blob: a772c096431fb8c13c675818b43037034f0503e8 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This file contains codegen for the Mips ISA */
#include "oat/runtime/oat_support_entrypoints.h"
namespace art {
void genSpecialCase(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir,
SpecialCaseHandler specialCase)
{
// TODO
}
/*
* The lack of pc-relative loads on Mips presents somewhat of a challenge
* for our PIC switch table strategy. To materialize the current location
* we'll do a dummy JAL and reference our tables using r_RA as the
* base register. Note that r_RA will be used both as the base to
* locate the switch table data and as the reference base for the switch
* target offsets stored in the table. We'll use a special pseudo-instruction
* to represent the jal and trigger the construction of the
* switch table offsets (which will happen after final assembly and all
* labels are fixed).
*
* The test loop will look something like:
*
* ori rEnd, r_ZERO, #tableSize ; size in bytes
* jal BaseLabel ; stores "return address" (BaseLabel) in r_RA
* nop ; opportunistically fill
* BaseLabel:
* addiu rBase, r_RA, <table> - <BaseLabel> ; table relative to BaseLabel
addu rEnd, rEnd, rBase ; end of table
* lw rVal, [rSP, vRegOff] ; Test Value
* loop:
* beq rBase, rEnd, done
* lw rKey, 0(rBase)
* addu rBase, 8
* bne rVal, rKey, loop
* lw rDisp, -4(rBase)
* addu r_RA, rDisp
* jr r_RA
* done:
*
*/
void genSparseSwitch(CompilationUnit* cUnit, uint32_t tableOffset,
RegLocation rlSrc)
{
const u2* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset;
if (cUnit->printMe) {
dumpSparseSwitchTable(table);
}
// Add the table to the list - we'll process it later
SwitchTable *tabRec = (SwitchTable *)oatNew(cUnit, sizeof(SwitchTable),
true, kAllocData);
tabRec->table = table;
tabRec->vaddr = cUnit->currentDalvikOffset;
int elements = table[1];
tabRec->targets = (LIR* *)oatNew(cUnit, elements * sizeof(LIR*), true,
kAllocLIR);
oatInsertGrowableList(cUnit, &cUnit->switchTables, (intptr_t)tabRec);
// The table is composed of 8-byte key/disp pairs
int byteSize = elements * 8;
int sizeHi = byteSize >> 16;
int sizeLo = byteSize & 0xffff;
int rEnd = oatAllocTemp(cUnit);
if (sizeHi) {
newLIR2(cUnit, kMipsLui, rEnd, sizeHi);
}
// Must prevent code motion for the curr pc pair
genBarrier(cUnit); // Scheduling barrier
newLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8
// Now, fill the branch delay slot
if (sizeHi) {
newLIR3(cUnit, kMipsOri, rEnd, rEnd, sizeLo);
} else {
newLIR3(cUnit, kMipsOri, rEnd, r_ZERO, sizeLo);
}
genBarrier(cUnit); // Scheduling barrier
// Construct BaseLabel and set up table base register
LIR* baseLabel = newLIR0(cUnit, kPseudoTargetLabel);
// Remember base label so offsets can be computed later
tabRec->anchor = baseLabel;
int rBase = oatAllocTemp(cUnit);
newLIR4(cUnit, kMipsDelta, rBase, 0, (intptr_t)baseLabel, (intptr_t)tabRec);
opRegRegReg(cUnit, kOpAdd, rEnd, rEnd, rBase);
// Grab switch test value
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
// Test loop
int rKey = oatAllocTemp(cUnit);
LIR* loopLabel = newLIR0(cUnit, kPseudoTargetLabel);
LIR* exitBranch = opCmpBranch(cUnit , kCondEq, rBase, rEnd, NULL);
