Merge "Handle implicit stack overflow without affecting stack walks"
diff --git a/compiler/dex/quick/arm/call_arm.cc b/compiler/dex/quick/arm/call_arm.cc
index 163c0fe..d3477c9 100644
--- a/compiler/dex/quick/arm/call_arm.cc
+++ b/compiler/dex/quick/arm/call_arm.cc
@@ -360,6 +360,22 @@
     if (Runtime::Current()->ExplicitStackOverflowChecks()) {
       /* Load stack limit */
       Load32Disp(rs_rARM_SELF, Thread::StackEndOffset<4>().Int32Value(), rs_r12);
+    } else {
+      // Implicit stack overflow check.
+      // Generate a load from [sp, #-overflowsize].  If this is in the stack
+      // redzone we will get a segmentation fault.
+      //
+      // Caveat coder: if someone changes the kStackOverflowReservedBytes value
+      // we need to make sure that it's loadable in an immediate field of
+      // a sub instruction.  Otherwise we will get a temp allocation and the
+      // code size will increase.
+      //
+      // This is done before the callee save instructions to avoid any possibility
+      // of these overflowing.  This uses r12 and that's never saved in a callee
+      // save.
+      OpRegRegImm(kOpSub, rs_r12, rs_rARM_SP, Thread::kStackOverflowReservedBytes);
+      Load32Disp(rs_r12, 0, rs_r12);
+      MarkPossibleStackOverflowException();
     }
   }
   /* Spill core callee saves */
@@ -418,17 +434,8 @@
         AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, false, frame_size_));
       }
     } else {
-      // Implicit stack overflow check.
-      // Generate a load from [sp, #-overflowsize].  If this is in the stack
-      // redzone we will get a segmentation fault.
-      //
-      // Caveat coder: if someone changes the kStackOverflowReservedBytes value
-      // we need to make sure that it's loadable in an immediate field of
-      // a sub instruction.  Otherwise we will get a temp allocation and the
-      // code size will increase.
-      OpRegRegImm(kOpSub, rs_r12, rs_rARM_SP, Thread::kStackOverflowReservedBytes);
-      Load32Disp(rs_r12, 0, rs_r12);
-      MarkPossibleStackOverflowException();
+      // Implicit stack overflow check has already been done.  Just make room on the
+      // stack for the frame now.
       OpRegImm(kOpSub, rs_rARM_SP, frame_size_without_spills);
     }
   } else {
diff --git a/runtime/arch/arm/fault_handler_arm.cc b/runtime/arch/arm/fault_handler_arm.cc
index eddaa0b..f81e2f9 100644
--- a/runtime/arch/arm/fault_handler_arm.cc
+++ b/runtime/arch/arm/fault_handler_arm.cc
@@ -34,7 +34,7 @@
 namespace art {
 
 extern "C" void art_quick_throw_null_pointer_exception();
-extern "C" void art_quick_throw_stack_overflow(void*);
+extern "C" void art_quick_throw_stack_overflow_from_signal();
 extern "C" void art_quick_implicit_suspend();
 
 // Get the size of a thumb2 instruction in bytes.
@@ -50,7 +50,7 @@
   struct ucontext *uc = (struct ucontext *)context;
   struct sigcontext *sc = reinterpret_cast<struct sigcontext*>(&uc->uc_mcontext);
   *out_sp = static_cast<uintptr_t>(sc->arm_sp);
-  LOG(DEBUG) << "sp: " << *out_sp;
+  VLOG(signals) << "sp: " << *out_sp;
   if (*out_sp == 0) {
     return;
   }
@@ -74,7 +74,7 @@
 
   // Need to work out the size of the instruction that caused the exception.
   uint8_t* ptr = reinterpret_cast<uint8_t*>(sc->arm_pc);
-  LOG(DEBUG) << "pc: " << std::hex << static_cast<void*>(ptr);
+  VLOG(signals) << "pc: " << std::hex << static_cast<void*>(ptr);
   uint32_t instr_size = GetInstructionSize(ptr);
 
