| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #define LOG_TAG "installd" |
| |
| #include <fcntl.h> |
| #include <signal.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/capability.h> |
| #include <sys/file.h> |
| #include <sys/stat.h> |
| #include <sys/time.h> |
| #include <sys/types.h> |
| #include <sys/resource.h> |
| #include <sys/wait.h> |
| #include <unistd.h> |
| |
| #include <array> |
| #include <iomanip> |
| #include <mutex> |
| #include <unordered_set> |
| |
| #include <android-base/file.h> |
| #include <android-base/logging.h> |
| #include <android-base/no_destructor.h> |
| #include <android-base/properties.h> |
| #include <android-base/stringprintf.h> |
| #include <android-base/strings.h> |
| #include <android-base/unique_fd.h> |
| #include <async_safe/log.h> |
| #include <cutils/fs.h> |
| #include <cutils/properties.h> |
| #include <cutils/sched_policy.h> |
| #include <log/log.h> // TODO: Move everything to base/logging. |
| #include <openssl/sha.h> |
| #include <private/android_filesystem_config.h> |
| #include <processgroup/processgroup.h> |
| #include <selinux/android.h> |
| #include <server_configurable_flags/get_flags.h> |
| #include <system/thread_defs.h> |
| #include <utils/Mutex.h> |
| #include <ziparchive/zip_archive.h> |
| |
| #include "dexopt.h" |
| #include "dexopt_return_codes.h" |
| #include "execv_helper.h" |
| #include "globals.h" |
| #include "installd_constants.h" |
| #include "installd_deps.h" |
| #include "otapreopt_utils.h" |
| #include "restorable_file.h" |
| #include "run_dex2oat.h" |
| #include "unique_file.h" |
| #include "utils.h" |
| |
| using android::base::Basename; |
| using android::base::EndsWith; |
| using android::base::GetBoolProperty; |
| using android::base::GetProperty; |
| using android::base::ReadFdToString; |
| using android::base::ReadFully; |
| using android::base::StringPrintf; |
| using android::base::WriteFully; |
| using android::base::borrowed_fd; |
| using android::base::unique_fd; |
| |
| namespace { |
| |
| // Timeout for short operations, such as merging profiles. |
| constexpr int kShortTimeoutMs = 60000; // 1 minute. |
| |
| // Timeout for long operations, such as compilation. This should be smaller than the Package Manager |
| // watchdog (PackageManagerService.WATCHDOG_TIMEOUT, 10 minutes), so that the operation will be |
| // aborted before that watchdog would take down the system server. |
| constexpr int kLongTimeoutMs = 570000; // 9.5 minutes. |
| |
| class DexOptStatus { |
| public: |
| // Check if dexopt is cancelled and fork if it is not cancelled. |
| // cancelled is set to true if cancelled. Otherwise it will be set to false. |
| // If it is not cancelled, it will return the return value of fork() call. |
| // If cancelled, fork will not happen and it will return -1. |
| pid_t check_cancellation_and_fork(/* out */ bool *cancelled) { |
| std::lock_guard<std::mutex> lock(dexopt_lock_); |
| if (dexopt_blocked_) { |
| *cancelled = true; |
| return -1; |
| } |
| pid_t pid = fork(); |
| *cancelled = false; |
| if (pid > 0) { // parent |
| dexopt_pids_.insert(pid); |
| } |
| return pid; |
| } |
| |
| // Returns true if pid was killed (is in killed list). It could have finished if killing |
| // happened after the process is finished. |
| bool check_if_killed_and_remove_dexopt_pid(pid_t pid) { |
| std::lock_guard<std::mutex> lock(dexopt_lock_); |
| dexopt_pids_.erase(pid); |
| if (dexopt_killed_pids_.erase(pid) == 1) { |
| return true; |
| } |
| return false; |
| } |
| |
| // Tells whether dexopt is blocked or not. |
| bool is_dexopt_blocked() { |
| std::lock_guard<std::mutex> lock(dexopt_lock_); |
| return dexopt_blocked_; |
| } |
| |
| // Enable or disable dexopt blocking. |
| void control_dexopt_blocking(bool block) { |
| std::lock_guard<std::mutex> lock(dexopt_lock_); |
| dexopt_blocked_ = block; |
| if (!block) { |
| return; |
| } |
| // Blocked, also kill currently running tasks |
| for (auto pid : dexopt_pids_) { |
| LOG(INFO) << "control_dexopt_blocking kill pid:" << pid; |
| kill(pid, SIGKILL); |
| dexopt_killed_pids_.insert(pid); |
| } |
| dexopt_pids_.clear(); |
| } |
| |
| private: |
| std::mutex dexopt_lock_; |
| // when true, dexopt is blocked and will not run. |
| bool dexopt_blocked_ GUARDED_BY(dexopt_lock_) = false; |
| // PIDs of child process while runinng dexopt. |
| // If the child process is finished, it should be removed. |
| std::unordered_set<pid_t> dexopt_pids_ GUARDED_BY(dexopt_lock_); |
| // PIDs of child processes killed by cancellation. |
| std::unordered_set<pid_t> dexopt_killed_pids_ GUARDED_BY(dexopt_lock_); |
| }; |
| |
| android::base::NoDestructor<DexOptStatus> dexopt_status_; |
| |
| } // namespace |
| |
| namespace android { |
| namespace installd { |
| |
| |
| // Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below. |
| struct FreeDelete { |
| // NOTE: Deleting a const object is valid but free() takes a non-const pointer. |
| void operator()(const void* ptr) const { |
| free(const_cast<void*>(ptr)); |
| } |
| }; |
| |
| // Alias for std::unique_ptr<> that uses the C function free() to delete objects. |
| template <typename T> |
| using UniqueCPtr = std::unique_ptr<T, FreeDelete>; |
| |
| static unique_fd invalid_unique_fd() { |
| return unique_fd(-1); |
| } |
| |
| static bool is_debug_runtime() { |
| return android::base::GetProperty("persist.sys.dalvik.vm.lib.2", "") == "libartd.so"; |
| } |
| |
| static bool is_debuggable_build() { |
| return android::base::GetBoolProperty("ro.debuggable", false); |
| } |
| |
| static bool clear_profile(const std::string& profile) { |
| unique_fd ufd(open(profile.c_str(), O_WRONLY | O_NOFOLLOW | O_CLOEXEC)); |
| if (ufd.get() < 0) { |
| if (errno != ENOENT) { |
| PLOG(WARNING) << "Could not open profile " << profile; |
| return false; |
| } else { |
| // Nothing to clear. That's ok. |
| return true; |
| } |
| } |
| |
| if (flock(ufd.get(), LOCK_EX | LOCK_NB) != 0) { |
| if (errno != EWOULDBLOCK) { |
| PLOG(WARNING) << "Error locking profile " << profile; |
| } |
| // This implies that the app owning this profile is running |
| // (and has acquired the lock). |
| // |
| // If we can't acquire the lock bail out since clearing is useless anyway |
| // (the app will write again to the profile). |
| // |
| // Note: |
| // This does not impact the this is not an issue for the profiling correctness. |
| // In case this is needed because of an app upgrade, profiles will still be |
| // eventually cleared by the app itself due to checksum mismatch. |
| // If this is needed because profman advised, then keeping the data around |
| // until the next run is again not an issue. |
| // |
| // If the app attempts to acquire a lock while we've held one here, |
| // it will simply skip the current write cycle. |
| return false; |
| } |
| |
| bool truncated = ftruncate(ufd.get(), 0) == 0; |
| if (!truncated) { |
| PLOG(WARNING) << "Could not truncate " << profile; |
| } |
| if (flock(ufd.get(), LOCK_UN) != 0) { |
| PLOG(WARNING) << "Error unlocking profile " << profile; |
| } |
| return truncated; |
| } |
| |
| // Clear the reference profile for the given location. |
| // The location is the profile name for primary apks or the dex path for secondary dex files. |
| static bool clear_reference_profile(const std::string& package_name, const std::string& location, |
| bool is_secondary_dex) { |
| return clear_profile(create_reference_profile_path(package_name, location, is_secondary_dex)); |
| } |
| |
| // Clear the reference profile for the given location. |
| // The location is the profile name for primary apks or the dex path for secondary dex files. |
| static bool clear_current_profile(const std::string& package_name, const std::string& location, |
| userid_t user, bool is_secondary_dex) { |
| return clear_profile(create_current_profile_path(user, package_name, location, |
| is_secondary_dex)); |
| } |
| |
| // Clear the reference profile for the primary apk of the given package. |
| // The location is the profile name for primary apks or the dex path for secondary dex files. |
| bool clear_primary_reference_profile(const std::string& package_name, |
| const std::string& location) { |
| return clear_reference_profile(package_name, location, /*is_secondary_dex*/false); |
| } |
| |
| // Clear all current profile for the primary apk of the given package. |
| // The location is the profile name for primary apks or the dex path for secondary dex files. |
| bool clear_primary_current_profiles(const std::string& package_name, const std::string& location) { |
| bool success = true; |
| // For secondary dex files, we don't really need the user but we use it for validity checks. |
| std::vector<userid_t> users = get_known_users(/*volume_uuid*/ nullptr); |
| for (auto user : users) { |
| success &= clear_current_profile(package_name, location, user, /*is_secondary_dex*/false); |
| } |
| return success; |
| } |
| |
| // Clear the current profile for the primary apk of the given package and user. |
| bool clear_primary_current_profile(const std::string& package_name, const std::string& location, |
| userid_t user) { |
| return clear_current_profile(package_name, location, user, /*is_secondary_dex*/false); |
| } |
| |
| // Determines which binary we should use for execution (the debug or non-debug version). |
| // e.g. dex2oatd vs dex2oat |
| static const char* select_execution_binary(const char* binary, const char* debug_binary, |
| bool background_job_compile) { |
| return select_execution_binary( |
| binary, |
| debug_binary, |
| background_job_compile, |
| is_debug_runtime(), |
| (android::base::GetProperty("ro.build.version.codename", "") == "REL"), |
| is_debuggable_build()); |
| } |
| |
| // Determines which binary we should use for execution (the debug or non-debug version). |
| // e.g. dex2oatd vs dex2oat |
| // This is convenient method which is much easier to test because it doesn't read |
| // system properties. |
| const char* select_execution_binary( |
| const char* binary, |
| const char* debug_binary, |
| bool background_job_compile, |
| bool is_debug_runtime, |
| bool is_release, |
| bool is_debuggable_build) { |
| // Do not use debug binaries for release candidates (to give more soak time). |
| bool is_debug_bg_job = background_job_compile && is_debuggable_build && !is_release; |
| |
| // If the runtime was requested to use libartd.so, we'll run the debug version - assuming |
| // the file is present (it may not be on images with very little space available). |
| bool useDebug = (is_debug_runtime || is_debug_bg_job) && (access(debug_binary, X_OK) == 0); |
| |
| return useDebug ? debug_binary : binary; |
| } |
| |
| // Namespace for Android Runtime flags applied during boot time. |
| static const char* RUNTIME_NATIVE_BOOT_NAMESPACE = "runtime_native_boot"; |
| // Feature flag name for running the JIT in Zygote experiment, b/119800099. |
| static const char* ENABLE_JITZYGOTE_IMAGE = "enable_apex_image"; |
| |
| // Phenotype property name for enabling profiling the boot class path. |
| static const char* PROFILE_BOOT_CLASS_PATH = "profilebootclasspath"; |
| |
| static bool IsBootClassPathProfilingEnable() { |
| std::string profile_boot_class_path = GetProperty("dalvik.vm.profilebootclasspath", ""); |
| profile_boot_class_path = |
| server_configurable_flags::GetServerConfigurableFlag( |
| RUNTIME_NATIVE_BOOT_NAMESPACE, |
| PROFILE_BOOT_CLASS_PATH, |
| /*default_value=*/ profile_boot_class_path); |
| return profile_boot_class_path == "true"; |
| } |
| |
| /* |
| * Whether dexopt should use a swap file when compiling an APK. |
| * |
| * If kAlwaysProvideSwapFile, do this on all devices (dex2oat will make a more informed decision |
| * itself, anyways). |
| * |
| * Otherwise, read "dalvik.vm.dex2oat-swap". If the property exists, return whether it is "true". |
| * |
| * Otherwise, return true if this is a low-mem device. |
| * |
| * Otherwise, return default value. |
| */ |
| static bool kAlwaysProvideSwapFile = false; |
| static bool kDefaultProvideSwapFile = true; |
| |
| static bool ShouldUseSwapFileForDexopt() { |
| if (kAlwaysProvideSwapFile) { |
| return true; |
| } |
| |
| // Check the "override" property. If it exists, return value == "true". |
| std::string dex2oat_prop_buf = GetProperty("dalvik.vm.dex2oat-swap", ""); |
| if (!dex2oat_prop_buf.empty()) { |
| return dex2oat_prop_buf == "true"; |
| } |
| |
| // Shortcut for default value. This is an implementation optimization for the process sketched |
| // above. If the default value is true, we can avoid to check whether this is a low-mem device, |
| // as low-mem is never returning false. The compiler will optimize this away if it can. |
| if (kDefaultProvideSwapFile) { |
| return true; |
| } |
| |
| if (GetBoolProperty("ro.config.low_ram", false)) { |
| return true; |
| } |
| |
| // Default value must be false here. |
| return kDefaultProvideSwapFile; |
| } |
| |
| static void SetDex2OatScheduling(bool set_to_bg) { |
| if (set_to_bg) { |
| if (!SetTaskProfiles(0, {"Dex2OatBootComplete"})) { |
| LOG(ERROR) << "Failed to set dex2oat task profile"; |
| exit(DexoptReturnCodes::kSetSchedPolicy); |
| } |
| if (setpriority(PRIO_PROCESS, 0, ANDROID_PRIORITY_BACKGROUND) < 0) { |
| PLOG(ERROR) << "setpriority failed"; |
| exit(DexoptReturnCodes::kSetPriority); |
| } |
| } |
| } |
| |
| static unique_fd create_profile(uid_t uid, const std::string& profile, int32_t flags, mode_t mode) { |
