Use pre-computed index to draw the shadow.

Also draw the umbra part as triangle fans instead of zig zag fashion.

b/12840179

Change-Id: Iaa5d15e77351acdd71f076bd8f9bb2d4d2b92faf
diff --git a/libs/hwui/AmbientShadow.cpp b/libs/hwui/AmbientShadow.cpp
index 1f5d26c..4935b34 100644
--- a/libs/hwui/AmbientShadow.cpp
+++ b/libs/hwui/AmbientShadow.cpp
@@ -21,6 +21,7 @@
 #include <utils/Vector.h>
 
 #include "AmbientShadow.h"
+#include "ShadowTessellator.h"
 #include "Vertex.h"
 
 namespace android {
@@ -34,9 +35,7 @@
  *                  array.
  * @param vertexCount The length of caster's polygon in terms of number of
  *                    vertices.
- * @param rays The number of rays shooting out from the centroid.
- * @param layers The number of rings outside the polygon.
- * @param strength The darkness of the shadow, the higher, the darker.
+ * @param centroid3d The centroid of the shadow caster.
  * @param heightFactor The factor showing the higher the object, the lighter the
  *                     shadow.
  * @param geomFactor The factor scaling the geometry expansion along the normal.
@@ -45,21 +44,18 @@
  *               triangle strips mode.
  */
 void AmbientShadow::createAmbientShadow(const Vector3* vertices, int vertexCount,
-        int rays, int layers, float strength, float heightFactor, float geomFactor,
+        const Vector3& centroid3d, float heightFactor, float geomFactor,
         VertexBuffer& shadowVertexBuffer) {
-
+    const int rays = SHADOW_RAY_COUNT;
+    const int layers = SHADOW_LAYER_COUNT;
     // Validate the inputs.
-    if (strength <= 0 || heightFactor <= 0 || layers <= 0 || rays <= 0
+    if (vertexCount < 3 || heightFactor <= 0 || layers <= 0 || rays <= 0
         || geomFactor <= 0) {
 #if DEBUG_SHADOW
         ALOGE("Invalid input for createAmbientShadow(), early return!");
 #endif
         return;
     }
-    int rings = layers + 1;
-    int size = rays * rings;
-    Vector2 centroid;
-    calculatePolygonCentroid(vertices, vertexCount, centroid);
 
     Vector<Vector2> dir; // TODO: use C++11 unique_ptr
     dir.setCapacity(rays);
@@ -75,7 +71,7 @@
         int edgeIndex;
         float edgeFraction;
         float rayDistance;
-        calculateIntersection(vertices, vertexCount, centroid, dir[i], edgeIndex,
+        calculateIntersection(vertices, vertexCount, centroid3d, dir[i], edgeIndex,
                 edgeFraction, rayDistance);
         rayDist[i] = rayDistance;
         if (edgeIndex < 0 || edgeIndex >= vertexCount) {
@@ -91,8 +87,7 @@
 
     // The output buffer length basically is roughly rays * layers, but since we
     // need triangle strips, so we need to duplicate vertices to accomplish that.
-    const int shadowVertexCount = (2 + rays + ((layers) * 2 * (rays + 1)));
-    AlphaVertex* shadowVertices = shadowVertexBuffer.alloc<AlphaVertex>(shadowVertexCount);
+    AlphaVertex* shadowVertices = shadowVertexBuffer.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);
 
     // Calculate the vertex of the shadows.
     //
@@ -101,110 +96,45 @@
     // calculate the normal N, which should be perpendicular to the edge of the
     // polygon (represented by the neighbor intersection points) .
     // Shadow's vertices will be generated as : P + N * scale.
-    int currentIndex = 0;
-    for (int r = 0; r < layers; r++) {
-        int firstInLayer = currentIndex;
-        for (int i = 0; i < rays; i++) {
+    int currentVertexIndex = 0;
+    for (int layerIndex = 0; layerIndex <= layers; layerIndex++) {
+        for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
 
             Vector2 normal(1.0f, 0.0f);
-            calculateNormal(rays, i, dir.array(), rayDist, normal);
+            calculateNormal(rays, rayIndex, dir.array(), rayDist, normal);
 
-            float opacity = strength * (0.5f) / (1 + rayHeight[i] / heightFactor);
+            float opacity = 1.0 / (1 + rayHeight[rayIndex] / heightFactor);
 
             // The vertex should be start from rayDist[i] then scale the
             // normalizeNormal!
-            Vector2 intersection = dir[i] * rayDist[i] + centroid;
+            Vector2 intersection = dir[rayIndex] * rayDist[rayIndex] +
+                    Vector2(centroid3d.x, centroid3d.y);
 
-            // Use 2 rings' vertices to complete one layer's strip
-            for (int j = r; j < (r + 2); j++) {
-                float jf = j / (float)(rings - 1);
-
-                float expansionDist = rayHeight[i] / heightFactor * geomFactor * jf;
-                AlphaVertex::set(&shadowVertices[currentIndex],
-                        intersection.x + normal.x * expansionDist,
-                        intersection.y + normal.y * expansionDist,
-                        (1 - jf) * opacity);
-                currentIndex++;
-            }
+            float layerRatio = layerIndex / (float)(layers);
+            // The higher the intersection is, the further the ambient shadow expanded.
+            float expansionDist = rayHeight[rayIndex] / heightFactor *
+                    geomFactor * (1 - layerRatio);
+            AlphaVertex::set(&shadowVertices[currentVertexIndex++],
+                    intersection.x + normal.x * expansionDist,
+                    intersection.y + normal.y * expansionDist,
+                    layerRatio * opacity);
         }
 