loadWordDisp(cUnit, rBase, 0, rKey);
opRegImm(cUnit, kOpAdd, rBase, 8);
opCmpBranch(cUnit, kCondNe, rlSrc.lowReg, rKey, loopLabel);
int rDisp = oatAllocTemp(cUnit);
loadWordDisp(cUnit, rBase, -4, rDisp);
opRegRegReg(cUnit, kOpAdd, r_RA, r_RA, rDisp);
opReg(cUnit, kOpBx, r_RA);
// Loop exit
LIR* exitLabel = newLIR0(cUnit, kPseudoTargetLabel);
exitBranch->target = exitLabel;
}
/*
* Code pattern will look something like:
*
* lw rVal
* jal BaseLabel ; stores "return address" (BaseLabel) in r_RA
* nop ; opportunistically fill
* [subiu rVal, bias] ; Remove bias if lowVal != 0
* bound check -> done
* lw rDisp, [r_RA, rVal]
* addu r_RA, rDisp
* jr r_RA
* done:
*/
void genPackedSwitch(CompilationUnit* cUnit, uint32_t tableOffset,
RegLocation rlSrc)
{
const u2* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset;
if (cUnit->printMe) {
dumpPackedSwitchTable(table);
}
// Add the table to the list - we'll process it later
SwitchTable *tabRec = (SwitchTable *)oatNew(cUnit, sizeof(SwitchTable),
true, kAllocData);
tabRec->table = table;
tabRec->vaddr = cUnit->currentDalvikOffset;
int size = table[1];
tabRec->targets = (LIR* *)oatNew(cUnit, size * sizeof(LIR*), true,
kAllocLIR);
oatInsertGrowableList(cUnit, &cUnit->switchTables, (intptr_t)tabRec);
// Get the switch value
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
// Prepare the bias. If too big, handle 1st stage here
int lowKey = s4FromSwitchData(&table[2]);
bool largeBias = false;
int rKey;
if (lowKey == 0) {
rKey = rlSrc.lowReg;
} else if ((lowKey & 0xffff) != lowKey) {
rKey = oatAllocTemp(cUnit);
loadConstant(cUnit, rKey, lowKey);
largeBias = true;
} else {
rKey = oatAllocTemp(cUnit);
}
// Must prevent code motion for the curr pc pair
genBarrier(cUnit);
newLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8
// Now, fill the branch delay slot with bias strip
if (lowKey == 0) {
newLIR0(cUnit, kMipsNop);
} else {
if (largeBias) {
opRegRegReg(cUnit, kOpSub, rKey, rlSrc.lowReg, rKey);
} else {
opRegRegImm(cUnit, kOpSub, rKey, rlSrc.lowReg, lowKey);
}
}
genBarrier(cUnit); // Scheduling barrier
// Construct BaseLabel and set up table base register
LIR* baseLabel = newLIR0(cUnit, kPseudoTargetLabel);
// Remember base label so offsets can be computed later
tabRec->anchor = baseLabel;
// Bounds check - if < 0 or >= size continue following switch
LIR* branchOver = opCmpImmBranch(cUnit, kCondHi, rKey, size-1, NULL);
// Materialize the table base pointer
int rBase = oatAllocTemp(cUnit);
newLIR4(cUnit, kMipsDelta, rBase, 0, (intptr_t)baseLabel, (intptr_t)tabRec);
// Load the displacement from the switch table
int rDisp = oatAllocTemp(cUnit);
loadBaseIndexed(cUnit, rBase, rKey, rDisp, 2, kWord);
// Add to r_AP and go
opRegRegReg(cUnit, kOpAdd, r_RA, r_RA, rDisp);
opReg(cUnit, kOpBx, r_RA);
/* branchOver target here */
LIR* target = newLIR0(cUnit, kPseudoTargetLabel);
branchOver->target = (LIR*)target;
}
/*
* Array data table format:
* ushort ident = 0x0300 magic value
* ushort width width of each element in the table
* uint size number of elements in the table
* ubyte data[size*width] table of data values (may contain a single-byte
* padding at the end)
*
* Total size is 4+(width * size + 1)/2 16-bit code units.