| unique_fd fd(TEMP_FAILURE_RETRY(open(profile.c_str(), flags, mode))); |
| if (fd.get() < 0) { |
| if (errno != EEXIST) { |
| PLOG(ERROR) << "Failed to create profile " << profile; |
| return invalid_unique_fd(); |
| } |
| } |
| // Profiles should belong to the app; make sure of that by giving ownership to |
| // the app uid. If we cannot do that, there's no point in returning the fd |
| // since dex2oat/profman will fail with SElinux denials. |
| if (fchown(fd.get(), uid, uid) < 0) { |
| PLOG(ERROR) << "Could not chown profile " << profile; |
| return invalid_unique_fd(); |
| } |
| return fd; |
| } |
| |
| static unique_fd open_profile(uid_t uid, const std::string& profile, int32_t flags, mode_t mode) { |
| // Do not follow symlinks when opening a profile: |
| // - primary profiles should not contain symlinks in their paths |
| // - secondary dex paths should have been already resolved and validated |
| flags |= O_NOFOLLOW; |
| |
| // Check if we need to create the profile |
| // Reference profiles and snapshots are created on the fly; so they might not exist beforehand. |
| unique_fd fd; |
| if ((flags & O_CREAT) != 0) { |
| fd = create_profile(uid, profile, flags, mode); |
| } else { |
| fd.reset(TEMP_FAILURE_RETRY(open(profile.c_str(), flags))); |
| } |
| |
| if (fd.get() < 0) { |
| if (errno != ENOENT) { |
| // Profiles might be missing for various reasons. For example, in a |
| // multi-user environment, the profile directory for one user can be created |
| // after we start a merge. In this case the current profile for that user |
| // will not be found. |
| // Also, the secondary dex profiles might be deleted by the app at any time, |
| // so we can't we need to prepare if they are missing. |
| PLOG(ERROR) << "Failed to open profile " << profile; |
| } |
| return invalid_unique_fd(); |
| } else { |
| // If we just create the file we need to set its mode because on Android |
| // open has a mask that only allows owner access. |
| if ((flags & O_CREAT) != 0) { |
| if (fchmod(fd.get(), mode) != 0) { |
| PLOG(ERROR) << "Could not set mode " << std::hex << mode << std::dec |
| << " on profile" << profile; |
| // Not a terminal failure. |
| } |
| } |
| } |
| |
| return fd; |
| } |
| |
| static unique_fd open_current_profile(uid_t uid, userid_t user, const std::string& package_name, |
| const std::string& location, bool is_secondary_dex) { |
| std::string profile = create_current_profile_path(user, package_name, location, |
| is_secondary_dex); |
| return open_profile(uid, profile, O_RDONLY, /*mode=*/ 0); |
| } |
| |
| static unique_fd open_reference_profile(uid_t uid, const std::string& package_name, |
| const std::string& location, bool read_write, bool is_secondary_dex) { |
| std::string profile = create_reference_profile_path(package_name, location, is_secondary_dex); |
| return open_profile( |
| uid, |
| profile, |
| read_write ? (O_CREAT | O_RDWR) : O_RDONLY, |
| S_IRUSR | S_IWUSR | S_IRGRP); // so that ART can also read it when apps run. |
| } |
| |
| static UniqueFile open_reference_profile_as_unique_file(uid_t uid, const std::string& package_name, |
| const std::string& location, bool read_write, bool is_secondary_dex) { |
| std::string profile_path = create_reference_profile_path(package_name, location, |
| is_secondary_dex); |
| unique_fd ufd = open_profile( |
| uid, |
| profile_path, |
| read_write ? (O_CREAT | O_RDWR) : O_RDONLY, |
| S_IRUSR | S_IWUSR | S_IRGRP); // so that ART can also read it when apps run. |
| |
| return UniqueFile(ufd.release(), profile_path, [](const std::string& path) { |
| clear_profile(path); |
| }); |
| } |
| |
| static unique_fd open_snapshot_profile(uid_t uid, const std::string& package_name, |
| const std::string& location) { |
| std::string profile = create_snapshot_profile_path(package_name, location); |
| return open_profile(uid, profile, O_CREAT | O_RDWR | O_TRUNC, S_IRUSR | S_IWUSR); |
| } |
| |
| static void open_profile_files(uid_t uid, const std::string& package_name, |
| const std::string& location, bool is_secondary_dex, |
| /*out*/ std::vector<unique_fd>* profiles_fd, /*out*/ unique_fd* reference_profile_fd) { |
| // Open the reference profile in read-write mode as profman might need to save the merge. |
| *reference_profile_fd = open_reference_profile(uid, package_name, location, |
| /*read_write*/ true, is_secondary_dex); |
| |
| // For secondary dex files, we don't really need the user but we use it for validity checks. |
| // Note: the user owning the dex file should be the current user. |
| std::vector<userid_t> users; |
| if (is_secondary_dex){ |
| users.push_back(multiuser_get_user_id(uid)); |
| } else { |
| users = get_known_users(/*volume_uuid*/ nullptr); |
| } |
| for (auto user : users) { |
| unique_fd profile_fd = open_current_profile(uid, user, package_name, location, |
| is_secondary_dex); |
| // Add to the lists only if both fds are valid. |
| if (profile_fd.get() >= 0) { |
| profiles_fd->push_back(std::move(profile_fd)); |
| } |
| } |
| } |
| |
| // Cleans up an output file specified by a file descriptor. This function should be called whenever |
| // a subprocess that modifies a system-managed file crashes. |
| // If the subprocess crashes while it's writing to the file, the file is likely corrupted, so we |
| // should remove it. |
| // If the subprocess times out and is killed while it's acquiring a flock on the file, there is |
| // probably a deadlock, so it's also good to remove the file so that later operations won't |
| // encounter the same problem. It's safe to do so because the process that is holding the flock will |
| // still have access to the file until the file descriptor is closed. |
| // Note that we can't do `clear_reference_profile` here even if the fd points to a reference profile |
| // because that also requires a flock and is therefore likely to be stuck in the second case. |
| static bool cleanup_output_fd(int fd) { |
| std::string path; |
| bool ret = remove_file_at_fd(fd, &path); |
| if (ret) { |
| LOG(INFO) << "Removed file at path " << path; |
| } |
| return ret; |
| } |
| |
| static constexpr int PROFMAN_BIN_RETURN_CODE_SUCCESS = 0; |
| static constexpr int PROFMAN_BIN_RETURN_CODE_COMPILE = 1; |
| static constexpr int PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION_NOT_ENOUGH_DELTA = 2; |
| static constexpr int PROFMAN_BIN_RETURN_CODE_BAD_PROFILES = 3; |
| static constexpr int PROFMAN_BIN_RETURN_CODE_ERROR_IO = 4; |
| static constexpr int PROFMAN_BIN_RETURN_CODE_ERROR_LOCKING = 5; |
| static constexpr int PROFMAN_BIN_RETURN_CODE_ERROR_DIFFERENT_VERSIONS = 6; |
| static constexpr int PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION_EMPTY_PROFILES = 7; |
| |
| class RunProfman : public ExecVHelper { |
| public: |
| template <typename T, typename U> |
| void SetupArgs(const std::vector<T>& profile_fds, |
| const unique_fd& reference_profile_fd, |
| const std::vector<U>& apk_fds, |
| const std::vector<std::string>& dex_locations, |
| bool copy_and_update, |
| bool for_snapshot, |
| bool for_boot_image) { |
| |
| // TODO(calin): Assume for now we run in the bg compile job (which is in |
| // most of the invocation). With the current data flow, is not very easy or |
| // clean to discover this in RunProfman (it will require quite a messy refactoring). |
| const char* profman_bin = select_execution_binary( |
| kProfmanPath, kProfmanDebugPath, /*background_job_compile=*/ true); |
| |
| if (copy_and_update) { |
| CHECK_EQ(1u, profile_fds.size()); |
| CHECK_EQ(1u, apk_fds.size()); |
| } |
| if (reference_profile_fd != -1) { |
| AddArg("--reference-profile-file-fd=" + std::to_string(reference_profile_fd.get())); |
| } |
| |
| for (const T& fd : profile_fds) { |
| AddArg("--profile-file-fd=" + std::to_string(fd.get())); |
| } |
| |
| for (const U& fd : apk_fds) { |
| AddArg("--apk-fd=" + std::to_string(fd.get())); |
| } |
| |
| for (const std::string& dex_location : dex_locations) { |
| AddArg("--dex-location=" + dex_location); |
| } |
| |
| if (copy_and_update) { |
| AddArg("--copy-and-update-profile-key"); |
| } |
| |
| if (for_snapshot) { |
| AddArg("--force-merge"); |
| } |
| |
| if (for_boot_image) { |
| AddArg("--boot-image-merge"); |
| } |
| |
| // The percent won't exceed 100, otherwise, don't set it and use the |
| // default one set in profman. |
| uint32_t min_new_classes_percent_change = ::android::base::GetUintProperty<uint32_t>( |
| "dalvik.vm.bgdexopt.new-classes-percent", |
| /*default*/std::numeric_limits<uint32_t>::max()); |
| if (min_new_classes_percent_change <= 100) { |
| AddArg("--min-new-classes-percent-change=" + |
| std::to_string(min_new_classes_percent_change)); |
| } |
| |
| // The percent won't exceed 100, otherwise, don't set it and use the |
| // default one set in profman. |
| uint32_t min_new_methods_percent_change = ::android::base::GetUintProperty<uint32_t>( |
| "dalvik.vm.bgdexopt.new-methods-percent", |
| /*default*/std::numeric_limits<uint32_t>::max()); |
| if (min_new_methods_percent_change <= 100) { |
| AddArg("--min-new-methods-percent-change=" + |
| std::to_string(min_new_methods_percent_change)); |
| } |
| |
| // Do not add after dex2oat_flags, they should override others for debugging. |
| PrepareArgs(profman_bin); |
| } |
| |
| void SetupMerge(const std::vector<unique_fd>& profiles_fd, |
| const unique_fd& reference_profile_fd, |
| const std::vector<unique_fd>& apk_fds = std::vector<unique_fd>(), |
| const std::vector<std::string>& dex_locations = std::vector<std::string>(), |
| bool for_snapshot = false, |
| bool for_boot_image = false) { |
| SetupArgs(profiles_fd, |
| reference_profile_fd, |
| apk_fds, |
| dex_locations, |
| /*copy_and_update=*/ false, |
| for_snapshot, |
| for_boot_image); |
| } |
| |
| void SetupCopyAndUpdate(const unique_fd& profile_fd, |
| const unique_fd& reference_profile_fd, |
| const unique_fd& apk_fd, |
| const std::string& dex_location) { |
| SetupArgs(std::vector<borrowed_fd>{profile_fd}, |
| reference_profile_fd, |
| std::vector<borrowed_fd>{apk_fd}, |
| {dex_location}, |
| /*copy_and_update=*/true, |
| /*for_snapshot*/false, |
| /*for_boot_image*/false); |
| } |
| |
| void SetupDump(const std::vector<unique_fd>& profiles_fd, |
| const unique_fd& reference_profile_fd, |
| const std::vector<std::string>& dex_locations, |
| const std::vector<unique_fd>& apk_fds, |
| const unique_fd& output_fd) { |
| AddArg("--dump-only"); |
| AddArg(StringPrintf("--dump-output-to-fd=%d", output_fd.get())); |
| SetupArgs(profiles_fd, |
| reference_profile_fd, |
| apk_fds, |
| dex_locations, |
| /*copy_and_update=*/false, |
| /*for_snapshot*/false, |
| /*for_boot_image*/false); |
| } |
| |
| using ExecVHelper::Exec; // To suppress -Wno-overloaded-virtual |
| void Exec() { |
| ExecVHelper::Exec(DexoptReturnCodes::kProfmanExec); |
| } |
| }; |
| |
| static int analyze_profiles(uid_t uid, const std::string& package_name, |
| const std::string& location, bool is_secondary_dex) { |
| std::vector<unique_fd> profiles_fd; |
| unique_fd reference_profile_fd; |
| open_profile_files(uid, package_name, location, is_secondary_dex, |
| &profiles_fd, &reference_profile_fd); |
| if (profiles_fd.empty() || (reference_profile_fd.get() < 0)) { |
| // Skip profile guided compilation because no profiles were found. |
| // Or if the reference profile info couldn't be opened. |
| return PROFILES_ANALYSIS_DONT_OPTIMIZE_EMPTY_PROFILES; |
| } |
| |
| RunProfman profman_merge; |
| const std::vector<unique_fd>& apk_fds = std::vector<unique_fd>(); |
| const std::vector<std::string>& dex_locations = std::vector<std::string>(); |
| profman_merge.SetupMerge( |
| profiles_fd, |
| reference_profile_fd, |
| apk_fds, |
| dex_locations, |
| /* for_snapshot= */ false, |
| IsBootClassPathProfilingEnable()); |
| pid_t pid = fork(); |
| if (pid == 0) { |
| /* child -- drop privileges before continuing */ |
| drop_capabilities(uid); |
| profman_merge.Exec(); |
| } |
| /* parent */ |
| int return_code = wait_child_with_timeout(pid, kShortTimeoutMs); |
| bool need_to_compile = false; |
| bool empty_profiles = false; |
| bool should_clear_current_profiles = false; |
| bool should_clear_reference_profile = false; |
| if (!WIFEXITED(return_code)) { |
| LOG(WARNING) << "profman failed for location " << location << ": " << return_code; |
| cleanup_output_fd(reference_profile_fd.get()); |
| } else { |
| return_code = WEXITSTATUS(return_code); |
| switch (return_code) { |
| case PROFMAN_BIN_RETURN_CODE_COMPILE: |
| need_to_compile = true; |
| should_clear_current_profiles = true; |
| should_clear_reference_profile = false; |
| break; |
| case PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION_NOT_ENOUGH_DELTA: |
| need_to_compile = false; |
| should_clear_current_profiles = false; |
| should_clear_reference_profile = false; |
| break; |
| case PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION_EMPTY_PROFILES: |
| need_to_compile = false; |
| empty_profiles = true; |
| should_clear_current_profiles = false; |
| should_clear_reference_profile = false; |
| break; |
| case PROFMAN_BIN_RETURN_CODE_BAD_PROFILES: |
| LOG(WARNING) << "Bad profiles for location " << location; |
| need_to_compile = false; |
| should_clear_current_profiles = true; |
| should_clear_reference_profile = true; |
| break; |
| case PROFMAN_BIN_RETURN_CODE_ERROR_IO: // fall-through |
| case PROFMAN_BIN_RETURN_CODE_ERROR_LOCKING: |
| // Temporary IO problem (e.g. locking). Ignore but log a warning. |