-        // From one layer to the next, we need to duplicate the vertex to
-        // continue as a single strip.
-        shadowVertices[currentIndex] = shadowVertices[firstInLayer];
-        currentIndex++;
-        shadowVertices[currentIndex] = shadowVertices[firstInLayer + 1];
-        currentIndex++;
     }
+    float centroidAlpha = 1.0 / (1 + centroid3d.z / heightFactor);
+    AlphaVertex::set(&shadowVertices[currentVertexIndex++],
+            centroid3d.x, centroid3d.y, centroidAlpha);
 
-    // After all rings are done, we need to jump into the polygon.
-    // In order to keep everything in a strip, we need to duplicate the last one
-    // of the rings and the first one inside the polygon.
-    int lastInRings = currentIndex - 1;
-    shadowVertices[currentIndex] = shadowVertices[lastInRings];
-    currentIndex++;
-
-    // We skip one and fill it back after we finish the internal triangles.
-    currentIndex++;
-    int firstInternal = currentIndex;
-
-    // Combine the internal area of the polygon into a triangle strip, too.
-    // The basic idea is zig zag between the intersection points.
-    // 0 -> (n - 1) -> 1 -> (n - 2) ...
-    for (int k = 0; k < rays; k++) {
-        int  i = k / 2;
-        if ((k & 1) == 1) { // traverse the inside in a zig zag pattern for strips
-            i = rays - i - 1;
-        }
-        float cast = rayDist[i] * (1 + rayHeight[i] / heightFactor);
-        float opacity = strength * (0.5f) / (1 + rayHeight[i] / heightFactor);
-        float t = rayDist[i];
-
-        AlphaVertex::set(&shadowVertices[currentIndex], dir[i].x * t + centroid.x,
-                dir[i].y * t + centroid.y, opacity);
-        currentIndex++;
-    }
-
-    currentIndex = firstInternal - 1;
-    shadowVertices[currentIndex] = shadowVertices[firstInternal];
-}
-
-/**
- * Calculate the centroid of a given polygon.
- *
- * @param vertices The shadow caster's polygon, which is represented in a
- *                 straight Vector3 array.
- * @param vertexCount The length of caster's polygon in terms of number of vertices.
- *
- * @param centroid Return the centroid of the polygon.
- */
-void AmbientShadow::calculatePolygonCentroid(const Vector3* vertices, int vertexCount,
-        Vector2& centroid) {
-    float sumx = 0;
-    float sumy = 0;
-    int p1 = vertexCount - 1;
-    float area = 0;
-    for (int p2 = 0; p2 < vertexCount; p2++) {
-        float x1 = vertices[p1].x;
-        float y1 = vertices[p1].y;
-        float x2 = vertices[p2].x;
-        float y2 = vertices[p2].y;
-        float a = (x1 * y2 - x2 * y1);
-        sumx += (x1 + x2) * a;
-        sumy += (y1 + y2) * a;
-        area += a;
-        p1 = p2;
-    }
-
-    if (area == 0) {
 #if DEBUG_SHADOW
-        ALOGE("Area is 0!");
-#endif
-        centroid.x = vertices[0].x;
-        centroid.y = vertices[0].y;
-    } else {
-        centroid.x = sumx / (3 * area);
-        centroid.y = sumy / (3 * area);
+    if (currentVertexIndex != SHADOW_VERTEX_COUNT) {
+        ALOGE("number of vertex generated for ambient shadow is wrong! "
+              "current: %d , expected: %d", currentVertexIndex, SHADOW_VERTEX_COUNT);
     }
+    for (int i = 0; i < SHADOW_VERTEX_COUNT; i++) {
+        ALOGD("ambient shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x,
+                shadowVertices[i].y, shadowVertices[i].alpha);
+    }
+#endif
 }
 
 /**
@@ -238,7 +168,7 @@
  * @param outRayDist Return the ray distance from centroid to the intersection.
  */
 void AmbientShadow::calculateIntersection(const Vector3* vertices, int vertexCount,
-        const Vector2& start, const Vector2& dir, int& outEdgeIndex,
+        const Vector3& start, const Vector2& dir, int& outEdgeIndex,
         float& outEdgeFraction, float& outRayDist) {
     float startX = start.x;
     float startY = start.y;
diff --git a/libs/hwui/AmbientShadow.h b/libs/hwui/AmbientShadow.h
index 079bdb7..20d1384 100644
--- a/libs/hwui/AmbientShadow.h
+++ b/libs/hwui/AmbientShadow.h
@@ -34,17 +34,15 @@
  */
 class AmbientShadow {
 public:
-    static void createAmbientShadow(const Vector3* poly, int polyLength, int rays,
-            int layers, float strength, float heightFactor, float geomFactor,
+    static void createAmbientShadow(const Vector3* poly, int polyLength,
+            const Vector3& centroid3d, float heightFactor, float geomFactor,
             VertexBuffer& shadowVertexBuffer);
 
 private:
-    static void calculatePolygonCentroid(const Vector3* poly, int len, Vector2& centroid);
-
     static void calculateRayDirections(int rays, Vector2* dir);
 
     static void calculateIntersection(const Vector3* poly, int nbVertices,
-            const Vector2& start, const Vector2& dir, int& outEdgeIndex,
+            const Vector3& start, const Vector2& dir, int& outEdgeIndex,
             float& outEdgeFraction, float& outRayDist);
 