   *out_return_pc = (sc->arm_pc + instr_size) | 1;
@@ -95,7 +95,7 @@
   uint32_t instr_size = GetInstructionSize(ptr);
   sc->arm_lr = (sc->arm_pc + instr_size) | 1;      // LR needs to point to gc map location
   sc->arm_pc = reinterpret_cast<uintptr_t>(art_quick_throw_null_pointer_exception);
-  LOG(DEBUG) << "Generating null pointer exception";
+  VLOG(signals) << "Generating null pointer exception";
   return true;
 }
 
@@ -117,10 +117,10 @@
   struct sigcontext *sc = reinterpret_cast<struct sigcontext*>(&uc->uc_mcontext);
   uint8_t* ptr2 = reinterpret_cast<uint8_t*>(sc->arm_pc);
   uint8_t* ptr1 = ptr2 - 4;
-  LOG(DEBUG) << "checking suspend";
+  VLOG(signals) << "checking suspend";
 
   uint16_t inst2 = ptr2[0] | ptr2[1] << 8;
-  LOG(DEBUG) << "inst2: " << std::hex << inst2 << " checkinst2: " << checkinst2;
+  VLOG(signals) << "inst2: " << std::hex << inst2 << " checkinst2: " << checkinst2;
   if (inst2 != checkinst2) {
     // Second instruction is not good, not ours.
     return false;
@@ -132,7 +132,7 @@
   bool found = false;
   while (ptr1 > limit) {
     uint32_t inst1 = ((ptr1[0] | ptr1[1] << 8) << 16) | (ptr1[2] | ptr1[3] << 8);
-    LOG(DEBUG) << "inst1: " << std::hex << inst1 << " checkinst1: " << checkinst1;
+    VLOG(signals) << "inst1: " << std::hex << inst1 << " checkinst1: " << checkinst1;
     if (inst1 == checkinst1) {
       found = true;
       break;
@@ -140,7 +140,7 @@
     ptr1 -= 2;      // Min instruction size is 2 bytes.
   }
   if (found) {
-    LOG(DEBUG) << "suspend check match";
+    VLOG(signals) << "suspend check match";
     // This is a suspend check.  Arrange for the signal handler to return to
     // art_quick_implicit_suspend.  Also set LR so that after the suspend check it
     // will resume the instruction (current PC + 2).  PC points to the
@@ -148,14 +148,14 @@
 
     // NB: remember that we need to set the bottom bit of the LR register
     // to switch to thumb mode.
-    LOG(DEBUG) << "arm lr: " << std::hex << sc->arm_lr;
-    LOG(DEBUG) << "arm pc: " << std::hex << sc->arm_pc;
+    VLOG(signals) << "arm lr: " << std::hex << sc->arm_lr;
+    VLOG(signals) << "arm pc: " << std::hex << sc->arm_pc;
     sc->arm_lr = sc->arm_pc + 3;      // +2 + 1 (for thumb)
     sc->arm_pc = reinterpret_cast<uintptr_t>(art_quick_implicit_suspend);
 
     // Now remove the suspend trigger that caused this fault.
     Thread::Current()->RemoveSuspendTrigger();
-    LOG(DEBUG) << "removed suspend trigger invoking test suspend";
+    VLOG(signals) << "removed suspend trigger invoking test suspend";
     return true;
   }
   return false;
@@ -174,103 +174,60 @@
 // on the stack.
 //
 // If we determine this is a stack overflow we need to move the stack pointer
-// to the overflow region below the protected region.  Because we now have
-// a gap in the stack (skips over protected region), we need to arrange
-// for the rest of the system to be unaware of the new stack arrangement
-// and behave as if there is a fully valid stack.  We do this by placing
-// a unique address onto the stack followed by
-// the size of the gap.  The stack walker will detect this and skip over the
-// gap.
-
-// NB. We also need to be careful of stack alignment as the ARM EABI specifies that
-// stack must be 8 byte aligned when making any calls.
-
-// NB. The size of the gap is the difference between the previous frame's SP and
-// the SP at which the size word is pushed.
+// to the overflow region below the protected region.
 