| LOG(WARNING) << "IO error while reading profiles for location " << location; |
| need_to_compile = false; |
| should_clear_current_profiles = false; |
| should_clear_reference_profile = false; |
| break; |
| case PROFMAN_BIN_RETURN_CODE_ERROR_DIFFERENT_VERSIONS: |
| need_to_compile = false; |
| should_clear_current_profiles = true; |
| should_clear_reference_profile = true; |
| break; |
| default: |
| // Unknown return code or error. Unlink profiles. |
| LOG(WARNING) << "Unexpected error code while processing profiles for location " |
| << location << ": " << return_code; |
| need_to_compile = false; |
| should_clear_current_profiles = true; |
| should_clear_reference_profile = true; |
| break; |
| } |
| } |
| |
| if (should_clear_current_profiles) { |
| if (is_secondary_dex) { |
| // For secondary dex files, the owning user is the current user. |
| clear_current_profile(package_name, location, multiuser_get_user_id(uid), |
| is_secondary_dex); |
| } else { |
| clear_primary_current_profiles(package_name, location); |
| } |
| } |
| if (should_clear_reference_profile) { |
| clear_reference_profile(package_name, location, is_secondary_dex); |
| } |
| int result = 0; |
| if (need_to_compile) { |
| result = PROFILES_ANALYSIS_OPTIMIZE; |
| } else if (empty_profiles) { |
| result = PROFILES_ANALYSIS_DONT_OPTIMIZE_EMPTY_PROFILES; |
| } else { |
| result = PROFILES_ANALYSIS_DONT_OPTIMIZE_SMALL_DELTA; |
| } |
| return result; |
| } |
| |
| // Decides if profile guided compilation is needed or not based on existing profiles. |
| // The analysis is done for a single profile name (which corresponds to a single code path). |
| // |
| // Returns PROFILES_ANALYSIS_OPTIMIZE if there is enough information in the current profiles |
| // that makes it worth to recompile the package. |
| // If the return value is PROFILES_ANALYSIS_OPTIMIZE all the current profiles would have been |
| // merged into the reference profiles accessible with open_reference_profile(). |
| // |
| // Return PROFILES_ANALYSIS_DONT_OPTIMIZE_SMALL_DELTA if the package should not optimize. |
| // As a special case returns PROFILES_ANALYSIS_DONT_OPTIMIZE_EMPTY_PROFILES if all profiles are |
| // empty. |
| int analyze_primary_profiles(uid_t uid, const std::string& package_name, |
| const std::string& profile_name) { |
| return analyze_profiles(uid, package_name, profile_name, /*is_secondary_dex*/false); |
| } |
| |
| bool dump_profiles(int32_t uid, const std::string& pkgname, const std::string& profile_name, |
| const std::string& code_path) { |
| std::vector<unique_fd> profile_fds; |
| unique_fd reference_profile_fd; |
| std::string out_file_name = StringPrintf("/data/misc/profman/%s-%s.txt", |
| pkgname.c_str(), profile_name.c_str()); |
| |
| open_profile_files(uid, pkgname, profile_name, /*is_secondary_dex*/false, |
| &profile_fds, &reference_profile_fd); |
| |
| const bool has_reference_profile = (reference_profile_fd.get() != -1); |
| const bool has_profiles = !profile_fds.empty(); |
| |
| if (!has_reference_profile && !has_profiles) { |
| LOG(ERROR) << "profman dump: no profiles to dump for " << pkgname; |
| return false; |
| } |
| |
| unique_fd output_fd(open(out_file_name.c_str(), |
| O_WRONLY | O_CREAT | O_TRUNC | O_NOFOLLOW, 0644)); |
| if (fchmod(output_fd, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH) < 0) { |
| LOG(ERROR) << "installd cannot chmod file for dump_profile" << out_file_name; |
| return false; |
| } |
| |
| std::vector<std::string> dex_locations; |
| std::vector<unique_fd> apk_fds; |
| unique_fd apk_fd(open(code_path.c_str(), O_RDONLY | O_NOFOLLOW)); |
| if (apk_fd == -1) { |
| PLOG(ERROR) << "installd cannot open " << code_path.c_str(); |
| return false; |
| } |
| dex_locations.push_back(Basename(code_path)); |
| apk_fds.push_back(std::move(apk_fd)); |
| |
| |
| RunProfman profman_dump; |
| profman_dump.SetupDump(profile_fds, reference_profile_fd, dex_locations, apk_fds, output_fd); |
| pid_t pid = fork(); |
| if (pid == 0) { |
| /* child -- drop privileges before continuing */ |
| drop_capabilities(uid); |
| profman_dump.Exec(); |
| } |
| /* parent */ |
| int return_code = wait_child_with_timeout(pid, kShortTimeoutMs); |
| if (!WIFEXITED(return_code)) { |
| LOG(WARNING) << "profman failed for package " << pkgname << ": " << return_code; |
| cleanup_output_fd(output_fd.get()); |
| return false; |
| } |
| return true; |
| } |
| |
| bool copy_system_profile(const std::string& system_profile, |
| uid_t packageUid, const std::string& package_name, const std::string& profile_name) { |
| unique_fd in_fd(open(system_profile.c_str(), O_RDONLY | O_NOFOLLOW | O_CLOEXEC)); |
| unique_fd out_fd(open_reference_profile(packageUid, |
| package_name, |
| profile_name, |
| /*read_write*/ true, |
| /*secondary*/ false)); |
| if (in_fd.get() < 0) { |
| PLOG(WARNING) << "Could not open profile " << system_profile; |
| return false; |
| } |
| if (out_fd.get() < 0) { |
| PLOG(WARNING) << "Could not open profile " << package_name; |
| return false; |
| } |
| |
| // As a security measure we want to write the profile information with the reduced capabilities |
| // of the package user id. So we fork and drop capabilities in the child. |
| pid_t pid = fork(); |
| if (pid == 0) { |
| /* child -- drop privileges before continuing */ |
| drop_capabilities(packageUid); |
| |
| if (flock(out_fd.get(), LOCK_EX | LOCK_NB) != 0) { |
| if (errno != EWOULDBLOCK) { |
| async_safe_format_log(ANDROID_LOG_WARN, LOG_TAG, "Error locking profile %s: %d", |
| package_name.c_str(), errno); |
| } |
| // This implies that the app owning this profile is running |
| // (and has acquired the lock). |
| // |
| // The app never acquires the lock for the reference profiles of primary apks. |
| // Only dex2oat from installd will do that. Since installd is single threaded |
| // we should not see this case. Nevertheless be prepared for it. |
| async_safe_format_log(ANDROID_LOG_WARN, LOG_TAG, "Failed to flock %s: %d", |
| package_name.c_str(), errno); |
| return false; |
| } |
| |
| bool truncated = ftruncate(out_fd.get(), 0) == 0; |
| if (!truncated) { |
| async_safe_format_log(ANDROID_LOG_WARN, LOG_TAG, "Could not truncate %s: %d", |
| package_name.c_str(), errno); |
| } |
| |
| // Copy over data. |
| static constexpr size_t kBufferSize = 4 * 1024; |
| char buffer[kBufferSize]; |
| while (true) { |
| ssize_t bytes = read(in_fd.get(), buffer, kBufferSize); |
| if (bytes == 0) { |
| break; |
| } |
| write(out_fd.get(), buffer, bytes); |
| } |
| if (flock(out_fd.get(), LOCK_UN) != 0) { |
| async_safe_format_log(ANDROID_LOG_WARN, LOG_TAG, "Error unlocking profile %s: %d", |
| package_name.c_str(), errno); |
| } |
| // Use _exit since we don't want to run the global destructors in the child. |
| // b/62597429 |
| _exit(0); |
| } |
| /* parent */ |
| int return_code = wait_child_with_timeout(pid, kShortTimeoutMs); |
| if (!WIFEXITED(return_code)) { |
| cleanup_output_fd(out_fd.get()); |
| return false; |
| } |
| return return_code == 0; |
| } |
| |
| static std::string replace_file_extension(const std::string& oat_path, const std::string& new_ext) { |
| // A standard dalvik-cache entry. Replace ".dex" with `new_ext`. |
| if (EndsWith(oat_path, ".dex")) { |
| std::string new_path = oat_path; |
| new_path.replace(new_path.length() - strlen(".dex"), strlen(".dex"), new_ext); |
| CHECK(EndsWith(new_path, new_ext)); |
| return new_path; |
| } |
| |
| // An odex entry. Not that this may not be an extension, e.g., in the OTA |
| // case (where the base name will have an extension for the B artifact). |
| size_t odex_pos = oat_path.rfind(".odex"); |
| if (odex_pos != std::string::npos) { |
| std::string new_path = oat_path; |
| new_path.replace(odex_pos, strlen(".odex"), new_ext); |
| CHECK_NE(new_path.find(new_ext), std::string::npos); |
| return new_path; |
| } |
| |
| // Don't know how to handle this. |
| return ""; |
| } |
| |
| // Translate the given oat path to an art (app image) path. An empty string |
| // denotes an error. |
| static std::string create_image_filename(const std::string& oat_path) { |
| return replace_file_extension(oat_path, ".art"); |
| } |
| |
| // Translate the given oat path to a vdex path. An empty string denotes an error. |
| static std::string create_vdex_filename(const std::string& oat_path) { |
| return replace_file_extension(oat_path, ".vdex"); |
| } |
| |
| static int open_output_file(const char* file_name, bool recreate, int permissions) { |
| int flags = O_RDWR | O_CREAT; |
| if (recreate) { |
| if (unlink(file_name) < 0) { |
| if (errno != ENOENT) { |
| PLOG(ERROR) << "open_output_file: Couldn't unlink " << file_name; |
| } |
| } |
| flags |= O_EXCL; |
| } |
| return open(file_name, flags, permissions); |
| } |
| |
| static bool set_permissions_and_ownership( |
| int fd, bool is_public, int uid, const char* path, bool is_secondary_dex) { |
| // Primary apks are owned by the system. Secondary dex files are owned by the app. |
| int owning_uid = is_secondary_dex ? uid : AID_SYSTEM; |
| if (fchmod(fd, |
| S_IRUSR|S_IWUSR|S_IRGRP | |
| (is_public ? S_IROTH : 0)) < 0) { |
| ALOGE("installd cannot chmod '%s' during dexopt\n", path); |
| return false; |
| } else if (fchown(fd, owning_uid, uid) < 0) { |
| ALOGE("installd cannot chown '%s' during dexopt\n", path); |
| return false; |
| } |
| return true; |
| } |
| |
| static bool IsOutputDalvikCache(const char* oat_dir) { |
| // InstallerConnection.java (which invokes installd) transforms Java null arguments |
| // into '!'. Play it safe by handling it both. |
| // TODO: ensure we never get null. |
| // TODO: pass a flag instead of inferring if the output is dalvik cache. |
| return oat_dir == nullptr || oat_dir[0] == '!'; |
| } |
| |
| // Best-effort check whether we can fit the the path into our buffers. |
| // Note: the cache path will require an additional 5 bytes for ".swap", but we'll try to run |
| // without a swap file, if necessary. Reference profiles file also add an extra ".prof" |
| // extension to the cache path (5 bytes). |
| // TODO(calin): move away from char* buffers and PKG_PATH_MAX. |
| static bool validate_dex_path_size(const std::string& dex_path) { |
| if (dex_path.size() >= (PKG_PATH_MAX - 8)) { |
| LOG(ERROR) << "dex_path too long: " << dex_path; |
| return false; |
| } |
| return true; |
| } |
| |
| static bool create_oat_out_path(const char* apk_path, const char* instruction_set, |
| const char* oat_dir, bool is_secondary_dex, /*out*/ char* out_oat_path) { |
| if (!validate_dex_path_size(apk_path)) { |
| return false; |
| } |
| |
| if (!IsOutputDalvikCache(oat_dir)) { |
| // Oat dirs for secondary dex files are already validated. |
| if (!is_secondary_dex && validate_apk_path(oat_dir)) { |
| ALOGE("cannot validate apk path with oat_dir '%s'\n", oat_dir); |
| return false; |
| } |
| if (!calculate_oat_file_path(out_oat_path, oat_dir, apk_path, instruction_set)) { |
| return false; |
| } |
| } else { |
| if (!create_cache_path(out_oat_path, apk_path, instruction_set)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // (re)Creates the app image if needed. |
| RestorableFile maybe_open_app_image(const std::string& out_oat_path, bool generate_app_image, |
| bool is_public, int uid, bool is_secondary_dex) { |
| const std::string image_path = create_image_filename(out_oat_path); |
| if (image_path.empty()) { |
| // Happens when the out_oat_path has an unknown extension. |
| return RestorableFile(); |
| } |
| |
| // Not enabled, exit. |
| if (!generate_app_image) { |
| RestorableFile::RemoveAllFiles(image_path); |
| return RestorableFile(); |
| } |
| std::string app_image_format = GetProperty("dalvik.vm.appimageformat", ""); |
| if (app_image_format.empty()) { |
| RestorableFile::RemoveAllFiles(image_path); |
| return RestorableFile(); |
| } |
| // If the app is already running and we modify the image file, it can cause crashes |
| // (b/27493510). |
| RestorableFile image_file = RestorableFile::CreateWritableFile(image_path, |
| /*permissions*/ 0600); |
| if (image_file.fd() < 0) { |
| // Could not create application image file. Go on since we can compile without it. |
| LOG(ERROR) << "installd could not create '" << image_path |
| << "' for image file during dexopt"; |
| // If we have a valid image file path but cannot create tmp file, reset it. |
| image_file.reset(); |
| } else if (!set_permissions_and_ownership( |
| image_file.fd(), is_public, uid, image_path.c_str(), is_secondary_dex)) { |
| ALOGE("installd cannot set owner '%s' for image during dexopt\n", image_path.c_str()); |
| image_file.reset(); |
| } |
| |
| return image_file; |
| } |
| |
| // Creates the dexopt swap file if necessary and return its fd. |
| // Returns -1 if there's no need for a swap or in case of errors. |
| unique_fd maybe_open_dexopt_swap_file(const std::string& out_oat_path) { |
| if (!ShouldUseSwapFileForDexopt()) { |
| return invalid_unique_fd(); |
| } |
| auto swap_file_name = out_oat_path + ".swap"; |
| unique_fd swap_fd(open_output_file( |
| swap_file_name.c_str(), /*recreate*/true, /*permissions*/0600)); |
| if (swap_fd.get() < 0) { |
| // Could not create swap file. Optimistically go on and hope that we can compile |
| // without it. |
| ALOGE("installd could not create '%s' for swap during dexopt\n", swap_file_name.c_str()); |
| } else { |
| // Immediately unlink. We don't really want to hit flash. |
| if (unlink(swap_file_name.c_str()) < 0) { |