     static void calculateNormal(int rays, int currentRayIndex, const Vector2* dir,
diff --git a/libs/hwui/Caches.cpp b/libs/hwui/Caches.cpp
index 21cf658..1d58d96 100644
--- a/libs/hwui/Caches.cpp
+++ b/libs/hwui/Caches.cpp
@@ -23,6 +23,7 @@
 #include "DisplayListRenderer.h"
 #include "Properties.h"
 #include "LayerRenderer.h"
+#include "ShadowTessellator.h"
 
 namespace android {
 
@@ -86,7 +87,7 @@
 
     mRegionMesh = NULL;
     mMeshIndices = 0;
-
+    mShadowStripsIndices = 0;
     blend = false;
     lastSrcMode = GL_ZERO;
     lastDstMode = GL_ZERO;
@@ -223,6 +224,9 @@
     mMeshIndices = 0;
     mRegionMesh = NULL;
 
+    glDeleteBuffers(1, &mShadowStripsIndices);
+    mShadowStripsIndices = 0;
+
     fboCache.clear();
 
     programCache.clear();
@@ -404,7 +408,7 @@
     return false;
 }
 
-bool Caches::bindIndicesBuffer(const GLuint buffer) {
+bool Caches::bindIndicesBufferInternal(const GLuint buffer) {
     if (mCurrentIndicesBuffer != buffer) {
         glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer);
         mCurrentIndicesBuffer = buffer;
@@ -413,7 +417,7 @@
     return false;
 }
 
-bool Caches::bindIndicesBuffer() {
+bool Caches::bindQuadIndicesBuffer() {
     if (!mMeshIndices) {
         uint16_t* regionIndices = new uint16_t[gMaxNumberOfQuads * 6];
         for (uint32_t i = 0; i < gMaxNumberOfQuads; i++) {
@@ -428,7 +432,7 @@
         }
 
         glGenBuffers(1, &mMeshIndices);
-        bool force = bindIndicesBuffer(mMeshIndices);
+        bool force = bindIndicesBufferInternal(mMeshIndices);
         glBufferData(GL_ELEMENT_ARRAY_BUFFER, gMaxNumberOfQuads * 6 * sizeof(uint16_t),
                 regionIndices, GL_STATIC_DRAW);
 
@@ -436,7 +440,23 @@
         return force;
     }
 
-    return bindIndicesBuffer(mMeshIndices);
+    return bindIndicesBufferInternal(mMeshIndices);
+}
+
+bool Caches::bindShadowIndicesBuffer() {
+    if (!mShadowStripsIndices) {
+        uint16_t* shadowIndices = new uint16_t[SHADOW_INDEX_COUNT];
+        ShadowTessellator::generateShadowIndices(shadowIndices);
+        glGenBuffers(1, &mShadowStripsIndices);
+        bool force = bindIndicesBufferInternal(mShadowStripsIndices);
+        glBufferData(GL_ELEMENT_ARRAY_BUFFER, SHADOW_INDEX_COUNT * sizeof(uint16_t),
+            shadowIndices, GL_STATIC_DRAW);
+
+        delete[] shadowIndices;
+        return force;
+    }
+
+    return bindIndicesBufferInternal(mShadowStripsIndices);
 }
 
 bool Caches::unbindIndicesBuffer() {
diff --git a/libs/hwui/Caches.h b/libs/hwui/Caches.h
index 2cc15cc..8c0c508 100644
--- a/libs/hwui/Caches.h
+++ b/libs/hwui/Caches.h
@@ -190,8 +190,8 @@
      * Binds a global indices buffer that can draw up to
      * gMaxNumberOfQuads quads.
      */
-    bool bindIndicesBuffer();
-    bool bindIndicesBuffer(const GLuint buffer);
+    bool bindQuadIndicesBuffer();
+    bool bindShadowIndicesBuffer();
     bool unbindIndicesBuffer();
 
     /**
@@ -381,6 +381,8 @@
     void initConstraints();
     void initStaticProperties();
 
+    bool bindIndicesBufferInternal(const GLuint buffer);
+
     static void eventMarkNull(GLsizei length, const GLchar* marker) { }
     static void startMarkNull(GLsizei length, const GLchar* marker) { }
     static void endMarkNull() { }
@@ -417,6 +419,7 @@
 
     // Global index buffer
     GLuint mMeshIndices;
+    GLuint mShadowStripsIndices;
 
     mutable Mutex mGarbageLock;
     Vector<Layer*> mLayerGarbage;
diff --git a/libs/hwui/FontRenderer.cpp b/libs/hwui/FontRenderer.cpp
index b79a3b0..b52003c 100644
--- a/libs/hwui/FontRenderer.cpp
+++ b/libs/hwui/FontRenderer.cpp
@@ -498,7 +498,7 @@
                 }
 
                 checkTextureUpdate();
-                caches.bindIndicesBuffer();
+                caches.bindQuadIndicesBuffer();
 
                 if (!mDrawn) {
                     // If returns true, a VBO was bound and we must
diff --git a/libs/hwui/OpenGLRenderer.cpp b/libs/hwui/OpenGLRenderer.cpp
index 9b253a6..197cf50 100644
--- a/libs/hwui/OpenGLRenderer.cpp
+++ b/libs/hwui/OpenGLRenderer.cpp
@@ -1907,7 +1907,7 @@
     } else {
         force = mCaches.unbindMeshBuffer();
     }
-    mCaches.bindIndicesBuffer();
+    mCaches.bindQuadIndicesBuffer();
 
     mCaches.bindPositionVertexPointer(force, vertices);
     if (mCaches.currentProgram->texCoords >= 0) {
@@ -1917,7 +1917,7 @@
 
 void OpenGLRenderer::setupDrawIndexedVertices(GLvoid* vertices) {
     bool force = mCaches.unbindMeshBuffer();
-    mCaches.bindIndicesBuffer();
+    mCaches.bindQuadIndicesBuffer();
     mCaches.bindPositionVertexPointer(force, vertices, gVertexStride);
 }
 