*/
void genFillArrayData(CompilationUnit* cUnit, uint32_t tableOffset,
RegLocation rlSrc)
{
const u2* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset;
// Add the table to the list - we'll process it later
FillArrayData *tabRec = (FillArrayData *)
oatNew(cUnit, sizeof(FillArrayData), true, kAllocData);
tabRec->table = table;
tabRec->vaddr = cUnit->currentDalvikOffset;
u2 width = tabRec->table[1];
u4 size = tabRec->table[2] | (((u4)tabRec->table[3]) << 16);
tabRec->size = (size * width) + 8;
oatInsertGrowableList(cUnit, &cUnit->fillArrayData, (intptr_t)tabRec);
// Making a call - use explicit registers
oatFlushAllRegs(cUnit); /* Everything to home location */
oatLockCallTemps(cUnit);
loadValueDirectFixed(cUnit, rlSrc, rMIPS_ARG0);
// Must prevent code motion for the curr pc pair
genBarrier(cUnit);
newLIR0(cUnit, kMipsCurrPC); // Really a jal to .+8
// Now, fill the branch delay slot with the helper load
int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pHandleFillArrayDataFromCode));
genBarrier(cUnit); // Scheduling barrier
// Construct BaseLabel and set up table base register
LIR* baseLabel = newLIR0(cUnit, kPseudoTargetLabel);
// Materialize a pointer to the fill data image
newLIR4(cUnit, kMipsDelta, rMIPS_ARG1, 0, (intptr_t)baseLabel, (intptr_t)tabRec);
// And go...
oatClobberCalleeSave(cUnit);
LIR* callInst = opReg(cUnit, kOpBlx, rTgt); // ( array*, fill_data* )
markSafepointPC(cUnit, callInst);
}
void genNegFloat(CompilationUnit *cUnit, RegLocation rlDest, RegLocation rlSrc)
{
RegLocation rlResult;
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegRegImm(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, 0x80000000);
storeValue(cUnit, rlDest, rlResult);
}
void genNegDouble(CompilationUnit *cUnit, RegLocation rlDest, RegLocation rlSrc)
{
RegLocation rlResult;
rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
opRegRegImm(cUnit, kOpAdd, rlResult.highReg, rlSrc.highReg, 0x80000000);
opRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
storeValueWide(cUnit, rlDest, rlResult);
}
/*
* TODO: implement fast path to short-circuit thin-lock case
*/
void genMonitorEnter(CompilationUnit* cUnit, int optFlags, RegLocation rlSrc)
{
oatFlushAllRegs(cUnit);
loadValueDirectFixed(cUnit, rlSrc, rMIPS_ARG0); // Get obj
oatLockCallTemps(cUnit); // Prepare for explicit register usage
genNullCheck(cUnit, rlSrc.sRegLow, rMIPS_ARG0, optFlags);
// Go expensive route - artLockObjectFromCode(self, obj);
int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pLockObjectFromCode));
oatClobberCalleeSave(cUnit);
LIR* callInst = opReg(cUnit, kOpBlx, rTgt);
markSafepointPC(cUnit, callInst);
}
/*
* TODO: implement fast path to short-circuit thin-lock case
*/
void genMonitorExit(CompilationUnit* cUnit, int optFlags, RegLocation rlSrc)
{
oatFlushAllRegs(cUnit);
loadValueDirectFixed(cUnit, rlSrc, rMIPS_ARG0); // Get obj
oatLockCallTemps(cUnit); // Prepare for explicit register usage
genNullCheck(cUnit, rlSrc.sRegLow, rMIPS_ARG0, optFlags);
// Go expensive route - UnlockObjectFromCode(obj);
int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pUnlockObjectFromCode));
oatClobberCalleeSave(cUnit);
LIR* callInst = opReg(cUnit, kOpBlx, rTgt);
markSafepointPC(cUnit, callInst);
}
/*
* Compare two 64-bit values
* x = y return 0
* x < y return -1
* x > y return 1
*
* slt t0, x.hi, y.hi; # (x.hi < y.hi) ? 1:0
* sgt t1, x.hi, y.hi; # (y.hi > x.hi) ? 1:0
* subu res, t0, t1 # res = -1:1:0 for [ < > = ]
* bnez res, finish
* sltu t0, x.lo, y.lo
* sgtu r1, x.lo, y.lo
* subu res, t0, t1
* finish:
*
*/
void genCmpLong(CompilationUnit* cUnit, RegLocation rlDest,
RegLocation rlSrc1, RegLocation rlSrc2)
{
rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
int t0 = oatAllocTemp(cUnit);
int t1 = oatAllocTemp(cUnit);
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
newLIR3(cUnit, kMipsSlt, t0, rlSrc1.highReg, rlSrc2.highReg);
newLIR3(cUnit, kMipsSlt, t1, rlSrc2.highReg, rlSrc1.highReg);
newLIR3(cUnit, kMipsSubu, rlResult.lowReg, t1, t0);
LIR* branch = opCmpImmBranch(cUnit, kCondNe, rlResult.lowReg, 0, NULL);
newLIR3(cUnit, kMipsSltu, t0, rlSrc1.lowReg, rlSrc2.lowReg);
newLIR3(cUnit, kMipsSltu, t1, rlSrc2.lowReg, rlSrc1.lowReg);
newLIR3(cUnit, kMipsSubu, rlResult.lowReg, t1, t0);
oatFreeTemp(cUnit, t0);
oatFreeTemp(cUnit, t1);
LIR* target = newLIR0(cUnit, kPseudoTargetLabel);
branch->target = (LIR*)target;
storeValue(cUnit, rlDest, rlResult);
}
LIR* opCmpBranch(CompilationUnit* cUnit, ConditionCode cond, int src1,
int src2, LIR* target)
{
LIR* branch;
MipsOpCode sltOp;
MipsOpCode brOp;
bool cmpZero = false;
bool swapped = false;
switch (cond) {
case kCondEq:
brOp = kMipsBeq;
cmpZero = true;
break;
case kCondNe:
brOp = kMipsBne;
cmpZero = true;
break;
case kCondCc:
sltOp = kMipsSltu;
brOp = kMipsBnez;
break;
case kCondCs:
sltOp = kMipsSltu;
brOp = kMipsBeqz;
break;
case kCondGe:
sltOp = kMipsSlt;
brOp = kMipsBeqz;
break;
case kCondGt:
sltOp = kMipsSlt;
brOp = kMipsBnez;
swapped = true;
break;
case kCondLe:
sltOp = kMipsSlt;
brOp = kMipsBeqz;
swapped = true;
break;
case kCondLt:
sltOp = kMipsSlt;
brOp = kMipsBnez;
break;
case kCondHi: // Gtu
sltOp = kMipsSltu;
brOp = kMipsBnez;
swapped = true;
break;
default:
LOG(FATAL) << "No support for ConditionCode: " << (int) cond;
return NULL;
}
if (cmpZero) {
branch = newLIR2(cUnit, brOp, src1, src2);
} else {
int tReg = oatAllocTemp(cUnit);
if (swapped) {
newLIR3(cUnit, sltOp, tReg, src2, src1);
} else {
newLIR3(cUnit, sltOp, tReg, src1, src2);
}
branch = newLIR1(cUnit, brOp, tReg);
oatFreeTemp(cUnit, tReg);
}
branch->target = target;
return branch;
}
LIR* opCmpImmBranch(CompilationUnit* cUnit, ConditionCode cond, int reg,
int checkValue, LIR* target)
{
LIR* branch;
if (checkValue != 0) {
// TUNING: handle s16 & kCondLt/Mi case using slti
int tReg = oatAllocTemp(cUnit);
loadConstant(cUnit, tReg, checkValue);
branch = opCmpBranch(cUnit, cond, reg, tReg, target);
oatFreeTemp(cUnit, tReg);
return branch;
}
MipsOpCode opc;
switch (cond) {
case kCondEq: opc = kMipsBeqz; break;
case kCondGe: opc = kMipsBgez; break;
case kCondGt: opc = kMipsBgtz; break;
case kCondLe: opc = kMipsBlez; break;
//case KCondMi:
case kCondLt: opc = kMipsBltz; break;
case kCondNe: opc = kMipsBnez; break;