| PLOG(ERROR) << "Couldn't unlink swap file " << swap_file_name; |
| } |
| } |
| return swap_fd; |
| } |
| |
| // Opens the reference profiles if needed. |
| // Note that the reference profile might not exist so it's OK if the fd will be -1. |
| UniqueFile maybe_open_reference_profile(const std::string& pkgname, |
| const std::string& dex_path, const char* profile_name, bool profile_guided, |
| bool is_public, int uid, bool is_secondary_dex) { |
| // If we are not profile guided compilation, or we are compiling system server |
| // do not bother to open the profiles; we won't be using them. |
| if (!profile_guided || (pkgname[0] == '*')) { |
| return UniqueFile(); |
| } |
| |
| // If this is a secondary dex path which is public do not open the profile. |
| // We cannot compile public secondary dex paths with profiles. That's because |
| // it will expose how the dex files are used by their owner. |
| // |
| // Note that the PackageManager is responsible to set the is_public flag for |
| // primary apks and we do not check it here. In some cases, e.g. when |
| // compiling with a public profile from the .dm file the PackageManager will |
| // set is_public toghether with the profile guided compilation. |
| if (is_secondary_dex && is_public) { |
| return UniqueFile(); |
| } |
| |
| // Open reference profile in read only mode as dex2oat does not get write permissions. |
| std::string location; |
| if (is_secondary_dex) { |
| location = dex_path; |
| } else { |
| if (profile_name == nullptr) { |
| // This path is taken for system server re-compilation lunched from ZygoteInit. |
| return UniqueFile(); |
| } else { |
| location = profile_name; |
| } |
| } |
| return open_reference_profile_as_unique_file(uid, pkgname, location, /*read_write*/false, |
| is_secondary_dex); |
| } |
| |
| // Opens the vdex files and assigns the input fd to in_vdex_wrapper and the output fd to |
| // out_vdex_wrapper. Returns true for success or false in case of errors. |
| bool open_vdex_files_for_dex2oat(const char* apk_path, const char* out_oat_path, int dexopt_needed, |
| const char* instruction_set, bool is_public, int uid, |
| bool is_secondary_dex, bool profile_guided, |
| UniqueFile* in_vdex_wrapper, RestorableFile* out_vdex_wrapper) { |
| CHECK(in_vdex_wrapper != nullptr); |
| CHECK(out_vdex_wrapper != nullptr); |
| // Open the existing VDEX. We do this before creating the new output VDEX, which will |
| // unlink the old one. |
| char in_odex_path[PKG_PATH_MAX]; |
| int dexopt_action = abs(dexopt_needed); |
| bool is_odex_location = dexopt_needed < 0; |
| |
| // Infer the name of the output VDEX. |
| const std::string out_vdex_path_str = create_vdex_filename(out_oat_path); |
| if (out_vdex_path_str.empty()) { |
| return false; |
| } |
| |
| // Create work file first. All files will be deleted when it fails. |
| *out_vdex_wrapper = RestorableFile::CreateWritableFile(out_vdex_path_str, |
| /*permissions*/ 0644); |
| if (out_vdex_wrapper->fd() < 0) { |
| ALOGE("installd cannot open vdex '%s' during dexopt\n", out_vdex_path_str.c_str()); |
| return false; |
| } |
| |
| bool update_vdex_in_place = false; |
| if (dexopt_action != DEX2OAT_FROM_SCRATCH) { |
| // Open the possibly existing vdex. If none exist, we pass -1 to dex2oat for input-vdex-fd. |
| const char* path = nullptr; |
| if (is_odex_location) { |
| if (calculate_odex_file_path(in_odex_path, apk_path, instruction_set)) { |
| path = in_odex_path; |
| } else { |
| ALOGE("installd cannot compute input vdex location for '%s'\n", apk_path); |
| return false; |
| } |
| } else { |
| path = out_oat_path; |
| } |
| std::string in_vdex_path_str = create_vdex_filename(path); |
| if (in_vdex_path_str.empty()) { |
| ALOGE("installd cannot compute input vdex location for '%s'\n", path); |
| return false; |
| } |
| // We can update in place when all these conditions are met: |
| // 1) The vdex location to write to is the same as the vdex location to read (vdex files |
| // on /system typically cannot be updated in place). |
| // 2) We dex2oat due to boot image change, because we then know the existing vdex file |
| // cannot be currently used by a running process. |
| // 3) We are not doing a profile guided compilation, because dexlayout requires two |
| // different vdex files to operate. |
| update_vdex_in_place = |
| (in_vdex_path_str == out_vdex_path_str) && |
| (dexopt_action == DEX2OAT_FOR_BOOT_IMAGE) && |
| !profile_guided; |
| if (update_vdex_in_place) { |
| // dex2oat marks it invalid anyway. So delete it and set work file fd. |
| unlink(in_vdex_path_str.c_str()); |
| // Open the file read-write to be able to update it. |
| in_vdex_wrapper->reset(out_vdex_wrapper->fd(), in_vdex_path_str); |
| // Disable auto close for the in wrapper fd (it will be done when destructing the out |
| // wrapper). |
| in_vdex_wrapper->DisableAutoClose(); |
| } else { |
| in_vdex_wrapper->reset(open(in_vdex_path_str.c_str(), O_RDONLY, 0), |
| in_vdex_path_str); |
| } |
| } |
| |
| if (!set_permissions_and_ownership(out_vdex_wrapper->fd(), is_public, uid, |
| out_vdex_path_str.c_str(), is_secondary_dex)) { |
| ALOGE("installd cannot set owner '%s' for vdex during dexopt\n", out_vdex_path_str.c_str()); |
| return false; |
| } |
| |
| // If we got here we successfully opened the vdex files. |
| return true; |
| } |
| |
| // Opens the output oat file for the given apk. |
| RestorableFile open_oat_out_file(const char* apk_path, const char* oat_dir, bool is_public, int uid, |
| const char* instruction_set, bool is_secondary_dex) { |
| char out_oat_path[PKG_PATH_MAX]; |
| if (!create_oat_out_path(apk_path, instruction_set, oat_dir, is_secondary_dex, out_oat_path)) { |
| return RestorableFile(); |
| } |
| RestorableFile oat = RestorableFile::CreateWritableFile(out_oat_path, /*permissions*/ 0644); |
| if (oat.fd() < 0) { |
| PLOG(ERROR) << "installd cannot open output during dexopt" << out_oat_path; |
| } else if (!set_permissions_and_ownership( |
| oat.fd(), is_public, uid, out_oat_path, is_secondary_dex)) { |
| ALOGE("installd cannot set owner '%s' for output during dexopt\n", out_oat_path); |
| oat.reset(); |
| } |
| return oat; |
| } |
| |
| // Creates RDONLY fds for oat and vdex files, if exist. |
| // Returns false if it fails to create oat out path for the given apk path. |
| // Note that the method returns true even if the files could not be opened. |
| bool maybe_open_oat_and_vdex_file(const std::string& apk_path, |
| const std::string& oat_dir, |
| const std::string& instruction_set, |
| bool is_secondary_dex, |
| unique_fd* oat_file_fd, |
| unique_fd* vdex_file_fd) { |
| char oat_path[PKG_PATH_MAX]; |
| if (!create_oat_out_path(apk_path.c_str(), |
| instruction_set.c_str(), |
| oat_dir.c_str(), |
| is_secondary_dex, |
| oat_path)) { |
| LOG(ERROR) << "Could not create oat out path for " |
| << apk_path << " with oat dir " << oat_dir; |
| return false; |
| } |
| oat_file_fd->reset(open(oat_path, O_RDONLY)); |
| if (oat_file_fd->get() < 0) { |
| PLOG(INFO) << "installd cannot open oat file during dexopt" << oat_path; |
| } |
| |
| std::string vdex_filename = create_vdex_filename(oat_path); |
| vdex_file_fd->reset(open(vdex_filename.c_str(), O_RDONLY)); |
| if (vdex_file_fd->get() < 0) { |
| PLOG(INFO) << "installd cannot open vdex file during dexopt" << vdex_filename; |
| } |
| |
| return true; |
| } |
| |
| // Runs (execv) dexoptanalyzer on the given arguments. |
| // The analyzer will check if the dex_file needs to be (re)compiled to match the compiler_filter. |
| // If this is for a profile guided compilation, profile_was_updated will tell whether or not |
| // the profile has changed. |
| class RunDexoptAnalyzer : public ExecVHelper { |
| public: |
| RunDexoptAnalyzer(const std::string& dex_file, |
| int vdex_fd, |
| int oat_fd, |
| int zip_fd, |
| const std::string& instruction_set, |
| const std::string& compiler_filter, |
| int profile_analysis_result, |
| bool downgrade, |
| const char* class_loader_context, |
| const std::string& class_loader_context_fds) { |
| CHECK_GE(zip_fd, 0); |
| |
| // We always run the analyzer in the background job. |
| const char* dexoptanalyzer_bin = select_execution_binary( |
| kDexoptanalyzerPath, kDexoptanalyzerDebugPath, /*background_job_compile=*/ true); |
| |
| std::string dex_file_arg = "--dex-file=" + dex_file; |
| std::string oat_fd_arg = "--oat-fd=" + std::to_string(oat_fd); |
| std::string vdex_fd_arg = "--vdex-fd=" + std::to_string(vdex_fd); |
| std::string zip_fd_arg = "--zip-fd=" + std::to_string(zip_fd); |
| std::string isa_arg = "--isa=" + instruction_set; |
| std::string compiler_filter_arg = "--compiler-filter=" + compiler_filter; |
| std::string profile_analysis_arg = "--profile-analysis-result=" |
| + std::to_string(profile_analysis_result); |
| const char* downgrade_flag = "--downgrade"; |
| std::string class_loader_context_arg = "--class-loader-context="; |
| if (class_loader_context != nullptr) { |
| class_loader_context_arg += class_loader_context; |
| } |
| std::string class_loader_context_fds_arg = "--class-loader-context-fds="; |
| if (!class_loader_context_fds.empty()) { |
| class_loader_context_fds_arg += class_loader_context_fds; |
| } |
| |
| // program name, dex file, isa, filter |
| AddArg(dex_file_arg); |
| AddArg(isa_arg); |
| AddArg(compiler_filter_arg); |
| if (oat_fd >= 0) { |
| AddArg(oat_fd_arg); |
| } |
| if (vdex_fd >= 0) { |
| AddArg(vdex_fd_arg); |
| } |
| AddArg(zip_fd_arg); |
| AddArg(profile_analysis_arg); |
| |
| if (downgrade) { |
| AddArg(downgrade_flag); |
| } |
| if (class_loader_context != nullptr) { |
| AddArg(class_loader_context_arg); |
| if (!class_loader_context_fds.empty()) { |
| AddArg(class_loader_context_fds_arg); |
| } |
| } |
| |
| // On-device signing related. odsign sets the system property odsign.verification.success if |
| // AOT artifacts have the expected signatures. |
| const bool trust_art_apex_data_files = |
| ::android::base::GetBoolProperty("odsign.verification.success", false); |
| if (!trust_art_apex_data_files) { |
| AddRuntimeArg("-Xdeny-art-apex-data-files"); |
| } |
| |
| PrepareArgs(dexoptanalyzer_bin); |
| } |
| |
| // Dexoptanalyzer mode which flattens the given class loader context and |
| // prints a list of its dex files in that flattened order. |
| RunDexoptAnalyzer(const char* class_loader_context) { |
| CHECK(class_loader_context != nullptr); |
| |
| // We always run the analyzer in the background job. |
| const char* dexoptanalyzer_bin = select_execution_binary( |
| kDexoptanalyzerPath, kDexoptanalyzerDebugPath, /*background_job_compile=*/ true); |
| |
| AddArg("--flatten-class-loader-context"); |
| AddArg(std::string("--class-loader-context=") + class_loader_context); |
| PrepareArgs(dexoptanalyzer_bin); |
| } |
| }; |
| |
| // Prepares the oat dir for the secondary dex files. |
| static bool prepare_secondary_dex_oat_dir(const std::string& dex_path, int uid, |
| const char* instruction_set) { |
| unsigned long dirIndex = dex_path.rfind('/'); |
| if (dirIndex == std::string::npos) { |
| LOG(ERROR ) << "Unexpected dir structure for secondary dex " << dex_path; |
| return false; |
| } |
| std::string dex_dir = dex_path.substr(0, dirIndex); |
| |
| // Create oat file output directory. |
| mode_t oat_dir_mode = S_IRWXU | S_IRWXG | S_IXOTH; |
| if (prepare_app_cache_dir(dex_dir, "oat", oat_dir_mode, uid, uid) != 0) { |
| LOG(ERROR) << "Could not prepare oat dir for secondary dex: " << dex_path; |
| return false; |
| } |
| |
| char oat_dir[PKG_PATH_MAX]; |
| snprintf(oat_dir, PKG_PATH_MAX, "%s/oat", dex_dir.c_str()); |
| |
| if (prepare_app_cache_dir(oat_dir, instruction_set, oat_dir_mode, uid, uid) != 0) { |
| LOG(ERROR) << "Could not prepare oat/isa dir for secondary dex: " << dex_path; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Return codes for identifying the reason why dexoptanalyzer was not invoked when processing |
| // secondary dex files. This return codes are returned by the child process created for |
| // analyzing secondary dex files in process_secondary_dex_dexopt. |
| |
| enum DexoptAnalyzerSkipCodes { |
| // The dexoptanalyzer was not invoked because of validation or IO errors. |
| // Specific errors are encoded in the name. |
| kSecondaryDexDexoptAnalyzerSkippedValidatePath = 200, |
| kSecondaryDexDexoptAnalyzerSkippedOpenZip = 201, |
| kSecondaryDexDexoptAnalyzerSkippedPrepareDir = 202, |
| kSecondaryDexDexoptAnalyzerSkippedOpenOutput = 203, |
| kSecondaryDexDexoptAnalyzerSkippedFailExec = 204, |
| // The dexoptanalyzer was not invoked because the dex file does not exist anymore. |
| kSecondaryDexDexoptAnalyzerSkippedNoFile = 205, |
| }; |
| |
| // Verifies the result of analyzing secondary dex files from process_secondary_dex_dexopt. |
| // If the result is valid returns true and sets dexopt_needed_out to a valid value. |
| // Returns false for errors or unexpected result values. |
| // The result is expected to be either one of SECONDARY_DEX_* codes or a valid exit code |
| // of dexoptanalyzer. |
| static bool process_secondary_dexoptanalyzer_result(const std::string& dex_path, int result, |
| int* dexopt_needed_out, std::string* error_msg) { |
| // The result values are defined in dexoptanalyzer. |
| switch (result) { |
| case 0: // dexoptanalyzer: no_dexopt_needed |
| *dexopt_needed_out = NO_DEXOPT_NEEDED; return true; |
| case 1: // dexoptanalyzer: dex2oat_from_scratch |
| *dexopt_needed_out = DEX2OAT_FROM_SCRATCH; return true; |