@@ -2392,10 +2392,9 @@
     return DrawGlInfo::kStatusDrew;
 }
 
-status_t OpenGLRenderer::drawVertexBuffer(const VertexBuffer& vertexBuffer, const SkPaint* paint,
-        bool useOffset) {
+status_t OpenGLRenderer::drawVertexBuffer(VertexBufferMode mode,
+        const VertexBuffer& vertexBuffer, const SkPaint* paint, bool useOffset) {
     // not missing call to quickReject/dirtyLayer, always done at a higher level
-
     if (!vertexBuffer.getVertexCount()) {
         // no vertices to draw
         return DrawGlInfo::kStatusDone;
@@ -2421,19 +2420,24 @@
     bool force = mCaches.unbindMeshBuffer();
     mCaches.bindPositionVertexPointer(true, vertices, isAA ? gAlphaVertexStride : gVertexStride);
     mCaches.resetTexCoordsVertexPointer();
-    mCaches.unbindIndicesBuffer();
+
 
     int alphaSlot = -1;
     if (isAA) {
         void* alphaCoords = ((GLbyte*) vertices) + gVertexAlphaOffset;
         alphaSlot = mCaches.currentProgram->getAttrib("vtxAlpha");
-
         // TODO: avoid enable/disable in back to back uses of the alpha attribute
         glEnableVertexAttribArray(alphaSlot);
         glVertexAttribPointer(alphaSlot, 1, GL_FLOAT, GL_FALSE, gAlphaVertexStride, alphaCoords);
     }
 
-    glDrawArrays(GL_TRIANGLE_STRIP, 0, vertexBuffer.getVertexCount());
+    if (mode == kVertexBufferMode_Standard) {
+        mCaches.unbindIndicesBuffer();
+        glDrawArrays(GL_TRIANGLE_STRIP, 0, vertexBuffer.getVertexCount());
+    } else {
+        mCaches.bindShadowIndicesBuffer();
+        glDrawElements(GL_TRIANGLE_STRIP, SHADOW_INDEX_COUNT, GL_UNSIGNED_SHORT, 0);
+    }
 
     if (isAA) {
         glDisableVertexAttribArray(alphaSlot);
@@ -2462,7 +2466,7 @@
         dirtyLayer(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom, *currentTransform());
     }
 
-    return drawVertexBuffer(vertexBuffer, paint);
+    return drawVertexBuffer(kVertexBufferMode_Standard, vertexBuffer, paint);
 }
 
 /**
@@ -2493,7 +2497,7 @@
     dirtyLayer(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom, *currentTransform());
 
     bool useOffset = !paint->isAntiAlias();
-    return drawVertexBuffer(buffer, paint, useOffset);
+    return drawVertexBuffer(kVertexBufferMode_Standard, buffer, paint, useOffset);
 }
 
 status_t OpenGLRenderer::drawPoints(const float* points, int count, const SkPaint* paint) {
@@ -2513,7 +2517,7 @@
     dirtyLayer(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom, *currentTransform());
 
     bool useOffset = !paint->isAntiAlias();
-    return drawVertexBuffer(buffer, paint, useOffset);
+    return drawVertexBuffer(kVertexBufferMode_Standard, buffer, paint, useOffset);
 }
 
 status_t OpenGLRenderer::drawColor(int color, SkXfermode::Mode mode) {
@@ -3236,13 +3240,20 @@
         casterTransform.mapPoint3d(casterPolygon[i]);
     }
 
+    // map the centroid of the caster into 3d
+    Vector2 centroid =  ShadowTessellator::centroid2d(
+            reinterpret_cast<const Vector2*>(casterVertices2d.array()),
+            casterVertexCount);
+    Vector3 centroid3d(centroid.x, centroid.y, 0);
+    casterTransform.mapPoint3d(centroid3d);
+
     // draw caster's shadows
     if (mCaches.propertyAmbientShadowStrength > 0) {
         paint.setARGB(mCaches.propertyAmbientShadowStrength, 0, 0, 0);
         VertexBuffer ambientShadowVertexBuffer;
         ShadowTessellator::tessellateAmbientShadow(casterPolygon, casterVertexCount,
-                ambientShadowVertexBuffer);
-        drawVertexBuffer(ambientShadowVertexBuffer, &paint);
+                centroid3d, ambientShadowVertexBuffer);
+        drawVertexBuffer(kVertexBufferMode_Shadow, ambientShadowVertexBuffer, &paint);
     }
 
     if (mCaches.propertySpotShadowStrength > 0) {
@@ -3254,7 +3265,7 @@
                 lightPosScale, *currentTransform(), getWidth(), getHeight(),
                 spotShadowVertexBuffer);
 
