timers/nohz: Capitalize 'CPU' consistently
While reviewing another patch I noticed that kernel/time/tick-sched.c
had a charmingly (confusingly, annoyingly) rich set of variants for
spelling 'CPU':
cpu
cpus
CPU
CPUs
per CPU
per-CPU
per cpu
... sometimes these were mixed even within the same comment block!
Compress these variants down to a single consistent set of:
CPU
CPUs
per-CPU
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index 6d83e9c..db57d1b 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -31,7 +31,7 @@
#include <trace/events/timer.h>
/*
- * Per cpu nohz control structure
+ * Per-CPU nohz control structure
*/
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
@@ -116,8 +116,8 @@
#ifdef CONFIG_NO_HZ_COMMON
/*
* Check if the do_timer duty was dropped. We don't care about
- * concurrency: This happens only when the cpu in charge went
- * into a long sleep. If two cpus happen to assign themselves to
+ * concurrency: This happens only when the CPU in charge went
+ * into a long sleep. If two CPUs happen to assign themselves to
* this duty, then the jiffies update is still serialized by
* jiffies_lock.
*/
@@ -349,7 +349,7 @@
/*
* Re-evaluate the need for the tick as we switch the current task.
* It might need the tick due to per task/process properties:
- * perf events, posix cpu timers, ...
+ * perf events, posix CPU timers, ...
*/
void __tick_nohz_task_switch(void)
{
@@ -509,8 +509,8 @@
*
* In case the sched_tick was stopped on this CPU, we have to check if jiffies
* must be updated. Otherwise an interrupt handler could use a stale jiffy
- * value. We do this unconditionally on any cpu, as we don't know whether the
- * cpu, which has the update task assigned is in a long sleep.
+ * value. We do this unconditionally on any CPU, as we don't know whether the
+ * CPU, which has the update task assigned is in a long sleep.
*/
static void tick_nohz_update_jiffies(ktime_t now)
{
@@ -526,7 +526,7 @@
}
/*
- * Updates the per cpu time idle statistics counters
+ * Updates the per-CPU time idle statistics counters
*/
static void
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
@@ -566,7 +566,7 @@
}
/**
- * get_cpu_idle_time_us - get the total idle time of a cpu
+ * get_cpu_idle_time_us - get the total idle time of a CPU
* @cpu: CPU number to query
* @last_update_time: variable to store update time in. Do not update
* counters if NULL.
@@ -607,7 +607,7 @@
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
/**
- * get_cpu_iowait_time_us - get the total iowait time of a cpu
+ * get_cpu_iowait_time_us - get the total iowait time of a CPU
* @cpu: CPU number to query
* @last_update_time: variable to store update time in. Do not update
* counters if NULL.
@@ -726,12 +726,12 @@
}
/*
- * If this cpu is the one which updates jiffies, then give up
- * the assignment and let it be taken by the cpu which runs
- * the tick timer next, which might be this cpu as well. If we
+ * If this CPU is the one which updates jiffies, then give up
+ * the assignment and let it be taken by the CPU which runs
+ * the tick timer next, which might be this CPU as well. If we
* don't drop this here the jiffies might be stale and
* do_timer() never invoked. Keep track of the fact that it
- * was the one which had the do_timer() duty last. If this cpu
+ * was the one which had the do_timer() duty last. If this CPU
* is the one which had the do_timer() duty last, we limit the
* sleep time to the timekeeping max_deferment value.
* Otherwise we can sleep as long as we want.
@@ -841,9 +841,9 @@
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
/*
- * If this cpu is offline and it is the one which updates
+ * If this CPU is offline and it is the one which updates
* jiffies, then give up the assignment and let it be taken by
- * the cpu which runs the tick timer next. If we don't drop
+ * the CPU which runs the tick timer next. If we don't drop
* this here the jiffies might be stale and do_timer() never
* invoked.
*/
@@ -933,11 +933,11 @@
WARN_ON_ONCE(irqs_disabled());
/*
- * Update the idle state in the scheduler domain hierarchy
- * when tick_nohz_stop_sched_tick() is called from the idle loop.
- * State will be updated to busy during the first busy tick after
- * exiting idle.
- */
+ * Update the idle state in the scheduler domain hierarchy
+ * when tick_nohz_stop_sched_tick() is called from the idle loop.
+ * State will be updated to busy during the first busy tick after
+ * exiting idle.
+ */
set_cpu_sd_state_idle();
local_irq_disable();
@@ -1211,7 +1211,7 @@
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
ts->sched_timer.function = tick_sched_timer;
- /* Get the next period (per cpu) */
+ /* Get the next period (per-CPU) */
hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
/* Offset the tick to avert jiffies_lock contention. */