 bool StackOverflowHandler::Action(int sig, siginfo_t* info, void* context) {
   struct ucontext *uc = (struct ucontext *)context;
   struct sigcontext *sc = reinterpret_cast<struct sigcontext*>(&uc->uc_mcontext);
-  LOG(DEBUG) << "stack overflow handler with sp at " << std::hex << &uc;
-  LOG(DEBUG) << "sigcontext: " << std::hex << sc;
+  VLOG(signals) << "stack overflow handler with sp at " << std::hex << &uc;
+  VLOG(signals) << "sigcontext: " << std::hex << sc;
 
-  uint8_t* sp = reinterpret_cast<uint8_t*>(sc->arm_sp);
-  LOG(DEBUG) << "sp: " << static_cast<void*>(sp);
+  uintptr_t sp = sc->arm_sp;
+  VLOG(signals) << "sp: " << std::hex << sp;
 
-  uintptr_t* fault_addr = reinterpret_cast<uintptr_t*>(sc->fault_address);
-  LOG(DEBUG) << "fault_addr: " << std::hex << fault_addr;
-  LOG(DEBUG) << "checking for stack overflow, sp: " << std::hex << static_cast<void*>(sp) <<
+  uintptr_t fault_addr = sc->fault_address;
+  VLOG(signals) << "fault_addr: " << std::hex << fault_addr;
+  VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp <<
     ", fault_addr: " << fault_addr;
-  uintptr_t* overflow_addr = reinterpret_cast<uintptr_t*>(sp - Thread::kStackOverflowReservedBytes);
+
+  uintptr_t overflow_addr = sp - Thread::kStackOverflowReservedBytes;
+
+  Thread* self = reinterpret_cast<Thread*>(sc->arm_r9);
+  CHECK_EQ(self, Thread::Current());
+  uintptr_t pregion = reinterpret_cast<uintptr_t>(self->GetStackEnd()) -
+      Thread::kStackOverflowProtectedSize;
 
   // Check that the fault address is the value expected for a stack overflow.
   if (fault_addr != overflow_addr) {
-    LOG(DEBUG) << "Not a stack overflow";
+    VLOG(signals) << "Not a stack overflow";
     return false;
   }
 
   // We know this is a stack overflow.  We need to move the sp to the overflow region
-  // the exists below the protected region.  R9 contains the current Thread* so
-  // we can read the stack_end from that and subtract the size of the
-  // protected region.  This creates a gap in the stack that needs to be marked.
-  Thread* self = reinterpret_cast<Thread*>(sc->arm_r9);
+  // the exists below the protected region.  Determine the address of the next
+  // available valid address below the protected region.
+  uintptr_t prevsp = sp;
+  sp = pregion;
+  VLOG(signals) << "setting sp to overflow region at " << std::hex << sp;
 
-  uint8_t* prevsp = sp;
-  sp = self->GetStackEnd() - Thread::kStackOverflowProtectedSize;
-  LOG(DEBUG) << "setting sp to overflow region at " << std::hex << static_cast<void*>(sp);
-
-  // We need to find the previous frame.  Remember that
-  // this has not yet been fully constructed because the SP has not been
-  // decremented.  So we need to work out the size of the spill portion of the
-  // frame.  This consists of something like:
-  //
-  // 0xb6a1d49c: e92d40e0  push    {r5, r6, r7, lr}
-  // 0xb6a1d4a0: ed2d8a06  vpush.f32 {s16-s21}
-  //
-  // The first is encoded in the ArtMethod as the spill_mask, the second as the
-  // fp_spill_mask.  A population count on each will give the number of registers
-  // in each mask.  Each register is 4 bytes on ARM32.
-
-  mirror::ArtMethod* method = reinterpret_cast<mirror::ArtMethod*>(sc->arm_r0);
-  uint32_t spill_mask = method->GetCoreSpillMask();
-  uint32_t numcores = POPCOUNT(spill_mask);
-  uint32_t fp_spill_mask = method->GetFpSpillMask();
-  uint32_t numfps = POPCOUNT(fp_spill_mask);
-  uint32_t spill_size = (numcores + numfps) * 4;
-  LOG(DEBUG) << "spill size: " << spill_size;
-  uint8_t* prevframe = prevsp + spill_size;
-  LOG(DEBUG) << "previous frame: " << static_cast<void*>(prevframe);
-
-  // NOTE: the ARM EABI needs an 8 byte alignment.  In the case of ARM32 a pointer
-  // is 4 bytes so that, together with the offset to the previous frame is 8
-  // bytes.  On other architectures we will need to align the stack.
-
-  // Push a marker onto the stack to tell the stack walker that there is a stack
-  // overflow and the stack is not contiguous.
-
-  // First the offset from SP to the previous frame.
-  sp -= sizeof(uint32_t);
-  LOG(DEBUG) << "push gap of " << static_cast<uint32_t>(prevframe - sp);
-  *reinterpret_cast<uint32_t*>(sp) = static_cast<uint32_t>(prevframe - sp);
-
-  // Now the gap marker (pointer sized).
-  sp -= sizeof(mirror::ArtMethod*);
-  *reinterpret_cast<void**>(sp) = stack_overflow_gap_marker;
+  // Since the compiler puts the implicit overflow
+  // check before the callee save instructions, the SP is already pointing to
+  // the previous frame.
+  VLOG(signals) << "previous frame: " << std::hex << prevsp;
 