-        drawVertexBuffer(spotShadowVertexBuffer, &paint);
+        drawVertexBuffer(kVertexBufferMode_Shadow, spotShadowVertexBuffer, &paint);
     }
 
     return DrawGlInfo::kStatusDrew;
diff --git a/libs/hwui/OpenGLRenderer.h b/libs/hwui/OpenGLRenderer.h
index e4d133d..03beae3 100644
--- a/libs/hwui/OpenGLRenderer.h
+++ b/libs/hwui/OpenGLRenderer.h
@@ -117,6 +117,11 @@
     kModelViewMode_TranslateAndScale = 1,
 };
 
+enum VertexBufferMode {
+    kVertexBufferMode_Standard = 0,
+    kVertexBufferMode_Shadow = 1
+};
+
 ///////////////////////////////////////////////////////////////////////////////
 // Renderer
 ///////////////////////////////////////////////////////////////////////////////
@@ -629,8 +634,8 @@
      * @param paint The paint to render with
      * @param useOffset Offset the vertexBuffer (used in drawing non-AA lines)
      */
-    status_t drawVertexBuffer(const VertexBuffer& vertexBuffer, const SkPaint* paint,
-            bool useOffset = false);
+    status_t drawVertexBuffer(VertexBufferMode mode, const VertexBuffer& vertexBuffer,
+            const SkPaint* paint, bool useOffset = false);
 
     /**
      * Renders the convex hull defined by the specified path as a strip of polygons.
diff --git a/libs/hwui/ShadowTessellator.cpp b/libs/hwui/ShadowTessellator.cpp
index 7700ea0..526772b 100644
--- a/libs/hwui/ShadowTessellator.cpp
+++ b/libs/hwui/ShadowTessellator.cpp
@@ -31,18 +31,16 @@
     return a > b ? a : b;
 }
 
-void ShadowTessellator::tessellateAmbientShadow(const Vector3* casterPolygon, int casterVertexCount,
+void ShadowTessellator::tessellateAmbientShadow(const Vector3* casterPolygon,
+        int casterVertexCount, const Vector3& centroid3d,
         VertexBuffer& shadowVertexBuffer) {
     // A bunch of parameters to tweak the shadow.
     // TODO: Allow some of these changable by debug settings or APIs.
-    const int rays = 128;
-    const int layers = 2;
-    const float strength = 0.5;
     const float heightFactor = 128;
     const float geomFactor = 64;
 
-    AmbientShadow::createAmbientShadow(casterPolygon, casterVertexCount, rays, layers, strength,
-            heightFactor, geomFactor, shadowVertexBuffer);
+    AmbientShadow::createAmbientShadow(casterPolygon, casterVertexCount,
+            centroid3d, heightFactor, geomFactor, shadowVertexBuffer);
 
 }
 
@@ -51,9 +49,6 @@
         int screenWidth, int screenHeight, VertexBuffer& shadowVertexBuffer) {
     // A bunch of parameters to tweak the shadow.
     // TODO: Allow some of these changable by debug settings or APIs.
-    const int rays = 256;
-    const int layers = 2;
-    const float strength = 0.5;
     int maximal = max(screenWidth, screenHeight);
     Vector3 lightCenter(screenWidth * lightPosScale.x, screenHeight * lightPosScale.y,
             maximal * lightPosScale.z);
@@ -70,9 +65,77 @@
     const float lightSize = maximal / 4;
     const int lightVertexCount = 16;
 
-    SpotShadow::createSpotShadow(casterPolygon, casterVertexCount, lightCenter, lightSize,
-            lightVertexCount, rays, layers, strength, shadowVertexBuffer);
+    SpotShadow::createSpotShadow(casterPolygon, casterVertexCount, lightCenter,
+            lightSize, lightVertexCount, shadowVertexBuffer);
 
 }
+
+void ShadowTessellator::generateShadowIndices(uint16_t* shadowIndices) {
+    int currentIndex = 0;
+    const int layers = SHADOW_LAYER_COUNT;
+    const int rays = SHADOW_RAY_COUNT;
+    // For the penumbra area.
+    for (int i = 0; i < layers; i++) {
+        for (int j = 0; j < rays; j++) {
+            shadowIndices[currentIndex++] = i * rays + j;
+            shadowIndices[currentIndex++] = (i + 1) * rays + j;
+        }
+        // To close the loop, back to the ray 0.
+        shadowIndices[currentIndex++] = i * rays;
+        shadowIndices[currentIndex++] = (i + 1) * rays;
+    }
+    uint16_t base = layers * rays;
+    uint16_t centroidIndex = (layers + 1) * rays;
+    // For the umbra area, using strips to simulate the fans.
+    for (int k = 0; k < rays; k++) {
+        shadowIndices[currentIndex++] = base + k;
+        shadowIndices[currentIndex++] = centroidIndex;
+    }
+    shadowIndices[currentIndex++] = base;
+
+#if DEBUG_SHADOW
+    if (currentIndex != SHADOW_INDEX_COUNT) {
+        ALOGE("vertex index count is wrong. current %d, expected %d",
+                currentIndex, SHADOW_INDEX_COUNT);
+    }
+    for (int i = 0; i < SHADOW_INDEX_COUNT; i++) {
+        ALOGD("vertex index is (%d, %d)", i, shadowIndices[i]);
+    }
+#endif
+}
+
+/**
+ * Calculate the centroid of a 2d polygon.
+ *
+ * @param poly The polygon, which is represented in a Vector2 array.
+ * @param polyLength The length of the polygon in terms of number of vertices.
+ * @return the centroid of the polygon.
+ */
+Vector2 ShadowTessellator::centroid2d(const Vector2* poly, int polyLength) {
+    double sumx = 0;
+    double sumy = 0;
+    int p1 = polyLength - 1;
+    double area = 0;
+    for (int p2 = 0; p2 < polyLength; p2++) {
+        double x1 = poly[p1].x;
+        double y1 = poly[p1].y;
+        double x2 = poly[p2].x;
+        double y2 = poly[p2].y;
+        double a = (x1 * y2 - x2 * y1);
+        sumx += (x1 + x2) * a;
+        sumy += (y1 + y2) * a;
+        area += a;
+        p1 = p2;
+    }
+
+    Vector2 centroid = poly[0];
+    if (area != 0) {
+        centroid = Vector2(sumx / (3 * area), sumy / (3 * area));
+    } else {
+        ALOGE("Area is 0 while computing centroid!");
+    }
+    return centroid;
+}
+
 }; // namespace uirenderer
 }; // namespace android
diff --git a/libs/hwui/ShadowTessellator.h b/libs/hwui/ShadowTessellator.h
index ef95609..c49fdcb1 100644
--- a/libs/hwui/ShadowTessellator.h
+++ b/libs/hwui/ShadowTessellator.h
@@ -20,18 +20,57 @@
 