| case 4: // dexoptanalyzer: dex2oat_for_bootimage_odex |
| *dexopt_needed_out = -DEX2OAT_FOR_BOOT_IMAGE; return true; |
| case 5: // dexoptanalyzer: dex2oat_for_filter_odex |
| *dexopt_needed_out = -DEX2OAT_FOR_FILTER; return true; |
| case 2: // dexoptanalyzer: dex2oat_for_bootimage_oat |
| case 3: // dexoptanalyzer: dex2oat_for_filter_oat |
| *error_msg = StringPrintf("Dexoptanalyzer return the status of an oat file." |
| " Expected odex file status for secondary dex %s" |
| " : dexoptanalyzer result=%d", |
| dex_path.c_str(), |
| result); |
| return false; |
| } |
| |
| // Use a second switch for enum switch-case analysis. |
| switch (static_cast<DexoptAnalyzerSkipCodes>(result)) { |
| case kSecondaryDexDexoptAnalyzerSkippedNoFile: |
| // If the file does not exist there's no need for dexopt. |
| *dexopt_needed_out = NO_DEXOPT_NEEDED; |
| return true; |
| |
| case kSecondaryDexDexoptAnalyzerSkippedValidatePath: |
| *error_msg = "Dexoptanalyzer path validation failed"; |
| return false; |
| case kSecondaryDexDexoptAnalyzerSkippedOpenZip: |
| *error_msg = "Dexoptanalyzer open zip failed"; |
| return false; |
| case kSecondaryDexDexoptAnalyzerSkippedPrepareDir: |
| *error_msg = "Dexoptanalyzer dir preparation failed"; |
| return false; |
| case kSecondaryDexDexoptAnalyzerSkippedOpenOutput: |
| *error_msg = "Dexoptanalyzer open output failed"; |
| return false; |
| case kSecondaryDexDexoptAnalyzerSkippedFailExec: |
| *error_msg = "Dexoptanalyzer failed to execute"; |
| return false; |
| } |
| |
| *error_msg = StringPrintf("Unexpected result from analyzing secondary dex %s result=%d", |
| dex_path.c_str(), |
| result); |
| return false; |
| } |
| |
| enum SecondaryDexAccess { |
| kSecondaryDexAccessReadOk = 0, |
| kSecondaryDexAccessDoesNotExist = 1, |
| kSecondaryDexAccessPermissionError = 2, |
| kSecondaryDexAccessIOError = 3 |
| }; |
| |
| static SecondaryDexAccess check_secondary_dex_access(const std::string& dex_path) { |
| // Check if the path exists and can be read. If not, there's nothing to do. |
| if (access(dex_path.c_str(), R_OK) == 0) { |
| return kSecondaryDexAccessReadOk; |
| } else { |
| if (errno == ENOENT) { |
| async_safe_format_log(ANDROID_LOG_INFO, LOG_TAG, |
| "Secondary dex does not exist: %s", dex_path.c_str()); |
| return kSecondaryDexAccessDoesNotExist; |
| } else { |
| async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG, |
| "Could not access secondary dex: %s (%d)", dex_path.c_str(), errno); |
| return errno == EACCES |
| ? kSecondaryDexAccessPermissionError |
| : kSecondaryDexAccessIOError; |
| } |
| } |
| } |
| |
| static bool is_file_public(const std::string& filename) { |
| struct stat file_stat; |
| if (stat(filename.c_str(), &file_stat) == 0) { |
| return (file_stat.st_mode & S_IROTH) != 0; |
| } |
| return false; |
| } |
| |
| // Create the oat file structure for the secondary dex 'dex_path' and assign |
| // the individual path component to the 'out_' parameters. |
| static bool create_secondary_dex_oat_layout(const std::string& dex_path, const std::string& isa, |
| char* out_oat_dir, char* out_oat_isa_dir, char* out_oat_path, std::string* error_msg) { |
| size_t dirIndex = dex_path.rfind('/'); |
| if (dirIndex == std::string::npos) { |
| *error_msg = std::string("Unexpected dir structure for dex file ").append(dex_path); |
| return false; |
| } |
| // TODO(calin): we have similar computations in at lest 3 other places |
| // (InstalldNativeService, otapropt and dexopt). Unify them and get rid of snprintf by |
| // using string append. |
| std::string apk_dir = dex_path.substr(0, dirIndex); |
| snprintf(out_oat_dir, PKG_PATH_MAX, "%s/oat", apk_dir.c_str()); |
| snprintf(out_oat_isa_dir, PKG_PATH_MAX, "%s/%s", out_oat_dir, isa.c_str()); |
| |
| if (!create_oat_out_path(dex_path.c_str(), isa.c_str(), out_oat_dir, |
| /*is_secondary_dex*/true, out_oat_path)) { |
| *error_msg = std::string("Could not create oat path for secondary dex ").append(dex_path); |
| return false; |
| } |
| return true; |
| } |
| |
| // Validate that the dexopt_flags contain a valid storage flag and convert that to an installd |
| // recognized storage flags (FLAG_STORAGE_CE or FLAG_STORAGE_DE). |
| static bool validate_dexopt_storage_flags(int dexopt_flags, |
| int* out_storage_flag, |
| std::string* error_msg) { |
| if ((dexopt_flags & DEXOPT_STORAGE_CE) != 0) { |
| *out_storage_flag = FLAG_STORAGE_CE; |
| if ((dexopt_flags & DEXOPT_STORAGE_DE) != 0) { |
| *error_msg = "Ambiguous secondary dex storage flag. Both, CE and DE, flags are set"; |
| return false; |
| } |
| } else if ((dexopt_flags & DEXOPT_STORAGE_DE) != 0) { |
| *out_storage_flag = FLAG_STORAGE_DE; |
| } else { |
| *error_msg = "Secondary dex storage flag must be set"; |
| return false; |
| } |
| return true; |
| } |
| |
| static bool get_class_loader_context_dex_paths(const char* class_loader_context, int uid, |
| /* out */ std::vector<std::string>* context_dex_paths) { |
| if (class_loader_context == nullptr) { |
| return true; |
| } |
| |
| LOG(DEBUG) << "Getting dex paths for context " << class_loader_context; |
| |
| // Pipe to get the hash result back from our child process. |
| unique_fd pipe_read, pipe_write; |
| if (!Pipe(&pipe_read, &pipe_write)) { |
| PLOG(ERROR) << "Failed to create pipe"; |
| return false; |
| } |
| |
| pid_t pid = fork(); |
| if (pid == 0) { |
| // child -- drop privileges before continuing. |
| drop_capabilities(uid); |
| |
| // Route stdout to `pipe_write` |
| while ((dup2(pipe_write, STDOUT_FILENO) == -1) && (errno == EINTR)) {} |
| pipe_write.reset(); |
| pipe_read.reset(); |
| |
| RunDexoptAnalyzer run_dexopt_analyzer(class_loader_context); |
| run_dexopt_analyzer.Exec(kSecondaryDexDexoptAnalyzerSkippedFailExec); |
| } |
| |
| /* parent */ |
| pipe_write.reset(); |
| |
| std::string str_dex_paths; |
| if (!ReadFdToString(pipe_read, &str_dex_paths)) { |
| PLOG(ERROR) << "Failed to read from pipe"; |
| return false; |
| } |
| pipe_read.reset(); |
| |
| int return_code = wait_child_with_timeout(pid, kShortTimeoutMs); |
| if (!WIFEXITED(return_code)) { |
| PLOG(ERROR) << "Error waiting for child dexoptanalyzer process"; |
| return false; |
| } |
| |
| constexpr int kFlattenClassLoaderContextSuccess = 50; |
| return_code = WEXITSTATUS(return_code); |
| if (return_code != kFlattenClassLoaderContextSuccess) { |
| LOG(ERROR) << "Dexoptanalyzer could not flatten class loader context, code=" << return_code; |
| return false; |
| } |
| |
| if (!str_dex_paths.empty()) { |
| *context_dex_paths = android::base::Split(str_dex_paths, ":"); |
| } |
| return true; |
| } |
| |
| static int open_dex_paths(const std::vector<std::string>& dex_paths, |
| /* out */ std::vector<unique_fd>* zip_fds, /* out */ std::string* error_msg) { |
| for (const std::string& dex_path : dex_paths) { |
| zip_fds->emplace_back(open(dex_path.c_str(), O_RDONLY)); |
| if (zip_fds->back().get() < 0) { |
| *error_msg = StringPrintf( |
| "installd cannot open '%s' for input during dexopt", dex_path.c_str()); |
| if (errno == ENOENT) { |
| return kSecondaryDexDexoptAnalyzerSkippedNoFile; |
| } else { |
| return kSecondaryDexDexoptAnalyzerSkippedOpenZip; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static std::string join_fds(const std::vector<unique_fd>& fds) { |
| std::stringstream ss; |
| bool is_first = true; |
| for (const unique_fd& fd : fds) { |
| if (is_first) { |
| is_first = false; |
| } else { |
| ss << ":"; |
| } |
| ss << fd.get(); |
| } |
| return ss.str(); |
| } |
| |
| void control_dexopt_blocking(bool block) { |
| dexopt_status_->control_dexopt_blocking(block); |
| } |
| |
| bool is_dexopt_blocked() { |
| return dexopt_status_->is_dexopt_blocked(); |
| } |
| |
| enum SecondaryDexOptProcessResult { |
| kSecondaryDexOptProcessOk = 0, |
| kSecondaryDexOptProcessCancelled = 1, |
| kSecondaryDexOptProcessError = 2 |
| }; |
| |
| // Processes the dex_path as a secondary dex files and return true if the path dex file should |
| // be compiled. |
| // Returns: kSecondaryDexOptProcessError for errors (logged). |
| // kSecondaryDexOptProcessOk if the secondary dex path was process successfully. |
| // kSecondaryDexOptProcessCancelled if the processing was cancelled. |
| // |
| // When returning kSecondaryDexOptProcessOk, the output parameters will be: |
| // - is_public_out: whether or not the oat file should not be made public |
| // - dexopt_needed_out: valid OatFileAsssitant::DexOptNeeded |
| // - oat_dir_out: the oat dir path where the oat file should be stored |
| static SecondaryDexOptProcessResult process_secondary_dex_dexopt(const std::string& dex_path, |
| const char* pkgname, int dexopt_flags, const char* volume_uuid, int uid, |
| const char* instruction_set, const char* compiler_filter, bool* is_public_out, |
| int* dexopt_needed_out, std::string* oat_dir_out, bool downgrade, |
| const char* class_loader_context, const std::vector<std::string>& context_dex_paths, |
| /* out */ std::string* error_msg) { |
| LOG(DEBUG) << "Processing secondary dex path " << dex_path; |
| |
| if (dexopt_status_->is_dexopt_blocked()) { |
| return kSecondaryDexOptProcessCancelled; |
| } |
| |
| int storage_flag; |
| if (!validate_dexopt_storage_flags(dexopt_flags, &storage_flag, error_msg)) { |
| LOG(ERROR) << *error_msg; |
| return kSecondaryDexOptProcessError; |
| } |
| // Compute the oat dir as it's not easy to extract it from the child computation. |
| char oat_path[PKG_PATH_MAX]; |
| char oat_dir[PKG_PATH_MAX]; |
| char oat_isa_dir[PKG_PATH_MAX]; |
| if (!create_secondary_dex_oat_layout( |
| dex_path, instruction_set, oat_dir, oat_isa_dir, oat_path, error_msg)) { |
| LOG(ERROR) << "Could not create secondary odex layout: " << *error_msg; |
| return kSecondaryDexOptProcessError; |
| } |
| oat_dir_out->assign(oat_dir); |
| |
| bool cancelled = false; |
| pid_t pid = dexopt_status_->check_cancellation_and_fork(&cancelled); |
| if (cancelled) { |
| return kSecondaryDexOptProcessCancelled; |
| } |
| if (pid == 0) { |
| // child -- drop privileges before continuing. |
| drop_capabilities(uid); |
| |
| // Validate the path structure. |
| if (!validate_secondary_dex_path(pkgname, dex_path, volume_uuid, uid, storage_flag)) { |
| async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG, |
| "Could not validate secondary dex path %s", dex_path.c_str()); |
| _exit(kSecondaryDexDexoptAnalyzerSkippedValidatePath); |
| } |
| |
| // Open the dex file. |
| unique_fd zip_fd; |
| zip_fd.reset(open(dex_path.c_str(), O_RDONLY)); |
| if (zip_fd.get() < 0) { |
| if (errno == ENOENT) { |
| _exit(kSecondaryDexDexoptAnalyzerSkippedNoFile); |
| } else { |
| _exit(kSecondaryDexDexoptAnalyzerSkippedOpenZip); |
| } |
| } |
| |
| // Open class loader context dex files. |
| std::vector<unique_fd> context_zip_fds; |
| int open_dex_paths_rc = open_dex_paths(context_dex_paths, &context_zip_fds, error_msg); |
| if (open_dex_paths_rc != 0) { |
| _exit(open_dex_paths_rc); |
| } |
| |
| // Prepare the oat directories. |
| if (!prepare_secondary_dex_oat_dir(dex_path, uid, instruction_set)) { |
| _exit(kSecondaryDexDexoptAnalyzerSkippedPrepareDir); |
| } |
| |
| // Open the vdex/oat files if any. |
| unique_fd oat_file_fd; |
| unique_fd vdex_file_fd; |
| if (!maybe_open_oat_and_vdex_file(dex_path, |
| *oat_dir_out, |
| instruction_set, |
| true /* is_secondary_dex */, |
| &oat_file_fd, |
| &vdex_file_fd)) { |
| _exit(kSecondaryDexDexoptAnalyzerSkippedOpenOutput); |
| } |
| |
| // Analyze profiles. |
| int profile_analysis_result = analyze_profiles(uid, pkgname, dex_path, |
| /*is_secondary_dex*/true); |
| |
| // Run dexoptanalyzer to get dexopt_needed code. This is not expected to return. |
| // Note that we do not do it before the fork since opening the files is required to happen |
| // after forking. |
| RunDexoptAnalyzer run_dexopt_analyzer(dex_path, |
| vdex_file_fd.get(), |
| oat_file_fd.get(), |
| zip_fd.get(), |
| instruction_set, |
| compiler_filter, |
| profile_analysis_result, |
| downgrade, |
| class_loader_context, |
| join_fds(context_zip_fds)); |
| run_dexopt_analyzer.Exec(kSecondaryDexDexoptAnalyzerSkippedFailExec); |
| } |
| |
| /* parent */ |
| int result = wait_child_with_timeout(pid, kShortTimeoutMs); |
| cancelled = dexopt_status_->check_if_killed_and_remove_dexopt_pid(pid); |
| if (!WIFEXITED(result)) { |
| if ((WTERMSIG(result) == SIGKILL) && cancelled) { |
| LOG(INFO) << "dexoptanalyzer cancelled for path:" << dex_path; |
| return kSecondaryDexOptProcessCancelled; |
| } |
| *error_msg = StringPrintf("dexoptanalyzer failed for path %s: 0x%04x", |
| dex_path.c_str(), |
| result); |
| LOG(ERROR) << *error_msg; |
| return kSecondaryDexOptProcessError; |
| } |
| result = WEXITSTATUS(result); |
| // Check that we successfully executed dexoptanalyzer. |
| bool success = process_secondary_dexoptanalyzer_result(dex_path, |
| result, |
| dexopt_needed_out, |
| error_msg); |
| if (!success) { |
| LOG(ERROR) << *error_msg; |
| } |
| |
| LOG(DEBUG) << "Processed secondary dex file " << dex_path << " result=" << result; |
| |
| // Run dexopt only if needed or forced. |
| // Note that dexoptanalyzer is executed even if force compilation is enabled (because it |
| // makes the code simpler; force compilation is only needed during tests). |
| if (success && |
| (result != kSecondaryDexDexoptAnalyzerSkippedNoFile) && |
| ((dexopt_flags & DEXOPT_FORCE) != 0)) { |
| *dexopt_needed_out = DEX2OAT_FROM_SCRATCH; |
| } |
| |
