Merge "Add dependency to version script when linking stub libraries"
tree: 8fb130a1c0b561360ea68416fa2660581a0ad369
  1. android/
  2. androidmk/
  3. apex/
  4. bpf/
  5. bpfix/
  6. cc/
  7. cmd/
  8. dexpreopt/
  9. docs/
  10. env/
  11. finder/
  12. genrule/
  13. jar/
  14. java/
  15. phony/
  16. python/
  17. scripts/
  18. shared/
  19. symbol_inject/
  20. sysprop/
  21. third_party/
  22. tradefed/
  23. ui/
  24. xml/
  25. zip/
  26. Android.bp
  27. bootstrap.bash
  28. build_test.bash
  29. doc.go
  30. go.mod
  31. navbar.md
  32. OWNERS
  33. PREUPLOAD.cfg
  34. README.md
  35. root.bp
  36. soong.bash
  37. soong.bootstrap.in
  38. soong_ui.bash
README.md

Soong

Soong is the replacement for the old Android make-based build system. It replaces Android.mk files with Android.bp files, which are JSON-like simple declarative descriptions of modules to build.

See Simple Build Configuration on source.android.com to read how Soong is configured for testing.

Android.bp file format

By design, Android.bp files are very simple. There are no conditionals or control flow statements - any complexity is handled in build logic written in Go. The syntax and semantics of Android.bp files are intentionally similar to Bazel BUILD files when possible.

Modules

A module in an Android.bp file starts with a module type, followed by a set of properties in name: value, format:

cc_binary {
    name: "gzip",
    srcs: ["src/test/minigzip.c"],
    shared_libs: ["libz"],
    stl: "none",
}

Every module must have a name property, and the value must be unique across all Android.bp files.

For a list of valid module types and their properties see $OUT_DIR/soong/docs/soong_build.html.

Globs

Properties that take a list of files can also take glob patterns. Glob patterns can contain the normal Unix wildcard *, for example "*.java". Glob patterns can also contain a single ** wildcard as a path element, which will match zero or more path elements. For example, java/**/*.java will match java/Main.java and java/com/android/Main.java.

Variables

An Android.bp file may contain top-level variable assignments:

gzip_srcs = ["src/test/minigzip.c"],

cc_binary {
    name: "gzip",
    srcs: gzip_srcs,
    shared_libs: ["libz"],
    stl: "none",
}

Variables are scoped to the remainder of the file they are declared in, as well as any child blueprint files. Variables are immutable with one exception - they can be appended to with a += assignment, but only before they have been referenced.

Comments

Android.bp files can contain C-style multiline /* */ and C++ style single-line // comments.

Types

Variables and properties are strongly typed, variables dynamically based on the first assignment, and properties statically by the module type. The supported types are:

  • Bool (true or false)
  • Integers (int)
  • Strings ("string")
  • Lists of strings (["string1", "string2"])
  • Maps ({key1: "value1", key2: ["value2"]})

Maps may values of any type, including nested maps. Lists and maps may have trailing commas after the last value.

Strings can contain double quotes using \", for example "cat \"a b\"".

Operators

Strings, lists of strings, and maps can be appended using the + operator. Integers can be summed up using the + operator. Appending a map produces the union of keys in both maps, appending the values of any keys that are present in both maps.

Defaults modules

A defaults module can be used to repeat the same properties in multiple modules. For example:

cc_defaults {
    name: "gzip_defaults",
    shared_libs: ["libz"],
    stl: "none",
}

cc_binary {
    name: "gzip",
    defaults: ["gzip_defaults"],
    srcs: ["src/test/minigzip.c"],
}

Packages

The build is organized into packages where each package is a collection of related files and a specification of the dependencies among them in the form of modules.

A package is defined as a directory containing a file named Android.bp, residing beneath the top-level directory in the build and its name is its path relative to the top-level directory. A package includes all files in its directory, plus all subdirectories beneath it, except those which themselves contain an Android.bp file.

The modules in a package's Android.bp and included files are part of the module.

For example, in the following directory tree (where .../android/ is the top-level Android directory) there are two packages, my/app, and the subpackage my/app/tests. Note that my/app/data is not a package, but a directory belonging to package my/app.

.../android/my/app/Android.bp
.../android/my/app/app.cc
.../android/my/app/data/input.txt
.../android/my/app/tests/Android.bp
.../android/my/app/tests/test.cc

This is based on the Bazel package concept.

Name resolution

Soong provides the ability for modules in different directories to specify the same name, as long as each module is declared within a separate namespace. A namespace can be declared like this:

soong_namespace {
    imports: ["path/to/otherNamespace1", "path/to/otherNamespace2"],
}

Each Soong module is assigned a namespace based on its location in the tree. Each Soong module is considered to be in the namespace defined by the soong_namespace found in an Android.bp in the current directory or closest ancestor directory, unless no such soong_namespace module is found, in which case the module is considered to be in the implicit root namespace.

When Soong attempts to resolve dependency D declared my module M in namespace N which imports namespaces I1, I2, I3..., then if D is a fully-qualified name of the form "//namespace:module", only the specified namespace will be searched for the specified module name. Otherwise, Soong will first look for a module named D declared in namespace N. If that module does not exist, Soong will look for a module named D in namespaces I1, I2, I3... Lastly, Soong will look in the root namespace.

Until we have fully converted from Make to Soong, it will be necessary for the Make product config to specify a value of PRODUCT_SOONG_NAMESPACES. Its value should be a space-separated list of namespaces that Soong export to Make to be built by the m command. After we have fully converted from Make to Soong, the details of enabling namespaces could potentially change.

Visibility

The visibility property on a module controls whether the module can be used by other packages. Modules are always visible to other modules declared in the same package. This is based on the Bazel visibility mechanism.

If specified the visibility property must contain at least one rule.

Each rule in the property must be in one of the following forms:

  • ["//visibility:public"]: Anyone can use this module.
  • ["//visibility:private"]: Only rules in the module's package (not its subpackages) can use this module.
  • ["//some/package:__pkg__", "//other/package:__pkg__"]: Only modules in some/package and other/package (defined in some/package/*.bp and other/package/*.bp) have access to this module. Note that sub-packages do not have access to the rule; for example, //some/package/foo:bar or //other/package/testing:bla wouldn't have access. __pkg__ is a special module and must be used verbatim. It represents all of the modules in the package.
  • ["//project:__subpackages__", "//other:__subpackages__"]: Only modules in packages project or other or in one of their sub-packages have access to this module. For example, //project:rule, //project/library:lib or //other/testing/internal:munge are allowed to depend on this rule (but not //independent:evil)
  • ["//project"]: This is shorthand for ["//project:__pkg__"]
  • [":__subpackages__"]: This is shorthand for ["//project:__subpackages__"] where //project is the module's package. e.g. using [":__subpackages__"] in packages/apps/Settings/Android.bp is equivalent to //packages/apps/Settings:__subpackages__.
  • ["//visibility:legacy_public"]: The default visibility, behaves as //visibility:public for now. It is an error if it is used in a module.

The visibility rules of //visibility:public and //visibility:private can not be combined with any other visibility specifications, except //visibility:public is allowed to override visibility specifications imported through the defaults property.

Packages outside vendor/ cannot make themselves visible to specific packages in vendor/, e.g. a module in libcore cannot declare that it is visible to say vendor/google, instead it must make itself visible to all packages within vendor/ using //vendor:__subpackages__.

If a module does not specify the visibility property the module is //visibility:legacy_public. Once the build has been completely switched over to soong it is possible that a global refactoring will be done to change this to //visibility:private at which point all modules that do not currently specify a visibility property will be updated to have visibility = [//visibility:legacy_public] added. It will then be the owner's responsibility to replace that with a more appropriate visibility.

Formatter

Soong includes a canonical formatter for blueprint files, similar to gofmt. To recursively reformat all Android.bp files in the current directory:

bpfmt -w .

The canonical format includes 4 space indents, newlines after every element of a multi-element list, and always includes a trailing comma in lists and maps.

Convert Android.mk files

Soong includes a tool perform a first pass at converting Android.mk files to Android.bp files:

androidmk Android.mk > Android.bp

The tool converts variables, modules, comments, and some conditionals, but any custom Makefile rules, complex conditionals or extra includes must be converted by hand.

Differences between Android.mk and Android.bp

  • Android.mk files often have multiple modules with the same name (for example for static and shared version of a library, or for host and device versions). Android.bp files require unique names for every module, but a single module can be built in multiple variants, for example by adding host_supported: true. The androidmk converter will produce multiple conflicting modules, which must be resolved by hand to a single module with any differences inside target: { android: { }, host: { } } blocks.

Build logic

The build logic is written in Go using the blueprint framework. Build logic receives module definitions parsed into Go structures using reflection and produces build rules. The build rules are collected by blueprint and written to a ninja build file.

Other documentation

FAQ

How do I write conditionals?

Soong deliberately does not support conditionals in Android.bp files. Instead, complexity in build rules that would require conditionals are handled in Go, where high level language features can be used and implicit dependencies introduced by conditionals can be tracked. Most conditionals are converted to a map property, where one of the values in the map will be selected and appended to the top level properties.

For example, to support architecture specific files:

cc_library {
    ...
    srcs: ["generic.cpp"],
    arch: {
        arm: {
            srcs: ["arm.cpp"],
        },
        x86: {
            srcs: ["x86.cpp"],
        },
    },
}

See art/build/art.go or external/llvm/soong/llvm.go for examples of more complex conditionals on product variables or environment variables.

Developing for Soong

To load Soong code in a Go-aware IDE, create a directory outside your android tree and then:

apt install bindfs
export GOPATH=<path to the directory you created>
build/soong/scripts/setup_go_workspace_for_soong.sh

This will bind mount the Soong source directories into the directory in the layout expected by the IDE.

Contact

Email android-building@googlegroups.com (external) for any questions, or see go/soong (internal).