 #include "Debug.h"
 #include "Matrix.h"
+#include "VertexBuffer.h"
 
 namespace android {
 namespace uirenderer {
 
+// All SHADOW_* are used to define all the geometry property of shadows.
+// Use a simplified example to illustrate the geometry setup here.
+// Assuming we use 6 rays and only 1 layer, Then we will have 2 hexagons, which
+// are 0 to 5 and 6 to 11. The area between them will be the penumbra area, and
+// the area inside the 2nd hexagon is the umbra.
+// Also, we need to add the centroid "12" to draw the umbra area as triangle fans.
+//
+// Triange strip indices for penumbra area: (0, 6, 1, 7, 2, 8, 3, 9, 4, 10, 5, 11, 0, 6)
+// Triange strip indices for numbra area: (6, 12, 7, 12, 8, 12, 9, 12, 10, 12, 11, 12, 6)
+//                 0
+//
+//      5          6         1
+//           11         7
+//                12
+//           10         8
+//      4          9         2
+//
+//                 3
+
+// The total number of rays starting from the centroid of shadow area, in order
+// to generate the shadow geometry.
+#define SHADOW_RAY_COUNT 256
+
+// The total number of layers in the outer shadow area, 1 being the minimum.
+#define SHADOW_LAYER_COUNT 2
+
+// The total number of all the vertices representing the shadow.
+#define SHADOW_VERTEX_COUNT ((SHADOW_LAYER_COUNT + 1) * SHADOW_RAY_COUNT + 1)
+
+// The total number of indices used for drawing the shadow geometry as triangle strips.
+#define SHADOW_INDEX_COUNT (2 * SHADOW_RAY_COUNT + 1 + 2 * (SHADOW_RAY_COUNT + 1) * \
+        SHADOW_LAYER_COUNT)
+
 class ShadowTessellator {
 public:
-    static void tessellateAmbientShadow(const Vector3* casterPolygon, int casterVertexCount,
+    static void tessellateAmbientShadow(const Vector3* casterPolygon,
+            int casterVertexCount, const Vector3& centroid3d,
             VertexBuffer& shadowVertexBuffer);
 
     static void tessellateSpotShadow(const Vector3* casterPolygon, int casterVertexCount,
             const Vector3& lightPosScale, const mat4& receiverTransform,
             int screenWidth, int screenHeight, VertexBuffer& shadowVertexBuffer);
+
+    static void generateShadowIndices(uint16_t*  shadowIndices);
+
+    static Vector2 centroid2d(const Vector2* poly, int polyLength);
 }; // ShadowTessellator
 
 }; // namespace uirenderer
diff --git a/libs/hwui/SpotShadow.cpp b/libs/hwui/SpotShadow.cpp
index 4c2299e..22d735b 100644
--- a/libs/hwui/SpotShadow.cpp
+++ b/libs/hwui/SpotShadow.cpp
@@ -22,6 +22,7 @@
 #include <stdlib.h>
 #include <utils/Log.h>
 
+#include "ShadowTessellator.h"
 #include "SpotShadow.h"
 #include "Vertex.h"
 