   // Now establish the stack pointer for the signal return.
-  sc->arm_sp = reinterpret_cast<uintptr_t>(sp);
+  sc->arm_sp = prevsp;
 
-  // Now arrange for the signal handler to return to art_quick_throw_stack_overflow.
-  // We need the LR to point to the GC map just after the fault instruction.
-  uint8_t* ptr = reinterpret_cast<uint8_t*>(sc->arm_pc);
-  uint32_t instr_size = GetInstructionSize(ptr);
-  sc->arm_lr = (sc->arm_pc + instr_size) | 1;      // LR needs to point to gc map location
-  sc->arm_pc = reinterpret_cast<uintptr_t>(art_quick_throw_stack_overflow);
+  // Tell the stack overflow code where the new stack pointer should be.
+  sc->arm_ip = sp;      // aka r12
 
-  // The kernel will now return to the address in sc->arm_pc.  We have arranged the
-  // stack pointer to be in the overflow region.  Throwing the exception will perform
-  // a longjmp which will restore the stack pointer to the correct location for the
-  // exception catch.
+  // Now arrange for the signal handler to return to art_quick_throw_stack_overflow_from_signal.
+  // The value of LR must be the same as it was when we entered the code that
+  // caused this fault.  This will be inserted into a callee save frame by
+  // the function to which this handler returns (art_quick_throw_stack_overflow_from_signal).
+  sc->arm_pc = reinterpret_cast<uintptr_t>(art_quick_throw_stack_overflow_from_signal);
+
+  // The kernel will now return to the address in sc->arm_pc.
   return true;
 }
 }       // namespace art
diff --git a/runtime/arch/arm/quick_entrypoints_arm.S b/runtime/arch/arm/quick_entrypoints_arm.S
index bc80644..dcf4561 100644
--- a/runtime/arch/arm/quick_entrypoints_arm.S
+++ b/runtime/arch/arm/quick_entrypoints_arm.S
@@ -235,6 +235,31 @@
      */
 ONE_ARG_RUNTIME_EXCEPTION art_quick_throw_no_such_method, artThrowNoSuchMethodFromCode
 
+  /*
+   * Invoke stack overflow exception from signal handler.
+   * On entry:
+   * r9: thread
+   * sp: address of last known frame
+   * r12: address of next valid SP below protected region in stack
+   *
+   * This is deceptively simple but hides some complexity.  It is called in the case of
+   * a stack overflow condition during implicit checks.  The signal handler has been
+   * called by the kernel due to a load from the protected stack region.  The handler
+   * works out the address of the previous frame and passes this in SP.  However there
+   * is a piece of memory somewhere below the current SP that is not accessible (the
+   * memory that caused the signal).  The signal handler works out the next
+   * accessible value of SP and passes this in r12.  This code then sets up the SP
+   * to be this new value and calls the code to create and throw the stack overflow
+   * exception.
+   */
+ENTRY art_quick_throw_stack_overflow_from_signal
+    SETUP_SAVE_ALL_CALLEE_SAVE_FRAME  // save all registers as basis for long jump context
+    mov r0, r9                      @ pass Thread::Current
+    mov r1, sp                      @ pass SP
+    mov sp, r12                     @ move SP down to below protected region.
+    b   artThrowStackOverflowFromCode                   @ artThrowStackOverflowFromCode(Thread*, SP)
+END art_quick_throw_stack_overflow_from_signal
+
     /*
      * All generated callsites for interface invokes and invocation slow paths will load arguments
      * as usual - except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
diff --git a/runtime/base/logging.h b/runtime/base/logging.h
index bd5ae85..c4461fa 100644
--- a/runtime/base/logging.h
+++ b/runtime/base/logging.h
@@ -296,6 +296,7 @@
   bool startup;
   bool third_party_jni;  // Enabled with "-verbose:third-party-jni".
   bool threads;
+  bool signals;
 };
 
