	x[1] = 0;
 
 	for_each_online_node(node) {
-		l3 = cachep->nodelists[node];
-		if (!l3)
+		n = cachep->node[node];
+		if (!n)
 			continue;
 
 		check_irq_on();
-		spin_lock_irq(&l3->list_lock);
+		spin_lock_irq(&n->list_lock);
 
-		list_for_each_entry(slabp, &l3->slabs_full, list)
-			handle_slab(n, cachep, slabp);
-		list_for_each_entry(slabp, &l3->slabs_partial, list)
-			handle_slab(n, cachep, slabp);
-		spin_unlock_irq(&l3->list_lock);
+		list_for_each_entry(slabp, &n->slabs_full, list)
+			handle_slab(x, cachep, slabp);
+		list_for_each_entry(slabp, &n->slabs_partial, list)
+			handle_slab(x, cachep, slabp);
+		spin_unlock_irq(&n->list_lock);
 	}
 	name = cachep->name;
-	if (n[0] == n[1]) {
+	if (x[0] == x[1]) {
 		/* Increase the buffer size */
 		mutex_unlock(&slab_mutex);
-		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
+		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
 		if (!m->private) {
 			/* Too bad, we are really out */
-			m->private = n;
+			m->private = x;
 			mutex_lock(&slab_mutex);
 			return -ENOMEM;
 		}
-		*(unsigned long *)m->private = n[0] * 2;
-		kfree(n);
+		*(unsigned long *)m->private = x[0] * 2;
+		kfree(x);
 		mutex_lock(&slab_mutex);
 		/* Now make sure this entry will be retried */
 		m->count = m->size;
 		return 0;
 	}
-	for (i = 0; i < n[1]; i++) {
-		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
-		show_symbol(m, n[2*i+2]);
+	for (i = 0; i < x[1]; i++) {
+		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
+		show_symbol(m, x[2*i+2]);
 		seq_putc(m, '\n');
 	}
 
diff --git a/mm/slab.h b/mm/slab.h
index 34a98d6..f96b49e 100644
--- a/mm/slab.h
+++ b/mm/slab.h
@@ -16,7 +16,7 @@
 	DOWN,			/* No slab functionality yet */
 	PARTIAL,		/* SLUB: kmem_cache_node available */
 	PARTIAL_ARRAYCACHE,	/* SLAB: kmalloc size for arraycache available */
-	PARTIAL_L3,		/* SLAB: kmalloc size for l3 struct available */
+	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
 	UP,			/* Slab caches usable but not all extras yet */
 	FULL			/* Everything is working */
 };
@@ -35,6 +35,15 @@
 unsigned long calculate_alignment(unsigned long flags,
 		unsigned long align, unsigned long size);
 
+#ifndef CONFIG_SLOB
+/* Kmalloc array related functions */
+void create_kmalloc_caches(unsigned long);
+
+/* Find the kmalloc slab corresponding for a certain size */
+struct kmem_cache *kmalloc_slab(size_t, gfp_t);
+#endif
+
+
 /* Functions provided by the slab allocators */
 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
 
@@ -230,3 +239,35 @@
 	return s;
 }
 #endif
+
+
+/*
+ * The slab lists for all objects.
+ */
+struct kmem_cache_node {
+	spinlock_t list_lock;
+
+#ifdef CONFIG_SLAB
+	struct list_head slabs_partial;	/* partial list first, better asm code */
+	struct list_head slabs_full;
+	struct list_head slabs_free;
+	unsigned long free_objects;
+	unsigned int free_limit;
+	unsigned int colour_next;	/* Per-node cache coloring */
+	struct array_cache *shared;	/* shared per node */
+	struct array_cache **alien;	/* on other nodes */
+	unsigned long next_reap;	/* updated without locking */
+	int free_touched;		/* updated without locking */
+#endif
+
+#ifdef CONFIG_SLUB
+	unsigned long nr_partial;
+	struct list_head partial;
+#ifdef CONFIG_SLUB_DEBUG
+	atomic_long_t nr_slabs;
+	atomic_long_t total_objects;
+	struct list_head full;
+#endif
+#endif
+
+};
diff --git a/mm/slab_common.c b/mm/slab_common.c
index 3f3cd97..d2517b0 100644
--- a/mm/slab_common.c
+++ b/mm/slab_common.c
@@ -299,7 +299,7 @@
 	err = __kmem_cache_create(s, flags);
 
 	if (err)
-		panic("Creation of kmalloc slab %s size=%zd failed. Reason %d\n",
+		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
 					name, size, err);
 
 	s->refcount = -1;	/* Exempt from merging for now */
@@ -319,6 +319,178 @@
 	return s;
 }
 
+struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
+EXPORT_SYMBOL(kmalloc_caches);
+
+#ifdef CONFIG_ZONE_DMA
+struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
+EXPORT_SYMBOL(kmalloc_dma_caches);
+#endif
+
+/*
+ * Conversion table for small slabs sizes / 8 to the index in the
+ * kmalloc array. This is necessary for slabs < 192 since we have non power
+ * of two cache sizes there. The size of larger slabs can be determined using
+ * fls.
+ */
+static s8 size_index[24] = {
+	3,	/* 8 */
+	4,	/* 16 */
+	5,	/* 24 */
+	5,	/* 32 */
+	6,	/* 40 */
+	6,	/* 48 */
+	6,	/* 56 */
+	6,	/* 64 */
+	1,	/* 72 */
+	1,	/* 80 */
+	1,	/* 88 */
+	1,	/* 96 */
+	7,	/* 104 */
+	7,	/* 112 */
+	7,	/* 120 */
+	7,	/* 128 */
+	2,	/* 136 */
+	2,	/* 144 */
+	2,	/* 152 */
+	2,	/* 160 */
+	2,	/* 168 */
+	2,	/* 176 */
+	2,	/* 184 */
+	2	/* 192 */
+};
+
+static inline int size_index_elem(size_t bytes)
+{
+	return (bytes - 1) / 8;
+}
+
+/*
+ * Find the kmem_cache structure that serves a given size of
+ * allocation
+ */
+struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
+{
+	int index;
+
+	if (WARN_ON_ONCE(size > KMALLOC_MAX_SIZE))
+		return NULL;
+
+	if (size <= 192) {
+		if (!size)
+			return ZERO_SIZE_PTR;
+
+		index = size_index[size_index_elem(size)];
+	} else
+		index = fls(size - 1);
+
+#ifdef CONFIG_ZONE_DMA
+	if (unlikely((flags & GFP_DMA)))
+		return kmalloc_dma_caches[index];
+
+#endif
+	return kmalloc_caches[index];
+}
+
+/*
+ * Create the kmalloc array. Some of the regular kmalloc arrays
+ * may already have been created because they were needed to
+ * enable allocations for slab creation.
+ */
+void __init create_kmalloc_caches(unsigned long flags)
+{
+	int i;
+
+	/*
+	 * Patch up the size_index table if we have strange large alignment
+	 * requirements for the kmalloc array. This is only the case for
+	 * MIPS it seems. The standard arches will not generate any code here.
+	 *
+	 * Largest permitted alignment is 256 bytes due to the way we
+	 * handle the index determination for the smaller caches.
+	 *
+	 * Make sure that nothing crazy happens if someone starts tinkering
+	 * around with ARCH_KMALLOC_MINALIGN
+	 */
+	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
+		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
+
+	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
+		int elem = size_index_elem(i);
+
+		if (elem >= ARRAY_SIZE(size_index))
+			break;
+		size_index[elem] = KMALLOC_SHIFT_LOW;
+	}
+
+	if (KMALLOC_MIN_SIZE >= 64) {
+		/*
+		 * The 96 byte size cache is not used if the alignment
+		 * is 64 byte.
+		 */
+		for (i = 64 + 8; i <= 96; i += 8)
+			size_index[size_index_elem(i)] = 7;
+
+	}
+
+	if (KMALLOC_MIN_SIZE >= 128) {
+		/*
+		 * The 192 byte sized cache is not used if the alignment
+		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
+		 * instead.
+		 */
+		for (i = 128 + 8; i <= 192; i += 8)
+			size_index[size_index_elem(i)] = 8;
+	}
+	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
+		if (!kmalloc_caches[i]) {
+			kmalloc_caches[i] = create_kmalloc_cache(NULL,
+							1 << i, flags);
+
+			/*
+			 * Caches that are not of the two-to-the-power-of size.
+			 * These have to be created immediately after the
+			 * earlier power of two caches
+			 */
+			if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
+				kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
+
+			if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
+				kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
+		}
+	}
+
+	/* Kmalloc array is now usable */
+	slab_state = UP;
+
+	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
+		struct kmem_cache *s = kmalloc_caches[i];
+		char *n;
+
+		if (s) {
+			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
+
+			BUG_ON(!n);
+			s->name = n;
+		}
+	}
+
+#ifdef CONFIG_ZONE_DMA
+	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
+		struct kmem_cache *s = kmalloc_caches[i];
+
+		if (s) {
+			int size = kmalloc_size(i);
+			char *n = kasprintf(GFP_NOWAIT,
+				 "dma-kmalloc-%d", size);
+
+			BUG_ON(!n);
+			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
+				size, SLAB_CACHE_DMA | flags);
+		}
+	}
+#endif
+}
 #endif /* !CONFIG_SLOB */
 