@@ -70,35 +71,6 @@
 }
 
 /**
- * Calculate the centroid of a 2d polygon.
- *
- * @param poly The polygon, which is represented in a Vector2 array.
- * @param polyLength The length of the polygon in terms of number of vertices.
- * @return the centroid of the polygon.
- */
-Vector2 SpotShadow::centroid2d(const Vector2* poly, int polyLength) {
-    double sumx = 0;
-    double sumy = 0;
-    int p1 = polyLength - 1;
-    double area = 0;
-    for (int p2 = 0; p2 < polyLength; p2++) {
-        double x1 = poly[p1].x;
-        double y1 = poly[p1].y;
-        double x2 = poly[p2].x;
-        double y2 = poly[p2].y;
-        double a = (x1 * y2 - x2 * y1);
-        sumx += (x1 + x2) * a;
-        sumy += (y1 + y2) * a;
-        area += a;
-        p1 = p2;
-    }
-
-    double centroidx = sumx / (3 * area);
-    double centroidy = sumy / (3 * area);
-    return Vector2((float)centroidx, (float)centroidy);
-}
-
-/**
  * Sort points by their X coordinates
  *
  * @param points the points as a Vector2 array.
@@ -550,20 +522,17 @@
 * @param lightCenter the center of the light
 * @param lightSize the radius of the light source
 * @param lightVertexCount the vertex counter for the light polygon
-* @param rays the number of vertexes to create along the edges of the shadow
-* @param layers the number of layers of triangles strips to create
-* @param strength the "darkness" of the shadow
 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
 *                            empty strip if error.
 *
 */
 void SpotShadow::createSpotShadow(const Vector3* poly, int polyLength,
         const Vector3& lightCenter, float lightSize, int lightVertexCount,
-        int rays, int layers, float strength, VertexBuffer& retStrips) {
+        VertexBuffer& retStrips) {
     Vector3 light[lightVertexCount * 3];
     computeLightPolygon(lightVertexCount, lightCenter, lightSize, light);
-    computeSpotShadow(light, lightVertexCount, lightCenter,
-            poly, polyLength, rays, layers, strength, retStrips);
+    computeSpotShadow(light, lightVertexCount, lightCenter, poly, polyLength,
+            retStrips);
 }
 
 /**
@@ -573,15 +542,12 @@
  * @param lightPolyLength number of vertexes of the light source polygon
  * @param poly x,y,z vertexes of a convex polygon that occludes the light source
  * @param polyLength number of vertexes of the occluding polygon
- * @param rays the number of vertexes to create along the edges of the shadow
- * @param layers the number of layers of triangles strips to create
- * @param strength the "darkness" of the shadow
  * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
  *                            empty strip if error.
  */
 void SpotShadow::computeSpotShadow(const Vector3* lightPoly, int lightPolyLength,
         const Vector3& lightCenter, const Vector3* poly, int polyLength,
-        int rays, int layers, float strength, VertexBuffer& shadowTriangleStrip) {
+        VertexBuffer& shadowTriangleStrip) {
     // Point clouds for all the shadowed vertices
     Vector2 shadowRegion[lightPolyLength * polyLength];
     // Shadow polygon from one point light.
@@ -671,7 +637,8 @@
 
         // Shrink the centroid's shadow by 10%.
         // TODO: Study the magic number of 10%.
-        Vector2 shadowCentroid = centroid2d(fakeUmbra, polyLength);
+        Vector2 shadowCentroid =
+                ShadowTessellator::centroid2d(fakeUmbra, polyLength);
         for (int i = 0; i < polyLength; i++) {
             fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) +
                     fakeUmbra[i] * SHADOW_SHRINK_SCALE;
@@ -686,7 +653,7 @@
     }
 
     generateTriangleStrip(penumbra, penumbraLength, umbra, umbraLength,
-            rays, layers, strength, shadowTriangleStrip);
+            shadowTriangleStrip);
 }
 
 /**
@@ -696,22 +663,18 @@
  * @param penumbraLength The number of vertexes in the outer polygon
  * @param umbra The inner outer polygon x,y vertexes
  * @param umbraLength The number of vertexes in the inner polygon
- * @param rays The number of points along the polygons to create
- * @param layers The number of layers of triangle strips between the umbra and penumbra
- * @param strength The max alpha of the umbra
  * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
  *                            empty strip if error.
 **/
 void SpotShadow::generateTriangleStrip(const Vector2* penumbra, int penumbraLength,
-        const Vector2* umbra, int umbraLength, int rays, int layers,
-        float strength, VertexBuffer& shadowTriangleStrip) {
+        const Vector2* umbra, int umbraLength, VertexBuffer& shadowTriangleStrip) {
+    const int rays = SHADOW_RAY_COUNT;
+    const int layers = SHADOW_LAYER_COUNT;
 
-    int rings = layers + 1;
-    int size = rays * rings;
-
+    int size = rays * (layers + 1);
     float step = M_PI * 2 / rays;
     // Centroid of the umbra.
-    Vector2 centroid = centroid2d(umbra, umbraLength);
+    Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength);
 #if DEBUG_SHADOW
     ALOGD("centroid2d =  %f , %f", centroid.x, centroid.y);
 #endif
@@ -741,57 +704,29 @@
     int stripSize = getStripSize(rays, layers);
     AlphaVertex* shadowVertices = shadowTriangleStrip.alloc<AlphaVertex>(stripSize);
     int currentIndex = 0;
-    int firstInLayer = 0;
-    // Calculate the vertex values in the penumbra area.
-    for (int r = 0; r < layers; r++) {
-        firstInLayer = currentIndex;
-        for (int i = 0; i < rays; i++) {
-            float dx = sinf(step * i);
-            float dy = cosf(step * i);
 
