Upper and lower capping for percentiles
This is a work around to hide the loss of statistical accuracy due to
data binning in histograms. For cases where a percentile value is lower
than the minimum or greater than maximum read values percentile is capped
to minimum\maximum value accordingly.
Fixed the message printed by "PrintConfidenceIntervals(double)", instead
of printing 0.99% it now prints 99%.
Added more test cases to cover corner cases for clipping.
Change-Id: Ifae41336282a4dfdbeb325b2c2b87c41c8030c38
diff --git a/src/base/histogram_test.cc b/src/base/histogram_test.cc
index 28812fd..7a6c235 100644
--- a/src/base/histogram_test.cc
+++ b/src/base/histogram_test.cc
@@ -29,7 +29,7 @@
hist->AddValue(28);
hist->AddValue(28);
mean = hist->Mean();
- EXPECT_EQ(mean, 20.5);
+ EXPECT_EQ(20.5, mean);
}
TEST(Histtest, VarianceTest) {
@@ -42,7 +42,7 @@
hist->AddValue(28);
hist->CreateHistogram();
variance = hist->Variance();
- EXPECT_EQ(variance, 64.25);
+ EXPECT_EQ(64.25, variance);
delete hist;
}
@@ -69,7 +69,7 @@
hist->CreateHistogram();
PerValue = hist->Percentile(0.50);
- EXPECT_EQ(static_cast<int>(PerValue * 10), 875);
+ EXPECT_EQ(875, static_cast<int>(PerValue * 10));
delete hist;
}
@@ -106,7 +106,7 @@
std::string text;
std::stringstream stream;
std::string expected =
- "UpdateRange:\t0.99% C.I. 1.050us-214.475us Avg: 126.380us Max: 212us\n";
+ "UpdateRange:\t99% C.I. 15us-212us Avg: 126.380us Max: 212us\n";
hist->PrintConfidenceIntervals(stream, 0.99);
EXPECT_EQ(expected, stream.str());
@@ -152,7 +152,7 @@
std::string text;
std::stringstream stream;
std::string expected =
- "Reset:\t0.99% C.I. 1.050us-214.475us Avg: 126.380us Max: 212us\n";
+ "Reset:\t99% C.I. 15us-212us Avg: 126.380us Max: 212us\n";
hist->PrintConfidenceIntervals(stream, 0.99);
EXPECT_EQ(expected, stream.str());
@@ -192,10 +192,9 @@
hist->AddValue(212);
hist->CreateHistogram();
PerValue = hist->Percentile(0.50);
-
std::stringstream stream;
std::string expected =
- "MultipleCreateHist:\t0.99% C.I. 1.050us-214.475us Avg: 126.380us Max: 212us\n";
+ "MultipleCreateHist:\t99% C.I. 15us-212us Avg: 126.380us Max: 212us\n";
hist->PrintConfidenceIntervals(stream, 0.99);
EXPECT_EQ(expected, stream.str());
@@ -208,16 +207,38 @@
TEST(Histtest, SingleValue) {
Histogram<uint64_t> *hist = new Histogram<uint64_t>("SingleValue");
-
hist->AddValue(1);
hist->CreateHistogram();
-
std::stringstream stream;
- std::string expected =
- "SingleValue:\t0.99% C.I. 0.025us-4.975us Avg: 1us Max: 1us\n";
+ std::string expected = "SingleValue:\t99% C.I. 1us-1us Avg: 1us Max: 1us\n";
hist->PrintConfidenceIntervals(stream, 0.99);
- EXPECT_EQ(stream.str(), expected);
+ EXPECT_EQ(expected, stream.str());
+ delete hist;
+}
+TEST(Histtest, CappingPercentiles) {
+
+ double per_995;
+ double per_005;
+ Histogram<uint64_t> *hist = new Histogram<uint64_t>("CappingPercentiles");
+ // All values are similar.
+ for (uint64_t idx = 0ull; idx < 150ull; idx++) {
+ hist->AddValue(0);
+ }
+ hist->CreateHistogram();
+ per_995 = hist->Percentile(0.995);
+ EXPECT_EQ(per_995, 0);
+ hist->Reset();
+ for (size_t idx = 0; idx < 200; idx++) {
+ for (uint64_t val = 1ull; val <= 4ull; val++) {
+ hist->AddValue(val);
+ }
+ }
+ hist->CreateHistogram();
+ per_005 = hist->Percentile(0.005);
+ per_995 = hist->Percentile(0.995);
+ EXPECT_EQ(1, per_005);
+ EXPECT_EQ(4, per_995);
delete hist;
}
@@ -230,15 +251,13 @@
hist->AddValue(idx * idx_inner);
}
}
-
hist->AddValue(10000);
hist->CreateHistogram();
-
std::stringstream stream;
std::string expected =
- "SpikyValues:\t0.99% C.I. 0.089us-2541.825us Avg: 95.033us Max: 10000us\n";
+ "SpikyValues:\t99% C.I. 0.089us-2541.825us Avg: 95.033us Max: 10000us\n";
hist->PrintConfidenceIntervals(stream, 0.99);
- EXPECT_EQ(stream.str(), expected);
+ EXPECT_EQ(expected, stream.str());
delete hist;
}