 extern LogVerbosity gLogVerbosity;
diff --git a/runtime/fault_handler.cc b/runtime/fault_handler.cc
index b8093bc..1304b04 100644
--- a/runtime/fault_handler.cc
+++ b/runtime/fault_handler.cc
@@ -106,23 +106,23 @@
 bool FaultManager::IsInGeneratedCode(void* context, bool check_dex_pc) {
   // We can only be running Java code in the current thread if it
   // is in Runnable state.
-  LOG(DEBUG) << "Checking for generated code";
+  VLOG(signals) << "Checking for generated code";
   Thread* thread = Thread::Current();
   if (thread == nullptr) {
-    LOG(DEBUG) << "no current thread";
+    VLOG(signals) << "no current thread";
     return false;
   }
 
   ThreadState state = thread->GetState();
   if (state != kRunnable) {
-    LOG(DEBUG) << "not runnable";
+    VLOG(signals) << "not runnable";
     return false;
   }
 
   // Current thread is runnable.
   // Make sure it has the mutator lock.
   if (!Locks::mutator_lock_->IsSharedHeld(thread)) {
-    LOG(DEBUG) << "no lock";
+    VLOG(signals) << "no lock";
     return false;
   }
 
@@ -135,9 +135,9 @@
   GetMethodAndReturnPCAndSP(context, &method_obj, &return_pc, &sp);
 
   // If we don't have a potential method, we're outta here.
-  LOG(DEBUG) << "potential method: " << method_obj;
+  VLOG(signals) << "potential method: " << method_obj;
   if (method_obj == 0 || !IsAligned<kObjectAlignment>(method_obj)) {
-    LOG(DEBUG) << "no method";
+    VLOG(signals) << "no method";
     return false;
   }
 
@@ -147,36 +147,36 @@
   // TODO: Method might be not a heap address, and GetClass could fault.
   mirror::Class* cls = method_obj->GetClass<kVerifyNone>();
   if (cls == nullptr) {
-    LOG(DEBUG) << "not a class";
+    VLOG(signals) << "not a class";
     return false;
   }
   if (!IsAligned<kObjectAlignment>(cls)) {
-    LOG(DEBUG) << "not aligned";
+    VLOG(signals) << "not aligned";
     return false;
   }
 
 
   if (!VerifyClassClass(cls)) {
-    LOG(DEBUG) << "not a class class";
+    VLOG(signals) << "not a class class";
     return false;
   }
 
   // Now make sure the class is a mirror::ArtMethod.
   if (!cls->IsArtMethodClass()) {
-    LOG(DEBUG) << "not a method";
+    VLOG(signals) << "not a method";
     return false;
   }
 
   // We can be certain that this is a method now.  Check if we have a GC map
   // at the return PC address.
   if (true || kIsDebugBuild) {
-    LOG(DEBUG) << "looking for dex pc for return pc " << std::hex << return_pc;
+    VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc;
     const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(method_obj);
     uint32_t sought_offset = return_pc - reinterpret_cast<uintptr_t>(code);
-    LOG(DEBUG) << "pc offset: " << std::hex << sought_offset;
+    VLOG(signals) << "pc offset: " << std::hex << sought_offset;
   }
   uint32_t dexpc = method_obj->ToDexPc(return_pc, false);
-  LOG(DEBUG) << "dexpc: " << dexpc;
+  VLOG(signals) << "dexpc: " << dexpc;
   return !check_dex_pc || dexpc != DexFile::kDexNoIndex;
 }
 