default:
// Tuning: use slti when applicable
int tReg = oatAllocTemp(cUnit);
loadConstant(cUnit, tReg, checkValue);
branch = opCmpBranch(cUnit, cond, reg, tReg, target);
oatFreeTemp(cUnit, tReg);
return branch;
}
branch = newLIR1(cUnit, opc, reg);
branch->target = target;
return branch;
}
LIR* opRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
{
#ifdef __mips_hard_float
if (MIPS_FPREG(rDest) || MIPS_FPREG(rSrc))
return fpRegCopy(cUnit, rDest, rSrc);
#endif
LIR* res = rawLIR(cUnit, cUnit->currentDalvikOffset, kMipsMove,
rDest, rSrc);
if (!(cUnit->disableOpt & (1 << kSafeOptimizations)) && rDest == rSrc) {
res->flags.isNop = true;
}
return res;
}
LIR* opRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
{
LIR *res = opRegCopyNoInsert(cUnit, rDest, rSrc);
oatAppendLIR(cUnit, (LIR*)res);
return res;
}
void opRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
int srcLo, int srcHi)
{
#ifdef __mips_hard_float
bool destFP = MIPS_FPREG(destLo) && MIPS_FPREG(destHi);
bool srcFP = MIPS_FPREG(srcLo) && MIPS_FPREG(srcHi);
assert(MIPS_FPREG(srcLo) == MIPS_FPREG(srcHi));
assert(MIPS_FPREG(destLo) == MIPS_FPREG(destHi));
if (destFP) {
if (srcFP) {
opRegCopy(cUnit, s2d(destLo, destHi), s2d(srcLo, srcHi));
} else {
/* note the operands are swapped for the mtc1 instr */
newLIR2(cUnit, kMipsMtc1, srcLo, destLo);
newLIR2(cUnit, kMipsMtc1, srcHi, destHi);
}
} else {
if (srcFP) {
newLIR2(cUnit, kMipsMfc1, destLo, srcLo);
newLIR2(cUnit, kMipsMfc1, destHi, srcHi);
} else {
// Handle overlap
if (srcHi == destLo) {
opRegCopy(cUnit, destHi, srcHi);
opRegCopy(cUnit, destLo, srcLo);
} else {
opRegCopy(cUnit, destLo, srcLo);
opRegCopy(cUnit, destHi, srcHi);
}
}
}
#else
// Handle overlap
if (srcHi == destLo) {
opRegCopy(cUnit, destHi, srcHi);
opRegCopy(cUnit, destLo, srcLo);
} else {
opRegCopy(cUnit, destLo, srcLo);
opRegCopy(cUnit, destHi, srcHi);
}
#endif
}
void genFusedLongCmpBranch(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir)
{
UNIMPLEMENTED(FATAL) << "Need codegen for fused long cmp branch";
}
LIR* genRegMemCheck(CompilationUnit* cUnit, ConditionCode cCode,
int reg1, int base, int offset, ThrowKind kind)
{
LOG(FATAL) << "Unexpected use of genRegMemCheck for Arm";
return NULL;
}
RegLocation genDivRem(CompilationUnit* cUnit, RegLocation rlDest, int reg1, int reg2, bool isDiv)
{
newLIR4(cUnit, kMipsDiv, r_HI, r_LO, reg1, reg2);
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
if (isDiv) {
newLIR2(cUnit, kMipsMflo, rlResult.lowReg, r_LO);
} else {
newLIR2(cUnit, kMipsMfhi, rlResult.lowReg, r_HI);
}
return rlResult;
}
RegLocation genDivRemLit(CompilationUnit* cUnit, RegLocation rlDest, int reg1, int lit, bool isDiv)
{
int tReg = oatAllocTemp(cUnit);
newLIR3(cUnit, kMipsAddiu, tReg, r_ZERO, lit);
newLIR4(cUnit, kMipsDiv, r_HI, r_LO, reg1, tReg);
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
if (isDiv) {
newLIR2(cUnit, kMipsMflo, rlResult.lowReg, r_LO);
} else {
newLIR2(cUnit, kMipsMfhi, rlResult.lowReg, r_HI);
}
oatFreeTemp(cUnit, tReg);
return rlResult;
}
/*
* Mark garbage collection card. Skip if the value we're storing is null.