 
diff --git a/mm/slub.c b/mm/slub.c
index a0206df..57707f0 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -1006,7 +1006,7 @@
 	 * dilemma by deferring the increment of the count during
 	 * bootstrap (see early_kmem_cache_node_alloc).
 	 */
-	if (n) {
+	if (likely(n)) {
 		atomic_long_inc(&n->nr_slabs);
 		atomic_long_add(objects, &n->total_objects);
 	}
@@ -1494,7 +1494,7 @@
  */
 static inline void *acquire_slab(struct kmem_cache *s,
 		struct kmem_cache_node *n, struct page *page,
-		int mode)
+		int mode, int *objects)
 {
 	void *freelist;
 	unsigned long counters;
@@ -1508,6 +1508,7 @@
 	freelist = page->freelist;
 	counters = page->counters;
 	new.counters = counters;
+	*objects = new.objects - new.inuse;
 	if (mode) {
 		new.inuse = page->objects;
 		new.freelist = NULL;
@@ -1529,7 +1530,7 @@
 	return freelist;
 }
 
-static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
+static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
 
 /*
@@ -1540,6 +1541,8 @@
 {
 	struct page *page, *page2;
 	void *object = NULL;
+	int available = 0;
+	int objects;
 
 	/*
 	 * Racy check. If we mistakenly see no partial slabs then we
@@ -1553,22 +1556,21 @@
 	spin_lock(&n->list_lock);
 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
 		void *t;
-		int available;
 
 		if (!pfmemalloc_match(page, flags))
 			continue;
 
-		t = acquire_slab(s, n, page, object == NULL);
+		t = acquire_slab(s, n, page, object == NULL, &objects);
 		if (!t)
 			break;
 
+		available += objects;
 		if (!object) {
 			c->page = page;
 			stat(s, ALLOC_FROM_PARTIAL);
 			object = t;
-			available =  page->objects - page->inuse;
 		} else {
-			available = put_cpu_partial(s, page, 0);
+			put_cpu_partial(s, page, 0);
 			stat(s, CPU_PARTIAL_NODE);
 		}
 		if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
@@ -1947,7 +1949,7 @@
  * If we did not find a slot then simply move all the partials to the
  * per node partial list.
  */
-static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
+static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
 {
 	struct page *oldpage;
 	int pages;
@@ -1985,7 +1987,6 @@
 		page->next = oldpage;
 
 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
-	return pobjects;
 }
 
 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
@@ -2042,7 +2043,7 @@
 static inline int node_match(struct page *page, int node)
 {
 #ifdef CONFIG_NUMA
-	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
+	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
 		return 0;
 #endif
 	return 1;
@@ -2332,13 +2333,18 @@
 
 	s = memcg_kmem_get_cache(s, gfpflags);
 redo:
-
 	/*
 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
 	 * enabled. We may switch back and forth between cpus while
 	 * reading from one cpu area. That does not matter as long
 	 * as we end up on the original cpu again when doing the cmpxchg.
+	 *
+	 * Preemption is disabled for the retrieval of the tid because that
+	 * must occur from the current processor. We cannot allow rescheduling
+	 * on a different processor between the determination of the pointer
+	 * and the retrieval of the tid.
 	 */
+	preempt_disable();
 	c = __this_cpu_ptr(s->cpu_slab);
 
 	/*
@@ -2348,7 +2354,7 @@
 	 * linked list in between.
 	 */
 	tid = c->tid;
-	barrier();
+	preempt_enable();
 
 	object = c->freelist;
 	page = c->page;
@@ -2595,10 +2601,11 @@
 	 * data is retrieved via this pointer. If we are on the same cpu
 	 * during the cmpxchg then the free will succedd.
 	 */
+	preempt_disable();
 	c = __this_cpu_ptr(s->cpu_slab);
 
 	tid = c->tid;
-	barrier();
+	preempt_enable();
 
 	if (likely(page == c->page)) {
 		set_freepointer(s, object, c->freelist);
@@ -2776,7 +2783,7 @@
 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
 {
 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
-			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
+			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
 
 	/*
 	 * Must align to double word boundary for the double cmpxchg
@@ -2983,7 +2990,7 @@
 		s->allocflags |= __GFP_COMP;
 
 	if (s->flags & SLAB_CACHE_DMA)
-		s->allocflags |= SLUB_DMA;
+		s->allocflags |= GFP_DMA;
 
 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
 		s->allocflags |= __GFP_RECLAIMABLE;
@@ -3175,13 +3182,6 @@
  *		Kmalloc subsystem
  *******************************************************************/
 
-struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
-EXPORT_SYMBOL(kmalloc_caches);
-
-#ifdef CONFIG_ZONE_DMA
-static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
-#endif
-
 static int __init setup_slub_min_order(char *str)
 {
 	get_option(&str, &slub_min_order);
@@ -3218,73 +3218,15 @@
 
 __setup("slub_nomerge", setup_slub_nomerge);
 
-/*
- * Conversion table for small slabs sizes / 8 to the index in the
- * kmalloc array. This is necessary for slabs < 192 since we have non power
- * of two cache sizes there. The size of larger slabs can be determined using
- * fls.
- */
-static s8 size_index[24] = {
-	3,	/* 8 */
-	4,	/* 16 */
-	5,	/* 24 */
-	5,	/* 32 */
-	6,	/* 40 */
-	6,	/* 48 */
-	6,	/* 56 */
-	6,	/* 64 */
-	1,	/* 72 */
-	1,	/* 80 */
-	1,	/* 88 */
-	1,	/* 96 */
-	7,	/* 104 */
-	7,	/* 112 */
-	7,	/* 120 */
-	7,	/* 128 */
-	2,	/* 136 */
-	2,	/* 144 */
-	2,	/* 152 */
-	2,	/* 160 */
-	2,	/* 168 */
-	2,	/* 176 */
-	2,	/* 184 */
-	2	/* 192 */
-};
-
-static inline int size_index_elem(size_t bytes)
-{
-	return (bytes - 1) / 8;
-}
-
-static struct kmem_cache *get_slab(size_t size, gfp_t flags)
-{
-	int index;
-
-	if (size <= 192) {
-		if (!size)
-			return ZERO_SIZE_PTR;
-
-		index = size_index[size_index_elem(size)];
-	} else
-		index = fls(size - 1);
-
-#ifdef CONFIG_ZONE_DMA
-	if (unlikely((flags & SLUB_DMA)))
-		return kmalloc_dma_caches[index];
-
-#endif
-	return kmalloc_caches[index];
-}
-
 void *__kmalloc(size_t size, gfp_t flags)
 {
 	struct kmem_cache *s;
 	void *ret;
 
-	if (unlikely(size > SLUB_MAX_SIZE))
+	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
 		return kmalloc_large(size, flags);
 
-	s = get_slab(size, flags);
+	s = kmalloc_slab(size, flags);
 
 	if (unlikely(ZERO_OR_NULL_PTR(s)))
 		return s;
@@ -3317,7 +3259,7 @@
 	struct kmem_cache *s;
 	void *ret;
 
-	if (unlikely(size > SLUB_MAX_SIZE)) {
+	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
 		ret = kmalloc_large_node(size, flags, node);
 
 		trace_kmalloc_node(_RET_IP_, ret,
@@ -3327,7 +3269,7 @@
 		return ret;
 	}
 
-	s = get_slab(size, flags);
+	s = kmalloc_slab(size, flags);
 
 	if (unlikely(ZERO_OR_NULL_PTR(s)))
 		return s;
@@ -3620,6 +3562,12 @@
 
 	memcpy(s, static_cache, kmem_cache->object_size);
 
+	/*
+	 * This runs very early, and only the boot processor is supposed to be
+	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
+	 * IPIs around.
+	 */
+	__flush_cpu_slab(s, smp_processor_id());
 	for_each_node_state(node, N_NORMAL_MEMORY) {
 		struct kmem_cache_node *n = get_node(s, node);
 		struct page *p;
@@ -3642,8 +3590,6 @@
 {
 	static __initdata struct kmem_cache boot_kmem_cache,
 		boot_kmem_cache_node;
-	int i;
-	int caches = 2;
 
 	if (debug_guardpage_minorder())
 		slub_max_order = 0;
@@ -3674,103 +3620,16 @@
 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
 
 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
-
-	/*
-	 * Patch up the size_index table if we have strange large alignment
-	 * requirements for the kmalloc array. This is only the case for
-	 * MIPS it seems. The standard arches will not generate any code here.
-	 *
-	 * Largest permitted alignment is 256 bytes due to the way we
-	 * handle the index determination for the smaller caches.
-	 *
-	 * Make sure that nothing crazy happens if someone starts tinkering
-	 * around with ARCH_KMALLOC_MINALIGN
-	 */
-	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
-		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
-
-	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
-		int elem = size_index_elem(i);
-		if (elem >= ARRAY_SIZE(size_index))
-			break;
-		size_index[elem] = KMALLOC_SHIFT_LOW;
-	}
-
-	if (KMALLOC_MIN_SIZE == 64) {
-		/*
-		 * The 96 byte size cache is not used if the alignment
-		 * is 64 byte.
-		 */
-		for (i = 64 + 8; i <= 96; i += 8)
-			size_index[size_index_elem(i)] = 7;
-	} else if (KMALLOC_MIN_SIZE == 128) {
-		/*
-		 * The 192 byte sized cache is not used if the alignment
-		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
-		 * instead.
-		 */
-		for (i = 128 + 8; i <= 192; i += 8)
-			size_index[size_index_elem(i)] = 8;
-	}
-
-	/* Caches that are not of the two-to-the-power-of size */
-	if (KMALLOC_MIN_SIZE <= 32) {
-		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
-		caches++;
-	}
-
-	if (KMALLOC_MIN_SIZE <= 64) {
-		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
-		caches++;
-	}
-
-	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
-		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
-		caches++;
-	}
-
-	slab_state = UP;
-
-	/* Provide the correct kmalloc names now that the caches are up */
-	if (KMALLOC_MIN_SIZE <= 32) {
-		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
-		BUG_ON(!kmalloc_caches[1]->name);
-	}
-
-	if (KMALLOC_MIN_SIZE <= 64) {
-		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
-		BUG_ON(!kmalloc_caches[2]->name);
-	}
-
-	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
-		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
-
-		BUG_ON(!s);
-		kmalloc_caches[i]->name = s;
-	}
+	create_kmalloc_caches(0);
 
 #ifdef CONFIG_SMP
 	register_cpu_notifier(&slab_notifier);
 #endif
 
-#ifdef CONFIG_ZONE_DMA
-	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
-		struct kmem_cache *s = kmalloc_caches[i];
-
-		if (s && s->size) {
-			char *name = kasprintf(GFP_NOWAIT,
-				 "dma-kmalloc-%d", s->object_size);
-
-			BUG_ON(!name);
-			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
-				s->object_size, SLAB_CACHE_DMA);
-		}
-	}
-#endif
 	printk(KERN_INFO
-		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
+		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
 		" CPUs=%d, Nodes=%d\n",
-		caches, cache_line_size(),
+		cache_line_size(),
 		slub_min_order, slub_max_order, slub_min_objects,
 		nr_cpu_ids, nr_node_ids);
 }
@@ -3933,10 +3792,10 @@
 	struct kmem_cache *s;
 	void *ret;
 
-	if (unlikely(size > SLUB_MAX_SIZE))
+	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
 		return kmalloc_large(size, gfpflags);
 
-	s = get_slab(size, gfpflags);
+	s = kmalloc_slab(size, gfpflags);
 
 	if (unlikely(ZERO_OR_NULL_PTR(s)))
 		return s;
@@ -3956,7 +3815,7 @@
 	struct kmem_cache *s;
 	void *ret;
 
-	if (unlikely(size > SLUB_MAX_SIZE)) {
+	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
 		ret = kmalloc_large_node(size, gfpflags, node);
 
 		trace_kmalloc_node(caller, ret,
@@ -3966,7 +3825,7 @@
 		return ret;
 	}
 
-	s = get_slab(size, gfpflags);
+	s = kmalloc_slab(size, gfpflags);
 
 	if (unlikely(ZERO_OR_NULL_PTR(s)))
 		return s;
@@ -4315,7 +4174,7 @@
 {
 	u8 *p;
 
-	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
+	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
 
 	printk(KERN_ERR "SLUB resiliency testing\n");
 	printk(KERN_ERR "-----------------------\n");