| // Check if we should make the oat file public. |
| // Note that if the dex file is not public the compiled code cannot be made public. |
| // It is ok to check this flag outside in the parent process. |
| *is_public_out = ((dexopt_flags & DEXOPT_PUBLIC) != 0) && is_file_public(dex_path); |
| |
| return success ? kSecondaryDexOptProcessOk : kSecondaryDexOptProcessError; |
| } |
| |
| static std::string format_dexopt_error(int status, const char* dex_path) { |
| if (WIFEXITED(status)) { |
| int int_code = WEXITSTATUS(status); |
| const char* code_name = get_return_code_name(static_cast<DexoptReturnCodes>(int_code)); |
| if (code_name != nullptr) { |
| return StringPrintf("Dex2oat invocation for %s failed: %s", dex_path, code_name); |
| } |
| } |
| return StringPrintf("Dex2oat invocation for %s failed with 0x%04x", dex_path, status); |
| } |
| |
| |
| int dexopt(const char* dex_path, uid_t uid, const char* pkgname, const char* instruction_set, |
| int dexopt_needed, const char* oat_dir, int dexopt_flags, const char* compiler_filter, |
| const char* volume_uuid, const char* class_loader_context, const char* se_info, |
| bool downgrade, int target_sdk_version, const char* profile_name, |
| const char* dex_metadata_path, const char* compilation_reason, std::string* error_msg, |
| /* out */ bool* completed) { |
| CHECK(pkgname != nullptr); |
| CHECK(pkgname[0] != 0); |
| CHECK(error_msg != nullptr); |
| CHECK_EQ(dexopt_flags & ~DEXOPT_MASK, 0) |
| << "dexopt flags contains unknown fields: " << dexopt_flags; |
| |
| bool local_completed; // local placeholder for nullptr case |
| if (completed == nullptr) { |
| completed = &local_completed; |
| } |
| *completed = true; |
| if (dexopt_status_->is_dexopt_blocked()) { |
| *completed = false; |
| return 0; |
| } |
| |
| if (!validate_dex_path_size(dex_path)) { |
| *error_msg = StringPrintf("Failed to validate %s", dex_path); |
| return -1; |
| } |
| |
| if (class_loader_context != nullptr && strlen(class_loader_context) > PKG_PATH_MAX) { |
| *error_msg = StringPrintf("Class loader context exceeds the allowed size: %s", |
| class_loader_context); |
| LOG(ERROR) << *error_msg; |
| return -1; |
| } |
| |
| bool is_public = (dexopt_flags & DEXOPT_PUBLIC) != 0; |
| bool debuggable = (dexopt_flags & DEXOPT_DEBUGGABLE) != 0; |
| bool boot_complete = (dexopt_flags & DEXOPT_BOOTCOMPLETE) != 0; |
| bool profile_guided = (dexopt_flags & DEXOPT_PROFILE_GUIDED) != 0; |
| bool is_secondary_dex = (dexopt_flags & DEXOPT_SECONDARY_DEX) != 0; |
| bool background_job_compile = (dexopt_flags & DEXOPT_IDLE_BACKGROUND_JOB) != 0; |
| bool enable_hidden_api_checks = (dexopt_flags & DEXOPT_ENABLE_HIDDEN_API_CHECKS) != 0; |
| bool generate_compact_dex = (dexopt_flags & DEXOPT_GENERATE_COMPACT_DEX) != 0; |
| bool generate_app_image = (dexopt_flags & DEXOPT_GENERATE_APP_IMAGE) != 0; |
| bool for_restore = (dexopt_flags & DEXOPT_FOR_RESTORE) != 0; |
| |
| // Check if we're dealing with a secondary dex file and if we need to compile it. |
| std::string oat_dir_str; |
| std::vector<std::string> context_dex_paths; |
| if (is_secondary_dex) { |
| if (!get_class_loader_context_dex_paths(class_loader_context, uid, &context_dex_paths)) { |
| *error_msg = "Failed acquiring context dex paths"; |
| return -1; // We had an error, logged in the process method. |
| } |
| SecondaryDexOptProcessResult sec_dex_result = process_secondary_dex_dexopt(dex_path, |
| pkgname, dexopt_flags, volume_uuid, uid,instruction_set, compiler_filter, |
| &is_public, &dexopt_needed, &oat_dir_str, downgrade, class_loader_context, |
| context_dex_paths, error_msg); |
| if (sec_dex_result == kSecondaryDexOptProcessOk) { |
| oat_dir = oat_dir_str.c_str(); |
| if (dexopt_needed == NO_DEXOPT_NEEDED) { |
| *completed = true; |
| return 0; // Nothing to do, report success. |
| } |
| } else if (sec_dex_result == kSecondaryDexOptProcessCancelled) { |
| // cancelled, not an error. |
| *completed = false; |
| return 0; |
| } else { |
| if (error_msg->empty()) { // TODO: Make this a CHECK. |
| *error_msg = "Failed processing secondary."; |
| } |
| return -1; // We had an error, logged in the process method. |
| } |
| } else { |
| // Currently these flags are only used for secondary dex files. |
| // Verify that they are not set for primary apks. |
| CHECK((dexopt_flags & DEXOPT_STORAGE_CE) == 0); |
| CHECK((dexopt_flags & DEXOPT_STORAGE_DE) == 0); |
| } |
| |
| // Open the input file. |
| UniqueFile in_dex(open(dex_path, O_RDONLY, 0), dex_path); |
| if (in_dex.fd() < 0) { |
| *error_msg = StringPrintf("installd cannot open '%s' for input during dexopt", dex_path); |
| LOG(ERROR) << *error_msg; |
| return -1; |
| } |
| |
| // Open class loader context dex files. |
| std::vector<unique_fd> context_input_fds; |
| if (open_dex_paths(context_dex_paths, &context_input_fds, error_msg) != 0) { |
| LOG(ERROR) << *error_msg; |
| return -1; |
| } |
| |
| // Create the output OAT file. |
| RestorableFile out_oat = |
| open_oat_out_file(dex_path, oat_dir, is_public, uid, instruction_set, is_secondary_dex); |
| if (out_oat.fd() < 0) { |
| *error_msg = "Could not open out oat file."; |
| return -1; |
| } |
| |
| // Open vdex files. |
| UniqueFile in_vdex; |
| RestorableFile out_vdex; |
| if (!open_vdex_files_for_dex2oat(dex_path, out_oat.path().c_str(), dexopt_needed, |
| instruction_set, is_public, uid, is_secondary_dex, profile_guided, &in_vdex, |
| &out_vdex)) { |
| *error_msg = "Could not open vdex files."; |
| return -1; |
| } |
| |
| // Ensure that the oat dir and the compiler artifacts of secondary dex files have the correct |
| // selinux context (we generate them on the fly during the dexopt invocation and they don't |
| // fully inherit their parent context). |
| // Note that for primary apk the oat files are created before, in a separate installd |
| // call which also does the restorecon. TODO(calin): unify the paths. |
| if (is_secondary_dex) { |
| if (selinux_android_restorecon_pkgdir(oat_dir, se_info, uid, |
| SELINUX_ANDROID_RESTORECON_RECURSE)) { |
| *error_msg = std::string("Failed to restorecon ").append(oat_dir); |
| LOG(ERROR) << *error_msg; |
| return -1; |
| } |
| } |
| |
| // Create a swap file if necessary. |
| unique_fd swap_fd = maybe_open_dexopt_swap_file(out_oat.path()); |
| |
| // Open the reference profile if needed. |
| UniqueFile reference_profile = maybe_open_reference_profile( |
| pkgname, dex_path, profile_name, profile_guided, is_public, uid, is_secondary_dex); |
| |
| if (reference_profile.fd() == -1) { |
| // We don't create an app image without reference profile since there is no speedup from |
| // loading it in that case and instead will be a small overhead. |
| generate_app_image = false; |
| } |
| |
| // Create the app image file if needed. |
| RestorableFile out_image = maybe_open_app_image(out_oat.path(), generate_app_image, is_public, |
| uid, is_secondary_dex); |
| |
| UniqueFile dex_metadata; |
| if (dex_metadata_path != nullptr) { |
| dex_metadata.reset(TEMP_FAILURE_RETRY(open(dex_metadata_path, O_RDONLY | O_NOFOLLOW)), |
| dex_metadata_path); |
| if (dex_metadata.fd() < 0) { |
| PLOG(ERROR) << "Failed to open dex metadata file " << dex_metadata_path; |
| } |
| } |
| |
| std::string jitzygote_flag = server_configurable_flags::GetServerConfigurableFlag( |
| RUNTIME_NATIVE_BOOT_NAMESPACE, |
| ENABLE_JITZYGOTE_IMAGE, |
| /*default_value=*/ ""); |
| bool use_jitzygote_image = jitzygote_flag == "true" || IsBootClassPathProfilingEnable(); |
| |
| // Decide whether to use dex2oat64. |
| bool use_dex2oat64 = false; |
| // Check whether the device even supports 64-bit ABIs. |
| if (!GetProperty("ro.product.cpu.abilist64", "").empty()) { |
| use_dex2oat64 = GetBoolProperty("dalvik.vm.dex2oat64.enabled", false); |
| } |
| const char* dex2oat_bin = select_execution_binary( |
| (use_dex2oat64 ? kDex2oat64Path : kDex2oat32Path), |
| (use_dex2oat64 ? kDex2oatDebug64Path : kDex2oatDebug32Path), |
| background_job_compile); |
| |
| auto execv_helper = std::make_unique<ExecVHelper>(); |
| |
| LOG(VERBOSE) << "DexInv: --- BEGIN '" << dex_path << "' ---"; |
| |
| RunDex2Oat runner(dex2oat_bin, execv_helper.get()); |
| runner.Initialize(out_oat.GetUniqueFile(), out_vdex.GetUniqueFile(), out_image.GetUniqueFile(), |
| in_dex, in_vdex, dex_metadata, reference_profile, class_loader_context, |
| join_fds(context_input_fds), swap_fd.get(), instruction_set, compiler_filter, |
| debuggable, boot_complete, for_restore, target_sdk_version, |
| enable_hidden_api_checks, generate_compact_dex, use_jitzygote_image, |
| compilation_reason); |
| |
| bool cancelled = false; |
| pid_t pid = dexopt_status_->check_cancellation_and_fork(&cancelled); |
| if (cancelled) { |
| *completed = false; |
| reference_profile.DisableCleanup(); |
| return 0; |
| } |
| if (pid == 0) { |
| // Need to set schedpolicy before dropping privileges |
| // for cgroup migration. See details at b/175178520. |
| SetDex2OatScheduling(boot_complete); |
| |
| /* child -- drop privileges before continuing */ |
| drop_capabilities(uid); |
| |
| if (flock(out_oat.fd(), LOCK_EX | LOCK_NB) != 0) { |
| async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG, "flock(%s) failed", |
| out_oat.path().c_str()); |
| _exit(DexoptReturnCodes::kFlock); |
| } |
| |
| runner.Exec(DexoptReturnCodes::kDex2oatExec); |
| } else { |
| int res = wait_child_with_timeout(pid, kLongTimeoutMs); |
| bool cancelled = dexopt_status_->check_if_killed_and_remove_dexopt_pid(pid); |
| if (res == 0) { |
| LOG(VERBOSE) << "DexInv: --- END '" << dex_path << "' (success) ---"; |
| } else { |
| if ((WTERMSIG(res) == SIGKILL) && cancelled) { |
| LOG(VERBOSE) << "DexInv: --- END '" << dex_path << "' --- cancelled"; |
| // cancelled, not an error |
| *completed = false; |
| reference_profile.DisableCleanup(); |
| return 0; |
| } |
| LOG(VERBOSE) << "DexInv: --- END '" << dex_path << "' --- status=0x" |
| << std::hex << std::setw(4) << res << ", process failed"; |
| *error_msg = format_dexopt_error(res, dex_path); |
| return res; |
| } |
| } |
| |
| // dex2oat ran successfully, so profile is safe to keep. |
| reference_profile.DisableCleanup(); |
| |
| // We've been successful, commit work files. |
| // If committing (=renaming tmp to regular) fails, try to restore backup files. |
| // If restoring fails as well, as a last resort, remove all files. |
| if (!out_oat.CreateBackupFile() || !out_vdex.CreateBackupFile() || |
| !out_image.CreateBackupFile()) { |
| // Renaming failure can mean that the original file may not be accessible from installd. |
| LOG(ERROR) << "Cannot create backup file from existing file, file in wrong state?" |
| << ", out_oat:" << out_oat.path() << " ,out_vdex:" << out_vdex.path() |
| << " ,out_image:" << out_image.path(); |
| out_oat.ResetAndRemoveAllFiles(); |
| out_vdex.ResetAndRemoveAllFiles(); |
| out_image.ResetAndRemoveAllFiles(); |
| return -1; |
| } |
| if (!out_oat.CommitWorkFile() || !out_vdex.CommitWorkFile() || !out_image.CommitWorkFile()) { |
| LOG(ERROR) << "Cannot commit, out_oat:" << out_oat.path() |
| << " ,out_vdex:" << out_vdex.path() << " ,out_image:" << out_image.path(); |
| if (!out_oat.RestoreBackupFile() || !out_vdex.RestoreBackupFile() || |
| !out_image.RestoreBackupFile()) { |
| LOG(ERROR) << "Cannot cancel commit, out_oat:" << out_oat.path() |
| << " ,out_vdex:" << out_vdex.path() << " ,out_image:" << out_image.path(); |
| // Restoring failed. |
| out_oat.ResetAndRemoveAllFiles(); |
| out_vdex.ResetAndRemoveAllFiles(); |
| out_image.ResetAndRemoveAllFiles(); |
| } |
| return -1; |
| } |
| // Now remove remaining backup files. |
| out_oat.RemoveBackupFile(); |
| out_vdex.RemoveBackupFile(); |
| out_image.RemoveBackupFile(); |
| |
| *completed = true; |
| return 0; |
| } |
| |
| // Try to remove the given directory. Log an error if the directory exists |
| // and is empty but could not be removed. |
| static bool rmdir_if_empty(const char* dir) { |
| if (rmdir(dir) == 0) { |
| return true; |
| } |
| if (errno == ENOENT || errno == ENOTEMPTY) { |
| return true; |
| } |
| PLOG(ERROR) << "Failed to remove dir: " << dir; |
| return false; |
| } |
| |
| // Try to unlink the given file. Log an error if the file exists and could not |
| // be unlinked. |
| static bool unlink_if_exists(const std::string& file) { |
| if (unlink(file.c_str()) == 0) { |
| return true; |
| } |
| if (errno == ENOENT) { |
| return true; |
| |
| } |
| PLOG(ERROR) << "Could not unlink: " << file; |
| return false; |
| } |
| |
| enum ReconcileSecondaryDexResult { |
| kReconcileSecondaryDexExists = 0, |
| kReconcileSecondaryDexCleanedUp = 1, |
| kReconcileSecondaryDexValidationError = 2, |
| kReconcileSecondaryDexCleanUpError = 3, |
| kReconcileSecondaryDexAccessIOError = 4, |
| }; |
| |
| // Reconcile the secondary dex 'dex_path' and its generated oat files. |
| // Return true if all the parameters are valid and the secondary dex file was |
| // processed successfully (i.e. the dex_path either exists, or if not, its corresponding |
| // oat/vdex/art files where deleted successfully). In this case, out_secondary_dex_exists |
| // will be true if the secondary dex file still exists. If the secondary dex file does not exist, |
| // the method cleans up any previously generated compiler artifacts (oat, vdex, art). |
| // Return false if there were errors during processing. In this case |
| // out_secondary_dex_exists will be set to false. |
| bool reconcile_secondary_dex_file(const std::string& dex_path, |