-            for (int j = r; j < (r + 2); j++) {
-                float layerRatio = j / (float)(rings - 1);
-                float deltaDist = layerRatio * (umbraDistPerRay[i] - penumbraDistPerRay[i]);
-                float currentDist = penumbraDistPerRay[i] + deltaDist;
-                float op = calculateOpacity(layerRatio, deltaDist);
+    // Calculate the vertices (x, y, alpha) in the shadow area.
+    for (int layerIndex = 0; layerIndex <= layers; layerIndex++) {
+        for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
+            float dx = sinf(step * rayIndex);
+            float dy = cosf(step * rayIndex);
+                float layerRatio = layerIndex / (float) layers;
+                float deltaDist = layerRatio *
+                        (umbraDistPerRay[rayIndex] - penumbraDistPerRay[rayIndex]);
+                float currentDist = penumbraDistPerRay[rayIndex] + deltaDist;
+                float op = calculateOpacity(layerRatio);
                 AlphaVertex::set(&shadowVertices[currentIndex++],
-                        dx * currentDist + centroid.x,
-                        dy * currentDist + centroid.y,
-                        layerRatio * op * strength);
-            }
+                        dx * currentDist + centroid.x, dy * currentDist + centroid.y, op);
         }
-
-        // Duplicate the vertices from one layer to another one to make triangle
-        // strip.
-        shadowVertices[currentIndex++] = shadowVertices[firstInLayer + 0];
-        shadowVertices[currentIndex++] = shadowVertices[firstInLayer + 1];
     }
-
-    int lastInPenumbra = currentIndex - 1;
-    shadowVertices[currentIndex++] = shadowVertices[lastInPenumbra];
-
-    // Preallocate the vertices (index as [firstInUmbra - 1]) for jumping from
-    // the penumbra to umbra.
-    currentIndex++;
-    int firstInUmbra = currentIndex;
-
-    // traverse the umbra area in a zig zag pattern for strips.
-    const int innerRingStartIndex = firstInLayer + 1;
-    for (int k = 0; k < rays; k++) {
-        int i = k / 2;
-        if ((k & 1) == 1) {
-            i = rays - i - 1;
-        }
-        // copy already computed values for umbra vertices
-        shadowVertices[currentIndex++] = shadowVertices[innerRingStartIndex + i * 2];
-    }
-
-    // Back fill the one vertex for jumping from penumbra to umbra.
-    shadowVertices[firstInUmbra - 1] = shadowVertices[firstInUmbra];
-
+    // The centroid is in the umbra area, so the opacity is considered as 1.0.
+    AlphaVertex::set(&shadowVertices[currentIndex++], centroid.x, centroid.y, 1.0);
 #if DEBUG_SHADOW
+    if (currentIndex != SHADOW_VERTEX_COUNT) {
+        ALOGE("number of vertex generated for spot shadow is wrong!");
+    }
     for (int i = 0; i < currentIndex; i++) {
-        ALOGD("shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x,
+        ALOGD("spot shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x,
                 shadowVertices[i].y, shadowVertices[i].alpha);
     }
 #endif
@@ -819,17 +754,15 @@
 }
 
 /**
- * Calculate the opacity according to the distance and falloff ratio.
+ * Calculate the opacity according to the distance. Ideally, the opacity is 1.0
+ * in the umbra area, and fall off to 0.0 till the edge of penumbra area.
  *
- * @param distRatio The distance ratio of current sample between umbra and
- *                  penumbra area.
- * @param deltaDist The distance between current sample to the penumbra area.
+ * @param layerRatio The distance ratio of current sample between umbra and penumbra area.
+ *                   Penumbra edge is 0 and umbra edge is 1.
  * @return The opacity according to the distance between umbra and penumbra.
  */
-float SpotShadow::calculateOpacity(float distRatio, float deltaDist) {
-    // TODO: Experiment on the opacity calculation.
-    float falloffRatio = 1 + deltaDist * deltaDist;
-    return (distRatio + 1 - 1 / falloffRatio) / 2;
+float SpotShadow::calculateOpacity(float layerRatio) {
+    return (layerRatio * layerRatio + layerRatio) / 2.0;
 }
 
 /**
diff --git a/libs/hwui/SpotShadow.h b/libs/hwui/SpotShadow.h
index a50d110..6727eac 100644
--- a/libs/hwui/SpotShadow.h
+++ b/libs/hwui/SpotShadow.h
@@ -28,24 +28,22 @@
 public:
     static void createSpotShadow(const Vector3* poly, int polyLength,
             const Vector3& lightCenter, float lightSize, int lightVertexCount,
-            int rays, int layers, float strength, VertexBuffer& retStrips);
+            VertexBuffer& retStrips);
 
 private:
     static void computeSpotShadow(const Vector3* lightPoly, int lightPolyLength,
             const Vector3& lightCenter, const Vector3* poly, int polyLength,
-            int rays, int layers, float strength, VertexBuffer& retstrips);
+            VertexBuffer& retstrips);
 
     static void computeLightPolygon(int points, const Vector3& lightCenter,
             float size, Vector3* ret);
 
     static int  getStripSize(int rays, int layers);
     static void smoothPolygon(int level, int rays, float* rayDist);
-    static float calculateOpacity(float jf, float deltaDist);
+    static float calculateOpacity(float jf);
     static float rayIntersectPoly(const Vector2* poly, int polyLength,
             const Vector2& point, float dx, float dy);
 
-    static Vector2 centroid2d(const Vector2* poly, int polyLength);
-
     static void xsort(Vector2* points, int pointsLength);
     static int hull(Vector2* points, int pointsLength, Vector2* retPoly);
     static bool ccw(double ax, double ay, double bx, double by, double cx, double cy);
@@ -65,8 +63,7 @@
             double x3, double y3, double x4, double y4, Vector2& ret);
 
     static void generateTriangleStrip(const Vector2* penumbra, int penumbraLength,
-            const Vector2* umbra, int umbraLength, int rays, int layers,
-            float strength, VertexBuffer& retstrips);
+            const Vector2* umbra, int umbraLength, VertexBuffer& retstrips);
 
     static const double EPSILON = 1e-7;