*/
void markGCCard(CompilationUnit* cUnit, int valReg, int tgtAddrReg)
{
int regCardBase = oatAllocTemp(cUnit);
int regCardNo = oatAllocTemp(cUnit);
LIR* branchOver = opCmpImmBranch(cUnit, kCondEq, valReg, 0, NULL);
loadWordDisp(cUnit, rMIPS_SELF, Thread::CardTableOffset().Int32Value(), regCardBase);
opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, CardTable::kCardShift);
storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
kUnsignedByte);
LIR* target = newLIR0(cUnit, kPseudoTargetLabel);
branchOver->target = (LIR*)target;
oatFreeTemp(cUnit, regCardBase);
oatFreeTemp(cUnit, regCardNo);
}
bool genInlinedMinMaxInt(CompilationUnit *cUnit, CallInfo* info, bool isMin)
{
// TODO: need Mips implementation
return false;
}
void opLea(CompilationUnit* cUnit, int rBase, int reg1, int reg2, int scale, int offset)
{
LOG(FATAL) << "Unexpected use of opLea for Arm";
}
void opTlsCmp(CompilationUnit* cUnit, int offset, int val)
{
LOG(FATAL) << "Unexpected use of opTlsCmp for Arm";
}
bool genInlinedCas32(CompilationUnit* cUnit, CallInfo* info, bool need_write_barrier) {
DCHECK_NE(cUnit->instructionSet, kThumb2);
return false;
}
bool genInlinedSqrt(CompilationUnit* cUnit, CallInfo* info) {
DCHECK_NE(cUnit->instructionSet, kThumb2);
return false;
}
LIR* opPcRelLoad(CompilationUnit* cUnit, int reg, LIR* target) {
LOG(FATAL) << "Unexpected use of opPcRelLoad for Mips";
return NULL;
}
LIR* opVldm(CompilationUnit* cUnit, int rBase, int count)
{
LOG(FATAL) << "Unexpected use of opVldm for Mips";
return NULL;
}
LIR* opVstm(CompilationUnit* cUnit, int rBase, int count)
{
LOG(FATAL) << "Unexpected use of opVstm for Mips";
return NULL;
}
void genMultiplyByTwoBitMultiplier(CompilationUnit* cUnit, RegLocation rlSrc,
RegLocation rlResult, int lit,
int firstBit, int secondBit)
{
int tReg = oatAllocTemp(cUnit);
opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, secondBit - firstBit);
opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, tReg);
oatFreeTemp(cUnit, tReg);
if (firstBit != 0) {
opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlResult.lowReg, firstBit);
}
}
void genDivZeroCheck(CompilationUnit* cUnit, int regLo, int regHi)
{
int tReg = oatAllocTemp(cUnit);
opRegRegReg(cUnit, kOpOr, tReg, regLo, regHi);
genImmedCheck(cUnit, kCondEq, tReg, 0, kThrowDivZero);
oatFreeTemp(cUnit, tReg);
}
// Test suspend flag, return target of taken suspend branch
LIR* opTestSuspend(CompilationUnit* cUnit, LIR* target)
{
opRegImm(cUnit, kOpSub, rMIPS_SUSPEND, 1);
return opCmpImmBranch(cUnit, (target == NULL) ? kCondEq : kCondNe, rMIPS_SUSPEND, 0, target);
}
// Decrement register and branch on condition
LIR* opDecAndBranch(CompilationUnit* cUnit, ConditionCode cCode, int reg, LIR* target)
{
opRegImm(cUnit, kOpSub, reg, 1);
return opCmpImmBranch(cUnit, cCode, reg, 0, target);
}
bool smallLiteralDivide(CompilationUnit* cUnit, Instruction::Code dalvikOpcode,
RegLocation rlSrc, RegLocation rlDest, int lit)
{
LOG(FATAL) << "Unexpected use of smallLiteralDive in Mips";
return false;
}
LIR* opIT(CompilationUnit* cUnit, ArmConditionCode cond, const char* guide)
{
LOG(FATAL) << "Unexpected use of opIT in Mips";
return NULL;
}
} // namespace art