| const std::string& pkgname, int uid, const std::vector<std::string>& isas, |
| const std::optional<std::string>& volume_uuid, int storage_flag, |
| /*out*/bool* out_secondary_dex_exists) { |
| *out_secondary_dex_exists = false; // start by assuming the file does not exist. |
| if (isas.size() == 0) { |
| LOG(ERROR) << "reconcile_secondary_dex_file called with empty isas vector"; |
| return false; |
| } |
| |
| if (storage_flag != FLAG_STORAGE_CE && storage_flag != FLAG_STORAGE_DE) { |
| LOG(ERROR) << "reconcile_secondary_dex_file called with invalid storage_flag: " |
| << storage_flag; |
| return false; |
| } |
| |
| // As a security measure we want to unlink art artifacts with the reduced capabilities |
| // of the package user id. So we fork and drop capabilities in the child. |
| pid_t pid = fork(); |
| if (pid == 0) { |
| /* child -- drop privileges before continuing */ |
| drop_capabilities(uid); |
| |
| const char* volume_uuid_cstr = volume_uuid ? volume_uuid->c_str() : nullptr; |
| if (!validate_secondary_dex_path(pkgname, dex_path, volume_uuid_cstr, |
| uid, storage_flag)) { |
| async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG, |
| "Could not validate secondary dex path %s", dex_path.c_str()); |
| _exit(kReconcileSecondaryDexValidationError); |
| } |
| |
| SecondaryDexAccess access_check = check_secondary_dex_access(dex_path); |
| switch (access_check) { |
| case kSecondaryDexAccessDoesNotExist: |
| // File does not exist. Proceed with cleaning. |
| break; |
| case kSecondaryDexAccessReadOk: _exit(kReconcileSecondaryDexExists); |
| case kSecondaryDexAccessIOError: _exit(kReconcileSecondaryDexAccessIOError); |
| case kSecondaryDexAccessPermissionError: _exit(kReconcileSecondaryDexValidationError); |
| default: |
| async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG, |
| "Unexpected result from check_secondary_dex_access: %d", access_check); |
| _exit(kReconcileSecondaryDexValidationError); |
| } |
| |
| // The secondary dex does not exist anymore or it's. Clear any generated files. |
| char oat_path[PKG_PATH_MAX]; |
| char oat_dir[PKG_PATH_MAX]; |
| char oat_isa_dir[PKG_PATH_MAX]; |
| bool result = true; |
| for (size_t i = 0; i < isas.size(); i++) { |
| std::string error_msg; |
| if (!create_secondary_dex_oat_layout( |
| dex_path,isas[i], oat_dir, oat_isa_dir, oat_path, &error_msg)) { |
| async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG, "%s", error_msg.c_str()); |
| _exit(kReconcileSecondaryDexValidationError); |
| } |
| |
| // Delete oat/vdex/art files. |
| result = unlink_if_exists(oat_path) && result; |
| result = unlink_if_exists(create_vdex_filename(oat_path)) && result; |
| result = unlink_if_exists(create_image_filename(oat_path)) && result; |
| |
| // Delete profiles. |
| std::string current_profile = create_current_profile_path( |
| multiuser_get_user_id(uid), pkgname, dex_path, /*is_secondary*/true); |
| std::string reference_profile = create_reference_profile_path( |
| pkgname, dex_path, /*is_secondary*/true); |
| result = unlink_if_exists(current_profile) && result; |
| result = unlink_if_exists(reference_profile) && result; |
| |
| // We upgraded once the location of current profile for secondary dex files. |
| // Check for any previous left-overs and remove them as well. |
| std::string old_current_profile = dex_path + ".prof"; |
| result = unlink_if_exists(old_current_profile); |
| |
| // Try removing the directories as well, they might be empty. |
| result = rmdir_if_empty(oat_isa_dir) && result; |
| result = rmdir_if_empty(oat_dir) && result; |
| } |
| if (!result) { |
| async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG, |
| "Could not validate secondary dex path %s", dex_path.c_str()); |
| } |
| _exit(result ? kReconcileSecondaryDexCleanedUp : kReconcileSecondaryDexAccessIOError); |
| } |
| |
| int return_code = wait_child_with_timeout(pid, kShortTimeoutMs); |
| if (!WIFEXITED(return_code)) { |
| LOG(WARNING) << "reconcile dex failed for location " << dex_path << ": " << return_code; |
| } else { |
| return_code = WEXITSTATUS(return_code); |
| } |
| |
| LOG(DEBUG) << "Reconcile secondary dex path " << dex_path << " result=" << return_code; |
| |
| switch (return_code) { |
| case kReconcileSecondaryDexCleanedUp: |
| case kReconcileSecondaryDexValidationError: |
| // If we couldn't validate assume the dex file does not exist. |
| // This will purge the entry from the PM records. |
| *out_secondary_dex_exists = false; |
| return true; |
| case kReconcileSecondaryDexExists: |
| *out_secondary_dex_exists = true; |
| return true; |
| case kReconcileSecondaryDexAccessIOError: |
| // We had an access IO error. |
| // Return false so that we can try again. |
| // The value of out_secondary_dex_exists does not matter in this case and by convention |
| // is set to false. |
| *out_secondary_dex_exists = false; |
| return false; |
| default: |
| LOG(ERROR) << "Unexpected code from reconcile_secondary_dex_file: " << return_code; |
| *out_secondary_dex_exists = false; |
| return false; |
| } |
| } |
| |
| // Compute and return the hash (SHA-256) of the secondary dex file at dex_path. |
| // Returns true if all parameters are valid and the hash successfully computed and stored in |
| // out_secondary_dex_hash. |
| // Also returns true with an empty hash if the file does not currently exist or is not accessible to |
| // the app. |
| // For any other errors (e.g. if any of the parameters are invalid) returns false. |
| bool hash_secondary_dex_file(const std::string& dex_path, const std::string& pkgname, int uid, |
| const std::optional<std::string>& volume_uuid, int storage_flag, |
| std::vector<uint8_t>* out_secondary_dex_hash) { |
| out_secondary_dex_hash->clear(); |
| |
| const char* volume_uuid_cstr = volume_uuid ? volume_uuid->c_str() : nullptr; |
| |
| if (storage_flag != FLAG_STORAGE_CE && storage_flag != FLAG_STORAGE_DE) { |
| LOG(ERROR) << "hash_secondary_dex_file called with invalid storage_flag: " |
| << storage_flag; |
| return false; |
| } |
| |
| // Pipe to get the hash result back from our child process. |
| unique_fd pipe_read, pipe_write; |
| if (!Pipe(&pipe_read, &pipe_write)) { |
| PLOG(ERROR) << "Failed to create pipe"; |
| return false; |
| } |
| |
| // Fork so that actual access to the files is done in the app's own UID, to ensure we only |
| // access data the app itself can access. |
| pid_t pid = fork(); |
| if (pid == 0) { |
| // child -- drop privileges before continuing |
| drop_capabilities(uid); |
| pipe_read.reset(); |
| |
| if (!validate_secondary_dex_path(pkgname, dex_path, volume_uuid_cstr, uid, storage_flag)) { |
| async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG, |
| "Could not validate secondary dex path %s", dex_path.c_str()); |
| _exit(DexoptReturnCodes::kHashValidatePath); |
| } |
| |
| unique_fd fd(TEMP_FAILURE_RETRY(open(dex_path.c_str(), O_RDONLY | O_CLOEXEC | O_NOFOLLOW))); |
| if (fd == -1) { |
| if (errno == EACCES || errno == ENOENT) { |
| // Not treated as an error. |
| _exit(0); |
| } |
| PLOG(ERROR) << "Failed to open secondary dex " << dex_path; |
| async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG, |
| "Failed to open secondary dex %s: %d", dex_path.c_str(), errno); |
| _exit(DexoptReturnCodes::kHashOpenPath); |
| } |
| |
| SHA256_CTX ctx; |
| SHA256_Init(&ctx); |
| |
| std::vector<uint8_t> buffer(65536); |
| while (true) { |
| ssize_t bytes_read = TEMP_FAILURE_RETRY(read(fd, buffer.data(), buffer.size())); |
| if (bytes_read == 0) { |
| break; |
| } else if (bytes_read == -1) { |
| async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG, |
| "Failed to read secondary dex %s: %d", dex_path.c_str(), errno); |
| _exit(DexoptReturnCodes::kHashReadDex); |
| } |
| |
| SHA256_Update(&ctx, buffer.data(), bytes_read); |
| } |
| |
| std::array<uint8_t, SHA256_DIGEST_LENGTH> hash; |
| SHA256_Final(hash.data(), &ctx); |
| if (!WriteFully(pipe_write, hash.data(), hash.size())) { |
| _exit(DexoptReturnCodes::kHashWrite); |
| } |
| |
| _exit(0); |
| } |
| |
| // parent |
| pipe_write.reset(); |
| |
| out_secondary_dex_hash->resize(SHA256_DIGEST_LENGTH); |
| if (!ReadFully(pipe_read, out_secondary_dex_hash->data(), out_secondary_dex_hash->size())) { |
| out_secondary_dex_hash->clear(); |
| } |
| return wait_child_with_timeout(pid, kShortTimeoutMs) == 0; |
| } |
| |
| // Helper for move_ab, so that we can have common failure-case cleanup. |
| static bool unlink_and_rename(const char* from, const char* to) { |
| // Check whether "from" exists, and if so whether it's regular. If it is, unlink. Otherwise, |
| // return a failure. |
| struct stat s; |
| if (stat(to, &s) == 0) { |
| if (!S_ISREG(s.st_mode)) { |
| LOG(ERROR) << from << " is not a regular file to replace for A/B."; |
| return false; |
| } |
| if (unlink(to) != 0) { |
| LOG(ERROR) << "Could not unlink " << to << " to move A/B."; |
| return false; |
| } |
| } else { |
| // This may be a permission problem. We could investigate the error code, but we'll just |
| // let the rename failure do the work for us. |
| } |
| |
| // Try to rename "to" to "from." |
| if (rename(from, to) != 0) { |
| PLOG(ERROR) << "Could not rename " << from << " to " << to; |
| return false; |
| } |
| return true; |
| } |
| |
| // Move/rename a B artifact (from) to an A artifact (to). |
| static bool move_ab_path(const std::string& b_path, const std::string& a_path) { |
| // Check whether B exists. |
| { |
| struct stat s; |
| if (stat(b_path.c_str(), &s) != 0) { |
| // Ignore for now. The service calling this isn't smart enough to |
| // understand lack of artifacts at the moment. |
| LOG(VERBOSE) << "A/B artifact " << b_path << " does not exist!"; |
| return false; |
| } |
| if (!S_ISREG(s.st_mode)) { |
| LOG(ERROR) << "A/B artifact " << b_path << " is not a regular file."; |
| // Try to unlink, but swallow errors. |
| unlink(b_path.c_str()); |
| return false; |
| } |
| } |
| |
| // Rename B to A. |
| if (!unlink_and_rename(b_path.c_str(), a_path.c_str())) { |
| // Delete the b_path so we don't try again (or fail earlier). |
| if (unlink(b_path.c_str()) != 0) { |
| PLOG(ERROR) << "Could not unlink " << b_path; |
| } |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool move_ab(const char* apk_path, const char* instruction_set, const char* oat_dir) { |
| // Get the current slot suffix. No suffix, no A/B. |
| const std::string slot_suffix = GetProperty("ro.boot.slot_suffix", ""); |
| if (slot_suffix.empty()) { |
| return false; |
| } |
| |
| if (!ValidateTargetSlotSuffix(slot_suffix)) { |
| LOG(ERROR) << "Target slot suffix not legal: " << slot_suffix; |
| return false; |
| } |
| |
| // Validate other inputs. |
| if (validate_apk_path(apk_path) != 0) { |
| LOG(ERROR) << "Invalid apk_path: " << apk_path; |
| return false; |
| } |
| if (validate_apk_path(oat_dir) != 0) { |
| LOG(ERROR) << "Invalid oat_dir: " << oat_dir; |
| return false; |
| } |
| |
| char a_path[PKG_PATH_MAX]; |
| if (!calculate_oat_file_path(a_path, oat_dir, apk_path, instruction_set)) { |
| return false; |
| } |
| const std::string a_vdex_path = create_vdex_filename(a_path); |
| const std::string a_image_path = create_image_filename(a_path); |
| |
| // B path = A path + slot suffix. |
| const std::string b_path = StringPrintf("%s.%s", a_path, slot_suffix.c_str()); |
| const std::string b_vdex_path = StringPrintf("%s.%s", a_vdex_path.c_str(), slot_suffix.c_str()); |
| const std::string b_image_path = StringPrintf("%s.%s", |
| a_image_path.c_str(), |
| slot_suffix.c_str()); |
| |
| bool success = true; |
| if (move_ab_path(b_path, a_path)) { |
| if (move_ab_path(b_vdex_path, a_vdex_path)) { |
| // Note: we can live without an app image. As such, ignore failure to move the image file. |
| // If we decide to require the app image, or the app image being moved correctly, |
| // then change accordingly. |
| constexpr bool kIgnoreAppImageFailure = true; |
| |
| if (!a_image_path.empty()) { |
| if (!move_ab_path(b_image_path, a_image_path)) { |
| unlink(a_image_path.c_str()); |
| if (!kIgnoreAppImageFailure) { |
| success = false; |
| } |
| } |
| } |
| } else { |
| // Cleanup: delete B image, ignore errors. |
| unlink(b_image_path.c_str()); |
| success = false; |
| } |
| } else { |
| // Cleanup: delete B image, ignore errors. |
| unlink(b_vdex_path.c_str()); |
| unlink(b_image_path.c_str()); |
| success = false; |
| } |
| return success; |
| } |
| |
| int64_t delete_odex(const char* apk_path, const char* instruction_set, const char* oat_dir) { |
| // Delete the oat/odex file. |
| char out_path[PKG_PATH_MAX]; |
| if (!create_oat_out_path(apk_path, instruction_set, oat_dir, |
| /*is_secondary_dex*/false, out_path)) { |
| LOG(ERROR) << "Cannot create apk path for " << apk_path; |
| return -1; |
| } |
| |
| // In case of a permission failure report the issue. Otherwise just print a warning. |
| auto unlink_and_check = [](const char* path) -> int64_t { |
| struct stat file_stat; |
| if (stat(path, &file_stat) != 0) { |
| if (errno != ENOENT) { |
| PLOG(ERROR) << "Could not stat " << path; |
| return -1; |
| } |
| return 0; |
| } |
| |
| if (unlink(path) != 0) { |
| if (errno != ENOENT) { |
| PLOG(ERROR) << "Could not unlink " << path; |
| return -1; |
| } |
| } |
| return static_cast<int64_t>(file_stat.st_size); |
| }; |
| |
| // Delete the oat/odex file. |
| int64_t return_value_oat = unlink_and_check(out_path); |
| |
| // Derive and delete the app image. |
| int64_t return_value_art = unlink_and_check(create_image_filename(out_path).c_str()); |
| |
| // Derive and delete the vdex file. |
| int64_t return_value_vdex = unlink_and_check(create_vdex_filename(out_path).c_str()); |
| |
| // Report result |
| if (return_value_oat == -1 |
| || return_value_art == -1 |
| || return_value_vdex == -1) { |
| return -1; |
| } |
| |
| return return_value_oat + return_value_art + return_value_vdex; |
| } |
| |
| static bool is_absolute_path(const std::string& path) { |
| if (path.find('/') != 0 || path.find("..") != std::string::npos) { |
| LOG(ERROR) << "Invalid absolute path " << path; |
| return false; |
| } else { |
| return true; |
| } |
| } |
| |
| static bool is_valid_instruction_set(const std::string& instruction_set) { |
| // TODO: add explicit whitelisting of instruction sets |
| if (instruction_set.find('/') != std::string::npos) { |
| LOG(ERROR) << "Invalid instruction set " << instruction_set; |
| return false; |
| } else { |
| return true; |
| } |
| } |
| |
| bool calculate_oat_file_path_default(char path[PKG_PATH_MAX], const char *oat_dir, |
| const char *apk_path, const char *instruction_set) { |
| std::string oat_dir_ = oat_dir; |
| std::string apk_path_ = apk_path; |
| std::string instruction_set_ = instruction_set; |
| |
| if (!is_absolute_path(oat_dir_)) return false; |
| if (!is_absolute_path(apk_path_)) return false; |
| if (!is_valid_instruction_set(instruction_set_)) return false; |
| |
| std::string::size_type end = apk_path_.rfind('.'); |
| std::string::size_type start = apk_path_.rfind('/', end); |
| if (end == std::string::npos || start == std::string::npos) { |
| LOG(ERROR) << "Invalid apk_path " << apk_path_; |
| return false; |
| } |
| |
| std::string res_ = oat_dir_ + '/' + instruction_set + '/' |
| + apk_path_.substr(start + 1, end - start - 1) + ".odex"; |
| const char* res = res_.c_str(); |
| if (strlen(res) >= PKG_PATH_MAX) { |
| LOG(ERROR) << "Result too large"; |
| return false; |
| } else { |
| strlcpy(path, res, PKG_PATH_MAX); |
| return true; |
| } |
| } |
| |
| bool calculate_odex_file_path_default(char path[PKG_PATH_MAX], const char *apk_path, |
| const char *instruction_set) { |
| std::string apk_path_ = apk_path; |
| std::string instruction_set_ = instruction_set; |
| |
| if (!is_absolute_path(apk_path_)) return false; |
| if (!is_valid_instruction_set(instruction_set_)) return false; |
| |
| std::string::size_type end = apk_path_.rfind('.'); |
| std::string::size_type start = apk_path_.rfind('/', end); |
| if (end == std::string::npos || start == std::string::npos) { |
| LOG(ERROR) << "Invalid apk_path " << apk_path_; |
| return false; |
| } |
| |
| std::string oat_dir = apk_path_.substr(0, start + 1) + "oat"; |
| return calculate_oat_file_path_default(path, oat_dir.c_str(), apk_path, instruction_set); |
| } |
| |
| bool create_cache_path_default(char path[PKG_PATH_MAX], const char *src, |
| const char *instruction_set) { |
| std::string src_ = src; |
| std::string instruction_set_ = instruction_set; |
| |
| if (!is_absolute_path(src_)) return false; |
| if (!is_valid_instruction_set(instruction_set_)) return false; |
| |
| for (auto it = src_.begin() + 1; it < src_.end(); ++it) { |
| if (*it == '/') { |
| *it = '@'; |
| } |
| } |
| |
| std::string res_ = android_data_dir + DALVIK_CACHE + '/' + instruction_set_ + src_ |
| + DALVIK_CACHE_POSTFIX; |
| const char* res = res_.c_str(); |
| if (strlen(res) >= PKG_PATH_MAX) { |
| LOG(ERROR) << "Result too large"; |
| return false; |
| } else { |
| strlcpy(path, res, PKG_PATH_MAX); |
| return true; |
| } |
| } |
| |
| bool open_classpath_files(const std::string& classpath, std::vector<unique_fd>* apk_fds, |
| std::vector<std::string>* dex_locations) { |
| std::vector<std::string> classpaths_elems = base::Split(classpath, ":"); |
| for (const std::string& elem : classpaths_elems) { |
| unique_fd fd(TEMP_FAILURE_RETRY(open(elem.c_str(), O_RDONLY))); |
| if (fd < 0) { |
| PLOG(ERROR) << "Could not open classpath elem " << elem; |
| return false; |
| } else { |
| apk_fds->push_back(std::move(fd)); |
| dex_locations->push_back(elem); |
| } |
| } |
| return true; |
| } |
| |
| static bool create_app_profile_snapshot(int32_t app_id, |
| const std::string& package_name, |
| const std::string& profile_name, |
| const std::string& classpath) { |
| int app_shared_gid = multiuser_get_shared_gid(/*user_id*/ 0, app_id); |
| |
| unique_fd snapshot_fd = open_snapshot_profile(AID_SYSTEM, package_name, profile_name); |
| if (snapshot_fd < 0) { |
| return false; |
| } |
| |
| std::vector<unique_fd> profiles_fd; |
| unique_fd reference_profile_fd; |
| open_profile_files(app_shared_gid, package_name, profile_name, /*is_secondary_dex*/ false, |
| &profiles_fd, &reference_profile_fd); |
| if (profiles_fd.empty() || (reference_profile_fd.get() < 0)) { |
| return false; |
| } |
| |
| profiles_fd.push_back(std::move(reference_profile_fd)); |
| |
| // Open the class paths elements. These will be used to filter out profile data that does |
| // not belong to the classpath during merge. |
| std::vector<unique_fd> apk_fds; |
| std::vector<std::string> dex_locations; |
| if (!open_classpath_files(classpath, &apk_fds, &dex_locations)) { |
| return false; |
| } |
| |
| RunProfman args; |
| // This is specifically a snapshot for an app, so don't use boot image profiles. |
| args.SetupMerge(profiles_fd, |
| snapshot_fd, |
| apk_fds, |
| dex_locations, |
| /* for_snapshot= */ true, |
| /* for_boot_image= */ false); |
| pid_t pid = fork(); |
| if (pid == 0) { |
| /* child -- drop privileges before continuing */ |
| drop_capabilities(app_shared_gid); |
| args.Exec(); |
| } |
| |
| /* parent */ |
| int return_code = wait_child_with_timeout(pid, kShortTimeoutMs); |
| if (!WIFEXITED(return_code)) { |
| LOG(WARNING) << "profman failed for " << package_name << ":" << profile_name; |
| cleanup_output_fd(snapshot_fd.get()); |
| return false; |
| } |
| |
| // Verify that profman finished successfully. |
| int profman_code = WEXITSTATUS(return_code); |
| if (profman_code != PROFMAN_BIN_RETURN_CODE_SUCCESS) { |
| LOG(WARNING) << "profman error for " << package_name << ":" << profile_name |
| << ":" << profman_code; |
| return false; |
| } |
| return true; |
| } |
| |
| static bool create_boot_image_profile_snapshot(const std::string& package_name, |
| const std::string& profile_name, |
| const std::string& classpath) { |
| // The reference profile directory for the android package might not be prepared. Do it now. |
| const std::string ref_profile_dir = |
| create_primary_reference_profile_package_dir_path(package_name); |
| if (fs_prepare_dir(ref_profile_dir.c_str(), 0770, AID_SYSTEM, AID_SYSTEM) != 0) { |
| PLOG(ERROR) << "Failed to prepare " << ref_profile_dir; |
| return false; |
| } |
| |
| // Return false for empty class path since it may otherwise return true below if profiles is |
| // empty. |
| if (classpath.empty()) { |
| PLOG(ERROR) << "Class path is empty"; |
| return false; |
| } |
| |
| // Open and create the snapshot profile. |
| unique_fd snapshot_fd = open_snapshot_profile(AID_SYSTEM, package_name, profile_name); |
| |
| // Collect all non empty profiles. |
| // The collection will traverse all applications profiles and find the non empty files. |
| // This has the potential of inspecting a large number of files and directories (depending |
| // on the number of applications and users). So there is a slight increase in the chance |
| // to get get occasionally I/O errors (e.g. for opening the file). When that happens do not |
| // fail the snapshot and aggregate whatever profile we could open. |
| // |
| // The profile snapshot is a best effort based on available data it's ok if some data |
| // from some apps is missing. It will be counter productive for the snapshot to fail |
| // because we could not open or read some of the files. |
| std::vector<std::string> profiles; |
| if (!collect_profiles(&profiles)) { |
| LOG(WARNING) << "There were errors while collecting the profiles for the boot image."; |
| } |
| |
| // If we have no profiles return early. |
| if (profiles.empty()) { |
| return true; |
| } |
| |
| // Open the classpath elements. These will be used to filter out profile data that does |
| // not belong to the classpath during merge. |
| std::vector<unique_fd> apk_fds; |
| std::vector<std::string> dex_locations; |
| if (!open_classpath_files(classpath, &apk_fds, &dex_locations)) { |
| return false; |
| } |
| |
| // If we could not open any files from the classpath return an error. |
| if (apk_fds.empty()) { |
| LOG(ERROR) << "Could not open any of the classpath elements."; |
| return false; |
| } |
| |
| // Aggregate the profiles in batches of kAggregationBatchSize. |
| // We do this to avoid opening a huge a amount of files. |
| static constexpr size_t kAggregationBatchSize = 10; |
| |
| for (size_t i = 0; i < profiles.size(); ) { |
| std::vector<unique_fd> profiles_fd; |
| for (size_t k = 0; k < kAggregationBatchSize && i < profiles.size(); k++, i++) { |
| unique_fd fd = open_profile(AID_SYSTEM, profiles[i], O_RDONLY, /*mode=*/ 0); |
| if (fd.get() >= 0) { |
| profiles_fd.push_back(std::move(fd)); |
| } |
| } |
| |
| // We aggregate (read & write) into the same fd multiple times in a row. |
| // We need to reset the cursor every time to ensure we read the whole file every time. |
| if (TEMP_FAILURE_RETRY(lseek(snapshot_fd, 0, SEEK_SET)) == static_cast<off_t>(-1)) { |
| PLOG(ERROR) << "Cannot reset position for snapshot profile"; |
| return false; |
| } |
| |
| RunProfman args; |
| args.SetupMerge(profiles_fd, |
| snapshot_fd, |
| apk_fds, |
| dex_locations, |
| /*for_snapshot=*/true, |
| /*for_boot_image=*/true); |
| pid_t pid = fork(); |
| if (pid == 0) { |
| /* child -- drop privileges before continuing */ |
| drop_capabilities(AID_SYSTEM); |
| |
| // The introduction of new access flags into boot jars causes them to |
| // fail dex file verification. |
| args.Exec(); |
| } |
| |
| /* parent */ |
| int return_code = wait_child_with_timeout(pid, kShortTimeoutMs); |
| |
| if (!WIFEXITED(return_code)) { |
| PLOG(WARNING) << "profman failed for " << package_name << ":" << profile_name; |
| cleanup_output_fd(snapshot_fd.get()); |
| return false; |
| } |
| |
| // Verify that profman finished successfully. |
| int profman_code = WEXITSTATUS(return_code); |
| if (profman_code != PROFMAN_BIN_RETURN_CODE_SUCCESS) { |
| LOG(WARNING) << "profman error for " << package_name << ":" << profile_name |
| << ":" << profman_code; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool create_profile_snapshot(int32_t app_id, const std::string& package_name, |
| const std::string& profile_name, const std::string& classpath) { |
| if (app_id == -1) { |
| return create_boot_image_profile_snapshot(package_name, profile_name, classpath); |
| } else { |
| return create_app_profile_snapshot(app_id, package_name, profile_name, classpath); |
| } |
| } |
| |
| static bool check_profile_exists_in_dexmetadata(const std::string& dex_metadata) { |
| ZipArchiveHandle zip = nullptr; |
| if (OpenArchive(dex_metadata.c_str(), &zip) != 0) { |
| PLOG(ERROR) << "Failed to open dm '" << dex_metadata << "'"; |
| return false; |
| } |
| |
| ZipEntry64 entry; |
| int result = FindEntry(zip, "primary.prof", &entry); |
| CloseArchive(zip); |
| |
| return result != 0 ? false : true; |
| } |
| |
| bool prepare_app_profile(const std::string& package_name, |
| userid_t user_id, |
| appid_t app_id, |
| const std::string& profile_name, |
| const std::string& code_path, |
| const std::optional<std::string>& dex_metadata) { |
| // Prepare the current profile. |
| std::string cur_profile = create_current_profile_path(user_id, package_name, profile_name, |
| /*is_secondary_dex*/ false); |
| uid_t uid = multiuser_get_uid(user_id, app_id); |
| if (fs_prepare_file_strict(cur_profile.c_str(), 0600, uid, uid) != 0) { |
| PLOG(ERROR) << "Failed to prepare " << cur_profile; |
| return false; |
| } |
| |
| // Check if we need to install the profile from the dex metadata. |
| if (!dex_metadata || !check_profile_exists_in_dexmetadata(dex_metadata->c_str())) { |
| return true; |
| } |
| |
| // We have a dex metdata. Merge the profile into the reference profile. |
| unique_fd ref_profile_fd = open_reference_profile(uid, package_name, profile_name, |
| /*read_write*/ true, /*is_secondary_dex*/ false); |
| unique_fd dex_metadata_fd(TEMP_FAILURE_RETRY( |
| open(dex_metadata->c_str(), O_RDONLY | O_NOFOLLOW))); |
| unique_fd apk_fd(TEMP_FAILURE_RETRY(open(code_path.c_str(), O_RDONLY | O_NOFOLLOW))); |
| if (apk_fd < 0) { |
| PLOG(ERROR) << "Could not open code path " << code_path; |
| return false; |
| } |
| |
| RunProfman args; |
| args.SetupCopyAndUpdate(dex_metadata_fd, |
| ref_profile_fd, |
| apk_fd, |
| code_path); |
| pid_t pid = fork(); |
| if (pid == 0) { |
| /* child -- drop privileges before continuing */ |
| gid_t app_shared_gid = multiuser_get_shared_gid(user_id, app_id); |
| drop_capabilities(app_shared_gid); |
| |
| // The copy and update takes ownership over the fds. |
| args.Exec(); |
| } |
| |
| /* parent */ |
| int return_code = wait_child_with_timeout(pid, kShortTimeoutMs); |
| if (!WIFEXITED(return_code)) { |
| PLOG(WARNING) << "profman failed for " << package_name << ":" << profile_name; |
| cleanup_output_fd(ref_profile_fd.get()); |
| return false; |
| } |
| return true; |
| } |
| |
| } // namespace installd |
| } // namespace android |