diff --git a/runtime/parsed_options.cc b/runtime/parsed_options.cc
index 9cf8785..f6a98e1 100644
--- a/runtime/parsed_options.cc
+++ b/runtime/parsed_options.cc
@@ -232,6 +232,7 @@
 //  gLogVerbosity.startup = true;  // TODO: don't check this in!
 //  gLogVerbosity.third_party_jni = true;  // TODO: don't check this in!
 //  gLogVerbosity.threads = true;  // TODO: don't check this in!
+//  gLogVerbosity.signals = true;  // TODO: don't check this in!
 
   method_trace_ = false;
   method_trace_file_ = "/data/method-trace-file.bin";
@@ -464,6 +465,8 @@
           gLogVerbosity.third_party_jni = true;
         } else if (verbose_options[i] == "threads") {
           gLogVerbosity.threads = true;
+        } else if (verbose_options[i] == "signals") {
+           gLogVerbosity.signals = true;
         } else {
           Usage("Unknown -verbose option %s\n", verbose_options[i].c_str());
           return false;
diff --git a/runtime/stack.cc b/runtime/stack.cc
index 9c709ae..5e64e59 100644
--- a/runtime/stack.cc
+++ b/runtime/stack.cc
@@ -32,14 +32,6 @@
 
 namespace art {
 
-// Define a piece of memory, the address of which can be used as a marker
-// for the gap in the stack added during stack overflow handling.
-static uint32_t stack_overflow_object;
-
-// The stack overflow gap marker is simply a valid unique address.
-void* stack_overflow_gap_marker = &stack_overflow_object;
-
-
 mirror::Object* ShadowFrame::GetThisObject() const {
   mirror::ArtMethod* m = GetMethod();
   if (m->IsStatic()) {
@@ -305,56 +297,23 @@
   bool exit_stubs_installed = Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled();
   uint32_t instrumentation_stack_depth = 0;
 
-  bool kDebugStackWalk = false;
-  bool kDebugStackWalkVeryVerbose = false;            // The name says it all.
-
-  if (kDebugStackWalk) {
-    LOG(INFO) << "walking stack";
-  }
   for (const ManagedStack* current_fragment = thread_->GetManagedStack(); current_fragment != NULL;
        current_fragment = current_fragment->GetLink()) {
     cur_shadow_frame_ = current_fragment->GetTopShadowFrame();
     cur_quick_frame_ = current_fragment->GetTopQuickFrame();
     cur_quick_frame_pc_ = current_fragment->GetTopQuickFramePc();
-    if (kDebugStackWalkVeryVerbose) {
-      LOG(INFO) << "cur_quick_frame: " << cur_quick_frame_;
-      LOG(INFO) << "cur_quick_frame_pc: " << std::hex << cur_quick_frame_pc_;
-    }
 
     if (cur_quick_frame_ != NULL) {  // Handle quick stack frames.
       // Can't be both a shadow and a quick fragment.
       DCHECK(current_fragment->GetTopShadowFrame() == NULL);
       mirror::ArtMethod* method = *cur_quick_frame_;
       while (method != NULL) {
-        // Check for a stack overflow gap marker.
-        if (method == reinterpret_cast<mirror::ArtMethod*>(stack_overflow_gap_marker)) {
-          // Marker for a stack overflow.  This is followed by the offset from the
-          // current SP to the next frame.  There is a gap in the stack here.  Jump
-          // the gap silently.
-          // Caveat coder: the layout of the overflow marker depends on the architecture.
-          //   The first element is address sized (8 bytes on a 64 bit machine).  The second
-          //   element is 32 bits.  So be careful with those address calculations.
-
-          // Get the address of the offset, just beyond the marker pointer.
-          byte* gapsizeaddr = reinterpret_cast<byte*>(cur_quick_frame_) + sizeof(uintptr_t);
-          uint32_t gap = *reinterpret_cast<uint32_t*>(gapsizeaddr);
-          CHECK_GT(gap, Thread::kStackOverflowProtectedSize);
-          mirror::ArtMethod** next_frame = reinterpret_cast<mirror::ArtMethod**>(
-            reinterpret_cast<byte*>(gapsizeaddr) + gap);
-          if (kDebugStackWalk) {
-            LOG(INFO) << "stack overflow marker hit, gap: " << gap << ", next_frame: " <<
-                next_frame;
-          }
-          cur_quick_frame_ = next_frame;
-          method = *next_frame;
-          CHECK(method != nullptr);
-        } else {
-          SanityCheckFrame();
-          bool should_continue = VisitFrame();
-          if (UNLIKELY(!should_continue)) {
-            return;
-          }
+        SanityCheckFrame();
+        bool should_continue = VisitFrame();
+        if (UNLIKELY(!should_continue)) {
+          return;
         }
+
         if (context_ != NULL) {
           context_->FillCalleeSaves(*this);
         }
@@ -363,9 +322,6 @@
         size_t return_pc_offset = method->GetReturnPcOffsetInBytes();
         byte* return_pc_addr = reinterpret_cast<byte*>(cur_quick_frame_) + return_pc_offset;
         uintptr_t return_pc = *reinterpret_cast<uintptr_t*>(return_pc_addr);
-        if (kDebugStackWalkVeryVerbose) {
-          LOG(INFO) << "frame size: " << frame_size << ", return_pc: " << std::hex << return_pc;
-        }
         if (UNLIKELY(exit_stubs_installed)) {
           // While profiling, the return pc is restored from the side stack, except when walking
           // the stack for an exception where the side stack will be unwound in VisitFrame.
@@ -398,10 +354,6 @@
         cur_quick_frame_ = reinterpret_cast<mirror::ArtMethod**>(next_frame);
         cur_depth_++;
         method = *cur_quick_frame_;
-        if (kDebugStackWalkVeryVerbose) {
-          LOG(INFO) << "new cur_quick_frame_: " << cur_quick_frame_;
-          LOG(INFO) << "new cur_quick_frame_pc_: " << std::hex << cur_quick_frame_pc_;
-        }
       }
     } else if (cur_shadow_frame_ != NULL) {
       do {
diff --git a/runtime/stack.h b/runtime/stack.h
index 73a823a..88ef78f 100644
--- a/runtime/stack.h
+++ b/runtime/stack.h
@@ -102,14 +102,6 @@
   kVRegNonSpecialTempBaseReg = -3,
 };
 
-// Special object used to mark the gap in the stack placed when a stack
-// overflow fault occurs during implicit stack checking.  This is not
-// a real object - it is used simply as a valid address to which a
-// mirror::ArtMethod* can be compared during a stack walk.  It is inserted
-// into the stack during the stack overflow signal handling to mark the gap
-// in which the memory is protected against read and write.
-extern void* stack_overflow_gap_marker;
-
 // A reference from the shadow stack to a MirrorType object within the Java heap.
 template<class MirrorType>
 class MANAGED StackReference : public mirror::ObjectReference<false, MirrorType> {
diff --git a/runtime/thread.cc b/runtime/thread.cc
index 23a6779..3a62cd5 100644
--- a/runtime/thread.cc
+++ b/runtime/thread.cc
@@ -243,10 +243,16 @@
   pregion -= kStackOverflowProtectedSize;
 
   // Touch the pages in the region to map them in.  Otherwise mprotect fails.  Only
-  // need to do this on the main stack.
+  // need to do this on the main stack.  We only need to touch one byte per page.
   if (is_main_stack) {
-    memset(pregion, 0x55, kStackOverflowProtectedSize);
+    byte* start = pregion;
+    byte* end = pregion + kStackOverflowProtectedSize;
+    while (start < end) {
+      *start = static_cast<byte>(0);
+      start += kPageSize;
+    }
   }
+
   VLOG(threads) << "installing stack protected region at " << std::hex <<
       static_cast<void*>(pregion) << " to " <<
       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
@@ -255,6 +261,11 @@
     LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. Reason:"
         << strerror(errno);
   }
+
+  // Tell the kernel that we won't be needing these pages any more.
+  if (is_main_stack) {
+    madvise(pregion, kStackOverflowProtectedSize, MADV_DONTNEED);
+  }
 }
 
 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {